Electronic Higher Multipoles in Solids

Yoshio Kuramoto Department of Physics, Tohoku University

Outline

- Elementary examples of multiple moments
- Role of multipole moments in solids
- Case studies
 - octupole order in $Ce_{1-x}La_xB_6$ (Kramers 4f¹)
 - scalar order in Pr skutterudites (non-Kramers 4f²)
- Mysterious order in SmRu₄P₁₂ (Kramers 4f⁵ =>octupole?)
- Summary

Electric dipole (O_2) and electric octupole (CH_4)

Figure 1: Arrangement of the methane molecules in the b-c-plane of the Cmca space group of phase III. a) and c) show cuts through the planes at x = 0, 1/2 with m molecules, b) and d) represent planes x = 1/4, 1/2 with 2-site molecules. The underlying blue colour represents orientations in phase II (measurements at hrpd, isis).

Multipole moments

Electronic state with ang.mom. $J \Rightarrow$ multipoles up to rank 2J

Large spin-orbit coupling in f-electron systems => $J \gg 1$ possible

Multipole oscillations: $\cos^n \theta$

monopole (n=0)

octupole (n=3)

popular in nuclear physics => http://walet.phy.umist.ac.uk/P615/

Hidden orders in solids

- dependent on the stage of development
- antiferromagnetism (Neel, 1936)
- antiferroelectricity
- multipoles $2^n = 2, 4, 8, 16, 32, 64, \dots$
 - n=2 (quadrupole)
 - n=3 (octupole) octopus
 - n=4 (hexadecapole)
 - n=5 (triakontadipole)
 - n=6 (hexacontatetrapole)

 $O_{A} \propto x^{4} + y^{4} + z^{4} - 3r^{4}/5$

 $O_6^{t} \propto (x^2 - y^2) (y^2 - z^2) (z^2 - x^2)$

Role of higher multipoles of localized electrons

- Leading to unusual magnetism, elastic anomaly...
- Strong spin-orbit interaction + discrete symmetry
 - Mixing of multipoles with different ranks $(x \Rightarrow J_x)$ e.g., Γ_{5g} : xy, yz, zx with $xy(7z^2-1), yz(7x^2-1), zx(7y^2-1)$
 - Coupling to crystalline lattice

diffraction from superlattice? => resonant X-ray scattering (2005), neutron scattering (2007) in Ce_{0.7}La_{0.3}B₆

Clathrate structures

RB₆ (R=La, Ce, Pr,...)

R skutterudite: RT₄X₁₂

Splitting of Γ_8 level

• Magnetic field (H_z)

• Quadrupole field (O₂⁰)

Examples of multipole operators

Quadrupole operators (time reversal: even)

$$O_{xy} = \sqrt{3}J_x J_y = \tau^y \sigma^z$$
$$O_2^0 = \frac{1}{2}(2J_z^2 - J_x^2 - J_y^2) = 4\tau^z$$

Octupole operators (time reversal: odd)

$$T^{2u} = \sqrt{15} J_x J_y J_z = \tau^y$$
$$T_z^{5u} = \frac{\sqrt{15}}{2} J_z (J_x^2 - J_y^2) = \tau^x \sigma^z$$

