Layered cobaltates: CoO_2 planes filled by a variable number of electrons

CoO$_2$ slabs Na cobaltates Misfit cobaltates

Edge-shared octahedra, 90-degree Co-O-Co bonds
Layered cobaltates

- *Extraordinary narrow (~200 meV)* qp-bands
- *Large thermopower, magn. field sensitive*
- *Magnetic and charge orderings*
- *Superconductivity* (*NaCoO*)

Strongly correlated CoO$_2$ planes
Two relevant valence states:

- **Small x:** many S=1/2 Co⁴⁺, few S=0 Co³⁺ ("doped Mott insulator")

 (strong corr.)

- **Large x:** few S=1/2 Co⁴⁺, many S=0 Co³⁺ ("doped band insulator")

 (weak corr.)

Two regimes accessible:

- **Small x:** paramagnetic metal, Pauli susceptibility, FL
- **Large x:** magn. order, enhanced thermopower, NFL, QCP...

...opposite trend to what expected!
Paramagnetic metal

Curie-Weiss metal

Charge ordered insulator

H_2O intercalated superconductor

FL

NFL

Enhanced th.el. power

SDW metal

QCP?

$T(K)$

$T(K)$

0 $1/4$ $1/3$ $1/2$ $2/3$ $3/4$ 1

0 10 20 30 40 50 60

$\text{Na content } x$

water intercalation

SC

C_{O}^{4+} $S=1/2$

Cobalt valency

$\text{S}=0$ C_{O}^{3+}
Co-valence in superconducting $Na_xCoO_2 + H_2O$

Milne et al. PRL (2004): Water intercalation adds electrons into CoO$_2$ → SC-dome located far away from the Mott limit

Different result: NMR by Alloul et al.
Strong correlations develop at large x, near the band insulator (!) limit.
ARPES in misfits near the band insulator regime ($x \sim 0.7$)

Brouet et al., 2007

(a) peak-dip-hump structure
(b) strongly renorm. qp-band

c) strong scattering at ~ 150 meV

Spin-diluted system but correlations as strong as in doped Mott insulators
Experiment:

• Correlations are enhanced at large x, near the spinless band-insulator limit

• SC dome is located at valence compositions far away from the Mott limit

….things are very different from cuprates!

Different origin & functionality of correlations

„no double occupancy“ principle as in cuprates is insufficient
Oxide families

- **Ti, V** – weak JT t_{2g} orbital \rightarrow (orbital fluctuation)
- **Cr,Mn** – large spin, DE \rightarrow (half metallicity)
- **Mn** – JT e_g orb., polarons \rightarrow (CMR effect)
- **Fe,Ni** – proxim. to M/I trans. \rightarrow (spin-helix order)
- **Co** – spin-state degen. \rightarrow (high th.el.power)
- **Cu** – quant.spin, no orbital \rightarrow (high-Tc SC)

Correlations: *universal*
Functionality: *different*

```
valence orbital spin lattice str.
```

```
local Hilbert space communication rules
```
The origin of strong correlations in layered cobaltates

A. Spin-state quasidegeneracy of Co ions
B. Edge-sharing octahedra, 90° d-p-d path

G. Khaliullin & J. Chaloupka

A. Spin-state quasidegeneracy in cobaltates

Co(2+): high-spin 3/2 \textit{(Hund coupling dominates)}

Co(4+): low-spin 1/2 \textit{(favored by 10Dq crystal field)}

⇒ Co(3+): S = 0, 1, 2 states are energetically close!

\[\Delta E_S \sim 10Dq - 2J_H \text{ is small, fraction of eV only} \]

⇒ SPIN-STATE TRANSITIONS \textit{driven by temperature, doping (LaCoO}_3\ldots) \textit{...}
180° Co-O-Co bond (t\textsubscript{2g} and e\textsubscript{g} sectors separated)

B.

