Spectral functions and Luttinger sum sule

in models of strongly correlated electrons

M. Zemljič, J. Kokalj, P. Prelovšek

J. Stefan Institute, Ljubljana, Slovenia

T.Tohyama YITP, Kyoto

YITP Kyoto, November 2007

Outline

- **Cuprates: ARPES results theoretical challenges:** pseudogap, asymmetry electron-hole doping, waterfall dispersion, Luttinger sum rule
- Exact diagonalization T>0 (FTLM) method
- Hole-doping: Fermi surface evolution, anomalous QP relaxation rate, pseudogap
- **Electron-doping:** Fermi surface from pocket to large FS
- **High-energy kink and waterfall** dispersion: origin due to strong correlations
- Luttinger sum rule: valid for finite systems, violated for t-J model and Mott-Hubbard insulator ?

Cuprates: phase diagram

Hole-doped cuprates: ARPES

Fermi surface reconstruction: from arc to large FS

Electron-doped cuprates: ARPES

 $Nd_{2-x}Ce_{x}CuO_{4\pm\delta}$: Armitage et al. 02 electron pockets at low doping closing of Mott-Hubbard gap with doping ?

 $Sm_{1.86}Ce_{0.14}CuO_4$: Park et al 07

band splitting: due to SDW, AFM ? Mott-Hubbard gap remains pseudogap (splitting) the same as in $\sigma(\omega)$?

High energy kink - waterfall

ARPES:

Graf et al (07)

t – J model

interplay : electron hopping + spin exchange
single band model for strongly correlated electrons

$$H = -\sum_{i,j,s} t_{ij} \tilde{c}_{js}^{\dagger} \tilde{c}_{is} + J \sum_{\langle ij \rangle} (\mathbf{S}_i \cdot \mathbf{S}_j - \frac{1}{4} n_i n_j)$$

$$t_{ij} = t$$
 n.n. hopping

$$\tilde{c}_{is}^{\dagger} = (1 - n_{i,-s})c_{is}^{\dagger}$$

 $t_{ij} = t'$ n.n.n. hopping etc.

projected fermionic operators: no double occupation of sites

finite-T Lanczos method (FTLM): J.Jaklič + PP

 $T > T_{fs}$ finite size temperature

T > 0 Lanczos method (FTLM) for dynamical quantities

 $egin{array}{rcl} H|\phi_0
angle &=& a_0|\phi_0
angle+b_1|\phi_1
angle \ H|\phi_i
angle &=& b_i|\phi_{i-1}
angle+a_i|\phi_i
angle+b_{i+1}|\phi_{i+1}
angle, \ H|\phi_M
angle &=& a_0|\phi_M
angle+b_{M-1}|\phi_{M-1}
angle \end{array}$

Jaklič, Prelovšek (1994)

M Lanczos steps started with normalized

$$\begin{aligned} |\phi_0\rangle &= |n\rangle &\implies L_M = \{|\phi_j\rangle, \ j = 0 \dots M\} \Longrightarrow |\psi_j\rangle \\ |\tilde{\phi}_0\rangle &= \frac{A|\phi_0\rangle}{\sqrt{\langle\phi_0|A^{\dagger}A|\phi_0\rangle}} &\implies \tilde{L}_M = \{|\tilde{\phi}_j\rangle, \ j = 0 \dots M\} \Longrightarrow |\tilde{\psi}_j\rangle \\ \langle B(t)A\rangle &\approx Z^{-1} \sum_{n=1}^{N_{st}} \sum_{i=0}^M \sum_{j=0}^M e^{-\beta\epsilon_i^n} e^{it(\epsilon_i^n - \tilde{\epsilon}_j^n)} \langle n|\psi_i^n\rangle \langle \psi_i^n|B|\tilde{\psi}_j^n\rangle \langle \tilde{\psi}_j^n|A|n\rangle \end{aligned}$$

Short - t (high - ω), high - T expansion: exact k,l < M + random sampling: r << N_{st}

Spectral functions

 $G(\mathbf{k},\omega) = -i \int_{0}^{\infty} dt e^{i(\omega+\mu)t} \langle \{\tilde{c}_{\mathbf{k}s}(t), \tilde{c}_{\mathbf{k}s}^{\dagger}\}_{+} \rangle \qquad \text{projected operators}$ $G(\mathbf{k},\omega) = \frac{\alpha}{\omega - \zeta_{\mathbf{k}} - \Sigma(\mathbf{k},\omega)} \qquad |\Sigma(\mathbf{k},\omega \to \pm \infty)| \propto 1/\omega$ $\alpha = (1+c_{h})/2 \qquad \text{normalization}$ $\zeta_{\mathbf{k}} = \int d\omega \omega A(\mathbf{k},\omega)/\alpha = \bar{\zeta} - 4 \sum_{j} r_{j} t_{j} \gamma_{j}(\mathbf{k}) \qquad r_{j} = \alpha + \frac{1}{\alpha} \langle \mathbf{S}_{0} \cdot \mathbf{S}_{j} \rangle$ 'free' term