A	Г	symmetry	X^A		
	-				
1	2u	$\sqrt{15xyz}$	$ au^y$		
2	3g	$(3z^2 - r^2)/2$	$ au^z$		
3		$\sqrt{3}(x^2 - y^2)/2$	τ^x		
4	4u1	x	σ^x		
5		y	σ^y	τ^{\dagger}	
6		z	σ^{z}	۲z	
7	4u2	$x(5x^2 - 3r^2)/2$	$\eta^+ \sigma^x$		
8		$y(5y^2 - 3r^2)/2$	$\eta^{-}\sigma^{y}$		
9		$z(5z^2 - 3r^2)/2$	$\tau^z \sigma^z$		
10	5u	$\sqrt{15}x(y^2-z^2)/2$	$\zeta^+ \sigma^x$	n	η_{\perp}
11		$\sqrt{15}y(z^2 - x^2)/2$	$\zeta^{-}\sigma^{y}$	- (-	• (
12		$\sqrt{15}z(x^2-y^2)/2$	$\tau^x \sigma^z$		
13	5g	$\sqrt{3}yz$	$\tau^y \sigma^x$		
14		$\sqrt{3}zx$	$\tau^y \sigma^y$	۶ ۲	
15		$\sqrt{3}xy$	$\tau^y \sigma^z$	5-\	
				•	τ_x
$\eta^{\pm} = \frac{1}{2} (\pm \sqrt{3}\tau^{x} - \tau^{z}),$ $\tau^{\pm} = \frac{1}{2} (-x + \sqrt{2}\tau^{z}),$					
		$\zeta^- = -rac{1}{2}(au^+ \pm$	$\sqrt{3} au$).	5 +	

Table I. The multipole operators in the Γ_8 subspace.

Strange ordered phase (phase IV) in Ce_xLa_{1-x}B₆

Magnetic anisotropy in Ce_{0.7}La_{0.3}B₆ under uniaxial stress

Theory: K. Kubo and Y. Kuramoto: J. Phys. Soc. Jpn. **73** (2004) 216. Experiment: T. Morie *et al*.: J. Phys. Soc. Jpn. **73** (2004) 2381.

Resonant X-ray scattering (RXS)

Fig. 1. The coordinate system corresponding to the RXS experiment. The azimuthal angle ψ dependence is obtained by rotating the $\mathbf{r} = (x, y, z)$ coordinate system around the *z* axis relative to the photon \mathbf{k} vector, i.e., \mathbf{k} is in the *yz* plane at $\psi = 0$. The σ and π polarization vectors are also shown $(\epsilon_{\sigma} \times \epsilon_{\pi} = \mathbf{k}/|\mathbf{k}|)$.

Scattering amplitude in RXS

$$F_{\rm reso} = -\frac{\Delta^2}{\hbar^2 c^2} \sum_m \frac{W_{fi}^{(m)}}{\hbar\omega - \Delta + i\Gamma/2},$$

$$\begin{split} W_{fi}^{(m)} &= \langle f | \boldsymbol{\epsilon}' \cdot \boldsymbol{P} | m \rangle \langle m | \boldsymbol{\epsilon} \cdot \boldsymbol{P} | i \rangle \\ &+ \langle f | \mathrm{Tr}(\hat{X}' \cdot \hat{Q}) | m \rangle \langle m | \mathrm{Tr}(\hat{X} \cdot \hat{Q} | i \rangle, \quad \mathsf{E2: quadrupole} \end{split}$$

Detectable up to hexadecapoles by E2 scattering Approximation: energy levels for intermediate states mare all represented by Δ . \Rightarrow Irreducible tensor technique is applicable (S.W. Lovesey et al: Physics Reports 411 (2005) 233.)

Resonant X-ray scatt. on Ce0.7La0.3B6 (D. Mannix et al. PRL'05)

All data were taken at $(\frac{3}{2}, \frac{3}{2}, \frac{3}{2})$ and azimuth $\Phi = 0^{\circ}$.

Azimuthal scan around [111] of $Ce_{0.7}La_{0.3}B_6$

Experiment: D. Mannix et al.: Phys. Rev. Lett **95** (2005) 117206 Theory: H. Kusunose and Y.K: JPSJ, **74**, (2005) 3139

Contribution of four domains

[111]

$$I_{\alpha} = A_{\alpha} \left[w |f_{5u}^{[111]}(\alpha)|^2 + \frac{1-w}{3} \sum_{\mu} |f_{5u}^{\mu}(\alpha)|^2 \right]$$

$$\alpha = \sigma\sigma'$$
 or $\sigma\pi'$

µ=[-1,1,1], [1, -1,1], [1, 1,-1]
=> threefold pattern around [111]
is possible.