90° Co-O-Co bond \rightarrow strong mixing between t\textsubscript{2g} and e\textsubscript{g}

\textit{Spin-state fluctuations} \rightarrow \textit{spin-polaron physics}
Electron transfer matrix depends on Me–O–Me bond angle

<table>
<thead>
<tr>
<th>180-degree</th>
<th>90-degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_g</td>
<td>t_{2g}</td>
</tr>
<tr>
<td>t_{2g}</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Units: t_g^2 / Δ_{pd}

$t_{2g} - e_g$ overlap: *the largest element*
$e_{\gamma} = \tilde{\tau}$

$\mathcal{E} \sim \frac{t_o}{t_{\eta}} \sim 2$

\mathcal{C}_0^{3+}, \mathcal{C}_0^{4+}

- process generates $\mathcal{C}_0^{3+} (t_{2g}^e, S=0)$

$\tilde{\tau}$ - process generates $\mathcal{C}_0^{3+} (t_{2g}^5 e_\gamma, S=1)$

Relevant Hilbert space $\{\psi_1, \psi_2, \psi_3\}$:

- $S = \frac{1}{2}$
 - ψ_1
 - ψ_2
 - ψ_3

- $S = 1$

\mathcal{C}_0^{4+}, \mathcal{C}_0^{3+}

$H \{\psi_1, \psi_2, \psi_3\}$
Model

\[H = H_t + H_t' \]

- \(t_{2g} \rightarrow t_{2g} \)
- \(t_{2g} \rightarrow e_g \)

accompanied by \(S=1 \) exciton (present in \(\text{NaCoO}_2 \) but not in \(\text{LaCoO}_3 \))

\[
H_{t} = \frac{\tilde{t}}{\sqrt{3}} \sum_{ij} \left[\mathcal{T}_{+1,\gamma}^{\dagger} (i) f_{j\downarrow}^{\dagger} f_{i\uparrow} - \mathcal{T}_{-1,\gamma}^{\dagger} (i) f_{j\uparrow}^{\dagger} f_{i\downarrow} \right]
+ \mathcal{T}_{0,\gamma}^{\dagger} (i) \frac{1}{\sqrt{2}} \left(f_{j\uparrow}^{\dagger} f_{i\uparrow} - f_{j\downarrow}^{\dagger} f_{i\downarrow} \right) + \text{h.c.}
\]

- \(S=1 \) exciton
- \(e_g \)-orbital label

Fermions dressed by spin-state fluctuations
1. Self-consistent Born approximation

2. Exact diagonalization (one s=1/2 hole on a hexagon)
$Im \ G(E,k)$ at $x = 0.7$ (fermionic density = 0.3)
With $t \sim 100$ meV, theory reproduces both qp- and hump dispersion consistent with LDA value
Brouet et al. ARPES in misfits near the band insulator regime (x~0.7)

Quasiparticle damping

experiment: strong scattering at ~150 meV

theory suggests: S=1 virtual state energy
Scattering on spin-state fluctuations \rightarrow qp destroyed below $E_T \sim 150$ meV
Interaction between t_{2g} holes mediated by $S=1$ excitations
Spin-correlated hopping via the S=1 intermediate states

Step 1: S=1 exciton formed
Step 2: Exciton relaxed

Process sensitive to the spin orientation of holes

Effective interaction between fermions
Exchange by S=1 exciton \[\rightarrow\] fermionic pair-hopping
Interaction between t_{2g}-fermions in terms of:

- **singlet S_{ij} and triplet T_{ij} dimer-hopping**
 \[(SC \text{ pairing}) \]
- **nonlocal charge and spin interactions**
 \[(spin/ch. \text{ order}) \]

\[
H_{\text{eff}} = \frac{1}{2} V \sum_{\langle ijk \rangle} \cos(\phi_{ij} - \phi_{jk}) \left[\hat{S}_{ij}^{\dagger} \hat{S}_{kj} + \frac{1}{3} \hat{T}_{ij}^{\dagger} \hat{T}_{kj} \right]
\]

\[
= V \sum_{\langle ijk \rangle} \cos(\phi_{ij} - \phi_{jk}) \left[n_j n_{ik} - \frac{1}{3} s_j s_{ik} \right]
\]

(i) 1/3 factor: *Singlets move faster and gain more kinetic energy*

(ii) cos-factor: *Frustration*
$t_{2g} - e_g$ hopping is orbital selective.