Finite size lattice:

Continuous k: $t_{ij} \rightarrow \tilde{t}_{ij} = t_{ij} \exp(i\vec{\theta} \cdot \vec{r}_{ij})$ $\mathbf{k} = \mathbf{k}_l + \vec{\theta}$ Regularization: with FTLM calculate $G(\mathbf{k}, \omega) \longrightarrow \Sigma(\mathbf{k}, \omega)$ \longrightarrow average $\Sigma(\mathbf{k}, \omega)$ over $\delta k \sim 0.3 \longrightarrow G(\mathbf{k}, \omega)$

Hole-doped case

Fermi surface evolution: A(k, ω =0) Zemljič, Prelovšek PRB (07)

t - t'- t''- J model: t'= - 0.3 t, t''=0.12 t, J=0.4 t

 $c_h = 1/20, 2/20, 3/20$

t - J model: J=0.3 t

 $c_h = 1/18, 2/18, 3/18$

Pseudogap: spectral function and self energy along the 'Fermi line'

 $-\Sigma''_{MFL}(\mathbf{k}, \omega \sim 0) \sim a_{\mathbf{k}} + b_{\mathbf{k}}|\omega|$ marginal FL damping

intermediate (optimum) doping: $c_h = 0.17$

Pseudogap evolution:

pseudogap large:

- a) antinodal region
- b) low doping

density of states: integrated pseudogap

Electron-doped case

t-t'-J model: t' = 0.3 t, J=0.3 t

Zemljic, PP, Tohyama, PRB (07)

 $c_e = 1/20, 2/20, 3/20, 4/18$

Fermi surface evolution:

- a) electron pockets at low doping
- b) large FS at OD

no closing of Mott-Hubbard gap !

pseudogap along zone diagonal

Luttinger line - GF zero : pole

Pseudogap evolution:

SF along the AFM zone boundary

 $c_e = 1/20, 2/20, 3/20, 4/18$

pseudogap closing with doping and T

Effective bands:

$$c_e = 1/20, 2/20, 3/20, 4/18$$

$$\epsilon_{\pm}(\mathbf{k}) = -4\tilde{t}'\gamma_{\mathbf{k}}' \pm \sqrt{(4\tilde{t}\gamma_{\mathbf{k}})^2 + w\bar{s}^2}$$

two effective bands:

- a) splitting vanishes in overdoped
- b) splitting due to AFM order ?
- c) band renormalization smaller relative to hole-doped case

the same pseudogap shows up in optical conductivity

High energy kink - waterfall

extended t-J model: t' = -0.3 t, t'' = 0.12 t, J = 0.4 t

low hole doping: $c_h = 2/20 = 0.1$ Zemljic, PP, Tohyama, cond-mat/07..

T – **dependence :** T/t = 0, 0.2, 0.4, 0.75

- waterfall even at T = t >> J: eliminates several scenarios ?
- at low T < J coexisting band: renormalized QP band + bottom band
- no waterfall in the IPES part

doping dependence: t – J model

J = 0.3 t, T = 0.1 t

$$c_h = 0.05, 0.1, 0.15, 0.22$$

similarity to T dependence

origin of high-energy kink and waterfall:

anomalous self energy, characteristic for strong correlation correlated motion of hole: **Brinkman – Rice incoherent band**

$$egin{aligned} &\omega_{\mathbf{k}}-\zeta_{\mathbf{k}}+rac{1}{\pi}\int d\omega'rac{\Sigma''(\mathbf{k},\omega')}{\omega_{\mathbf{k}}-\omega'}=0 \ &\eta_{\mathbf{k}}^2=-\int \Sigma''(\mathbf{k},\omega)d\omega/\pi\sim 3-4\,t^2 \end{aligned}$$

- weakly dependent on T, except at $T \sim 0$
- weakly dependent on c_h
- magnitude and shape close to BR retreacable path app.

 $\Sigma^{A}(\omega) = \frac{1}{2} \pm \left[\frac{1}{4} - (z - 1)t^{2}/\omega^{2}\right]^{1/2}$

Luttinger sum rule

T=0: determines Fermi (Luttinger) surface k_F

- a) metal: $G_s(\mathbf{k}, \omega = 0)$ has poles (changes sign) at chem. potential μ and $\mathbf{k} = \mathbf{k}_F$ on Fermi surface
- b) insulator: $G_s(\mathbf{k}, \omega = 0)$ has zeroes at $\mathbf{k} = \mathbf{k}_F$ Luttinger surface

Validity of LSR:

- a) existence of functional for skeleton diagrams: validity of perturbation expansion adiabatic connection to noninteracting fermions
- b) valid also for finite systems
- c) can be generalized for inhomogeneous systems etc.