Neutron scattering on Ce_{0.7}La_{0.3}B₆

Kuwahara et al.: JPSJ 76 (2007) 093702

 $\int_{\text{cell}} d\mathbf{r} \mathbf{M}(\mathbf{r}) = 0$

for each Ce site. However, octupole gives

 $\int_{\text{cell}} d\mathbf{r} \mathbf{M}(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}} \neq 0$

Fig. 2. (Color online) Difference diffraction patterns between 0.25 K and 2 K under a zero magnetic field at $\kappa = (\frac{h}{2}, \frac{h}{2}, \frac{l}{2})$ along the [1,1,1] direction in Ce_{0.7}La_{0.3}B₆. The lines are Gaussian fits.

Clathrate structures

RB₆ (R=La, Ce, Pr,...)

R skutterudite: RT₄X₁₂

Resistivity *ρ*(*T*) in Pr skutterudites H. Sato et al.: J. Phys.: Condens. Matter 15 (2003) S2063–S2070

PrFe₄P₁₂ VS PrRu₄P₁₂

Non-Kramers CEF levels (4f²)

 Γ_{2}

 Γ_1

 Δ

 Γ_4 : dipole, Γ_5 : quadrupole

 Γ_4 and Γ_5 mix in the T_h point group

Neutron scattering of PrRu₄P₁₂ (Iwasa et al.: 2004)

T-dependent CEF splittings in $PrRu_4P_{12}$ for $T < T_{M-1}=63K$ (Iwasa et al: '05)

=>Hexadecapole: $O_4 = O_4^0 + 5O_4^4$ as the order parameter Y.Kuramoto et al.: PTP suppl.('05) T.Takimoto: JPSJ (2006)

=>Hexacontatetrapole (O_6) can be mixed.

$$H_{\text{CEF}} = W \left(x O_4 + \left| 1 - x \right| O_6^c + y O_6^t \right) = c_4^0 O_4 + c_{6c}^0 O_6^c + c_{6t}^0 O_6^t + c_{6t}^0 O_6^t \right)$$

scalar operators in T_h symmetry

Pr³⁺ (4f²) CEF levels against effective hybridization strength

- Fig. 1. CEF level structures derived from hybridization and point charge potential as a function of $(pf\pi)^2/\Delta_-$. The level sequence qualitatively corresponds to: (a) PrFe₄P₁₂; (b) PrRu₄P₁₂ in the high-temperature phase; (c) Pr1 site in PrRu₄P₁₂ in the low-temperature phase; (d) PrOs₄Sb₁₂; (e) Pr2 site in PrRu₄P₁₂ in the low-temperature phase. See text for details.
 - Y. Kuramoto et al.: Prog. Theor. Phys. Suppl. 160 (2005) 134.

Landau-type phenomenology A. Kiss and Y.Kuramoto: JPSJ 75 (2006) 103704.

$$G = \frac{1}{2}a_s(T - T_0)\psi_Q^2 + \frac{1}{4}b\psi_Q^4 + \frac{1}{2}a_m(T - T_F)m^2 + \frac{1}{2}\lambda\psi_Q^2m^2$$

where

 ψ_Q : scalar order parameter (staggered)

m: magnetization

 T_F : hypothetical Curie temperature (= $3.5K < T_0 = 6.5K$)

Anisotropy induced by a scalar order

Helmholtz free energy up to the lowest anisotropic term

$$\begin{aligned} F(\psi_Q, H) &= G(\psi_Q, m) - mH \\ &= \frac{1}{2}a_s(T - T_0)\psi_Q^2 + \frac{1}{4}b\psi_Q^4 - \frac{1}{2}\left(\frac{1}{\chi_+} + \lambda\psi_Q^2\right)^{-1}H^2 \\ &+ \gamma\psi_Q^2(H_x^4 + H_y^4 + H_z^4 - \frac{3}{5}H^4) + O(H^4) \end{aligned}$$