(a) t, $t_\pi^-, t_\pi^+, \frac{1}{2} t_\sigma^-, \frac{1}{2} t_\sigma^+$

(b) t, $t_\pi^-, t_\pi^+, +\frac{\sqrt{3}}{2} t_\sigma^-, -\frac{\sqrt{3}}{2} t_\sigma^+$

(c) a-bond: \tilde{t} ($yz \leftrightarrow 3x^2-r^2$)
 b-bond: \tilde{t} ($zx \leftrightarrow 3y^2-r^2$)
 c-bond: \tilde{t} ($xy \leftrightarrow 3z^2-r^2$)
\[\langle 3z^2 - r^2 | 3z^2 - r^2 \rangle = 1 \]

Origin of \(\tilde{t}^2 \cos (\phi_{12} - \phi_{23}) \) factor due to \(e_g \) orbital overlap
Spin susceptibility

\[H_{\text{spin}} = -\frac{1}{3} \frac{\tilde{t}^2}{E_T} \sum_{R, \delta \neq \delta'} \cos(\phi_\delta - \phi_{\delta'}) \hat{S}_R \cdot \hat{S}_{R+\delta, R+\delta'} \]

\[= -\lambda \sum_q \hat{S}_{-q} \cdot \hat{D}_q = \quad \lambda = \frac{\tilde{t}^2}{3E_T} \]

\(\chi_{ss} = \quad + \quad + \quad \)

\(\chi_{ds} = \quad + \quad + \quad + \quad \)

RPA:

\[S_q: \text{ on-site spin} \]

\[D_q: \text{ bond-spin} \]

2\(k_F\)-fluctuations enhanced

Exp: Bragg peak at \(M \)

\(x=0.5 \)
Interaction between t\textsubscript{2g}-fermions in terms of pair hopping

\[
H_\text{eff} = \frac{1}{2} V \sum_{ij} \cos(\phi_{ij} - \phi_{jk}) \left[\hat{S}_{ij} \hat{S}_{kj} + \frac{1}{3} \hat{T}_{ij} \hat{T}_{kj} \right]
\]

(i) 1/3 factor: Singlets move faster and gain more kinetic energy

(ii) cos-factor: Frustration

V = \bar{t}^2 / E_T
Coulomb repulsion V_C between t_{2g} holes suppresses T_c

$V_C/t = 0; 3; 20$

spin polarons, charge and magnetic order
• Spin-state quasidegeneracy of Co^{3+}:
 \rightarrow proximity to the Mott physics

• 90° d-p-d bonding in NaCoO_2:
 \rightarrow $S=1$ states accessible by t_{2g}-e_g hopping, spin-polarons, incoherent ARPES, …

• Superconductivity:
 \rightarrow pairing mediated by spin-state fluctuations
Coulomb repulsion between holes:

- reduces the pair-hopping process: \(V = p(n_d)V \)
- spatially separated spin-polarons (trapped by a random Na-potential)
- supports magnetic and charge order, suppresses SC

\[
p(n_d) = \frac{P(\circ_i \bullet_j \bullet_k) | V_C \neq 0}{P(\circ_i \bullet_j \bullet_k) | V_C = 0}
\]

...enjoying pair-hopping process
How good are the conditions for pair-hopping interaction?

$1/\beta \sim$ kinetic energy
LDA suggests: band-flattening when water is present

Model predicts: singlet s-wave T_c enhanced
T_c equation (both the pair-hopping V and dispersion are renormalized by the Gutzwiller factor):

\[
1 = \sum_{|\tilde{\xi}_k| \leq E_T} \frac{\bar{V}_\alpha |\gamma_\alpha (k)|^2}{2\xi_k} \tanh \frac{\bar{\xi}_k}{2T_c}
\]
Pair-hopping term in cuprates is small

\[\frac{t^2}{u} \cdot s_{ij} s_{jk} \]

order of \(J \), minor effect

- \(Na_xCoO_2 \): \(\frac{\tilde{\varepsilon}^2}{E_t} \) is large

\[\tilde{\varepsilon} \approx 2t \]

\[E_t \ll U \]

Pairing field \(\propto \frac{\tilde{\varepsilon}^2}{E_t} \gg J \)
t_{2g} systems

NOT simple band insulators!!

$LaCoO_3$
$NaCoO_2$
$SrRh_2O_4$

SPINLESS MOTT INSULATORS

spin gap \ll charge gap

$\ll 10-100$ meV
$
\sim 1-2$ eV

\[\langle \vec{s}_i^2 \rangle \neq 0 \]

Δ_{spin}

\[\langle \vec{s}_i^2 \rangle \equiv 0 \]
fermions

$t-J$ model

magnetism

Mott ins.

Δ_{ch}

Δ_{sf}

Band ins.

\LaCoO_2 spinless Mott insulator

$3\uparrow, d^6$

$\tilde{S} = 1$

$g = 3.4$

$\Delta \approx 20 \text{ meV}$

$S, L = 0$

ESR, INS on \tilde{S}-triplet
Cobaltates

• Undoped

LaCoO$_3$, 3D cubic : nonmagnetic insulator

NaCoO$_2$, 2D triangular : nonmagnetic insulator

• Doped by holes

$La_{1-x}Sr_xCoO_3$: spin-glass \rightarrow ferromagnetic metal

$Na_{1-x}CoO_2$: spin-glass \rightarrow ferro-planes metal ($x < 0.25$)

\rightarrow nonmagn. metal, supercond. ($x > 0.25$)

Similar ionic structure but different hopping geometry
1. **Spin-waves:** $J_c \sim -J_{ab}$

 (Keimer et al., Boothroyd et al.)

2. $\sum J(\mathbf{r}) > 0 \Rightarrow \Theta > 0$ positive (SW-data)

 however, $\Theta_{exp} \sim -200\,\text{K}$, negative

 Different from $\text{Na}_{1-x}\text{NiO}_2$: $\left| \frac{J_{ab}}{J_c} \right|\sim 15$, $\sim 2\,\text{D}$

$A \leftrightarrow \text{AF}$
Spin waves in $Na_{0.3}CoO_2$ (Keimer et al. /cond-mat)

$J_{ab} = -4.5 \text{ meV}$ (Ferro) $\int A$-type AF

$J_c = 3.3 \text{ meV}$ (AF)

3D-magnetism / 2D-transport

\rightarrow not simple SDW
ORBITAL POLARON

Kilian & G. Kh.

PRB (1999)

doped hole

Oxygen

orbital stabilized

\[\Delta_{\text{orb-char}} \]

\[E_{\text{binding}} \sim z \cdot \Delta_{\text{orb-ch.}} \]

\[E_b \geq W \]

polaron self-trapped
Doping of spinless Mott insulator NaCoO$_2$

Spin/orbital structure:
- Different from that in LaCoO$_2$

90° Co–O–Co bonds

- Co$^{3+}$–Co$^{3+}$ bonds are strongly AF!

Co$^{4+}$–Co$^{3+}$ bonds: Competing F & AF

Ground state: NET spin $\frac{1}{2}$

Resonance between two configurations
Exact diagonalization:

M.Daghofer, P.Horsch, and G.Kh. (PRL 2006)

Two contributions:
central-spin $\frac{1}{2}$ and ring-spins 1

Experimental data: $Na_{0.82}CoO_2$
Key control factors in oxides

A. „Internal“ structure of TM ions (Ti,…Co,…Cu)
 -- valence state, spin & orbital degeneracy
 -- local Hilbert space \{\psi_1, \psi_2, \psi_3,\ldots\}

B. Lattice symmetry
 -- dictates hopping geometry
 -- communication rules / structure of Bloch states