Field angle dependence of the transition temperature

$$\Delta T_{c} = -\frac{2\gamma}{a_{s}} \left(H_{x}^{4} + H_{y}^{4} + H_{z}^{4} - \frac{3}{5} H^{4} \right)$$

$$\Delta T_{c} = -\frac{2\gamma}{a_{s}} \left(H_{x}^{4} + H_{y}^{4} + H_{z}^{4} - \frac{3}{5} H^{4} \right)$$

$$\frac{T_{c}(111) - T_{c}(001)}{T_{c}(111) - T_{c}(110)} = 4, \quad (\gamma > 0)$$

$$\frac{T_{c}(111) - T_{c}(110)}{T_{c}(111) - T_{c}(110)} = 4, \quad (\gamma > 0)$$

$$H = 2.7 \text{ T}$$

$$(h_{x}, h_{y}, h_{z}) = (\cos(\phi)\sin(\theta), \sin(\phi)\sin(\theta), \cos(\theta))$$

$$Conversal ratio for scalar orders!$$

Other evidences in favor of the scalar order in PrFe₄P₁₂

- NMR spectra in the ordered phase show local cubic symmetry.
- Lattice distortion observed by neutron and X-ray does not show lower symmetry.
- Induced staggered moment is parallel or antiparallel to the magnetic field.

Scalar form factors

 $\int d\mathbf{r} \rho_{4f}(\mathbf{r}) = 2$ for all sites

(a) Γ₁ singlet
(b) Γ₃ doublet
(c) Γ₅ triplet
(d) Staggered scalar order
Degeneracies in (b) and (c) should be lifted at T = 0 either by Kondo or distortion!

$\sigma-\pi$ ' E2 superlattice scattering from hexadecapole $O_4^0+5O_4^4$

Around [001] axis: Intensity $\propto 2 \sin^2 4\psi = 1 - \cos 8\psi$

Outline

- Elementary examples of multiple moments
- Role of multipole moments in solids
- Case studies
 - octupole order in $Ce_{1-x}La_xB_6$ (Kramers 4f¹)
 - scalar order in Pr skutterudites (non-Kramers 4f²)
- Mysterious order in SmRu₄P₁₂ (Kramers 4f⁵ =>octupole?)
- Summary

Enigmatic phase transitions in SmRu₄P₁₂

Sekine et al (2001)

Matsuhira et al (2005)

Order parameters in SmRu₄P₁₂?

Orbital degeneracy remains in phase II => elastic anomaly at II-III boundary (Nakashima et al)

SmRu₄P₁₂: magnetic isotropy at I-II transition

D. Kikuchi et al.: (2006)

The simplest octupole order (T_{xyz})

Pseudo-scalar –inconsistent with NQR

Possible charge & spin density patterns in SmRu₄P₁₂

Y. Aoki et al: J. Phys. Soc. Jpn. 76 (2007) 113703

Nature of the second transition under magnetic field?

Order parameter(s) in SmRu₄P₁₂?

- Metal-insulator transition as in PrRu₄P₁₂
- Time reversal broken (NMR, muSR)
- Trigonal electric field at Sm (NQR)
 cf (111) lattice distortion in Ce_{0.7}La_{0.3}B₆
- Emergence of a second transition under H
- No superlattice found so far

Summary

- Magnetic octupole order in Ce_xLa_{1-x}B₆
 - Induced quadrupoles => lattice distortion
 - Superlattice observation by resonant X-ray scattering and neutron scattering
- Scalar multipole orders in skutterudites
 Phase transition keeping the local symmetry
- Unsolved problems
 - Ground state of PrFe₄P₁₂?
 - SmRu₄P₁₂, NpO₂, URu₂Si₂,...