Basic steps to LSR:

$$N = rac{1}{eta} \sum_l \sum_{\mathbf{k}s} \mathcal{G}_s(\mathbf{k}, \omega_l) e^{i \omega_l 0^+}$$

$$egin{aligned} N &= I_1 + I_2 \ I_1 &= -rac{1}{2\pi i} \sum_{\mathbf{k}s} \int_{\Gamma} rac{\partial}{\partial \zeta} \ln(\mathcal{G}_s(\mathbf{k},\zeta)) e^{\zeta 0^+} rac{1}{e^{eta \hbar \zeta} + 1} d\zeta \ I_2 &= rac{1}{2\pi i} \sum_{\mathbf{k}s} \int_{\Gamma} \mathcal{G}_s(\mathbf{k},\zeta) rac{\partial}{\partial \zeta} \Sigma_s(\mathbf{k},\zeta) e^{\zeta 0^+} rac{1}{e^{eta \hbar \zeta} + 1} d\zeta \end{aligned}$$

construction of functional Y' – closed linked skeleton diagrams:

$$T \to 0$$
 $I_2 = \partial Y' / \partial \delta \epsilon = 0$

$$N = -\frac{1}{2\pi i} \sum_{\mathbf{k}s} 2\mathrm{Im} \Big[\int_{-\infty}^{0} d\zeta \Big\{ \frac{\partial}{\partial \zeta} \ln(G_s(\mathbf{k},\zeta)) \Big\} \Big]$$

counting poles and zeroes of Green's function valid also for finite systems

$$N = \sum_{\mathbf{k}s, G_s(\mathbf{k}, \mathbf{0}) > 0} 1$$

LSR on finite systems Kokalj, PP, PRB (07)

 $H = -\sum_{i,j,s} t_{ij} c_{js}^{\dagger} c_{is} + H_{int}$ tight binding models: Hubbard, t-J,...

 $\mu_N = (E_0^{N+1} - E_0^{N-1})/2$ from: $N = T\partial(\ln\Omega)/\partial\mu$ $T \to 0$

$$G_{s}(\mathbf{k},\zeta) = \sum_{m} \frac{\left| \langle m_{N-1} | c_{\mathbf{k}s} | 0_{N} \rangle \right|^{2}}{\zeta + \mu_{N} - (E_{0}^{N} - E_{m}^{N-1})} + \sum_{l} \frac{\left| \langle l_{N+1} | c_{\mathbf{k}s}^{\dagger} | 0_{N} \rangle \right|^{2}}{\zeta + \mu_{N} - (E_{l}^{N+1} - E_{0}^{N})}$$

 $G_s(\mathbf{k}, \omega = 0)$ calculated on small system: full diagnalisation or Lanczos method

Small system results

excluding 'trivial' violations of LSR:

- level crossing change of g.s. character, quantum numbers: FM, LRO..
- degenerate g.s.
- level crossing of $|0_{N+1}\rangle$ or $|0_{N-1}\rangle$
- a) 2D t U Hubbard model: U/t = 0 50, sites $N_0 = 8$, 10, 16

no evident LSR violation (for small systems)

b) 2D t - J model:

LSR violation - $N_0 = 20$ with N = 18 fermions (2 holes) origin – model in restricted basis – nonperturbative ?

LSR in Mott – Hubbard insulator

Example: **2D Hubbard model** μ inside the MH gap: possible moment expansion in t/U

$$G(\mathbf{k},\omega) = \int_{-\infty}^{\infty} \frac{A(\mathbf{k},\omega')}{\omega + \mu - \omega' \pm i\eta} d\omega'$$

Kokalj, PP, cond-mat/07..

$$G(\mathbf{k}, 0) = G^{-}(\mathbf{k}, 0) + G^{+}(\mathbf{k}, 0)$$

$$G^{-}(\mathbf{k},0) = \sum_{n=0}^{\infty} \left(\frac{2}{U}\right)^{n+1} \sum_{m=0}^{n} M_{n-m}^{-}(\mathbf{k}) \binom{n}{m} (-\tilde{\mu})^{m} \qquad \tilde{\mu} = \mu - U/2$$

 $M_l^{-}(\mathbf{k}) = \langle [H, \dots [H, c_{\mathbf{k}s}^{\dagger}]] c_{\mathbf{k}s} \rangle$

$$M_0^{\mp}(\mathbf{k}) = \frac{1}{2} \pm \frac{2}{U} \sum_{\delta} \varepsilon_{\delta}(\mathbf{k}) [\langle \mathbf{S}_{\delta} \cdot \mathbf{S}_0 \rangle - \frac{1}{4}] + O(\frac{t_{ij}^2}{U})$$

$$arepsilon_{\delta}(\mathbf{k}) = -t_{\delta} \sum_{i_{\delta}} \mathrm{e}^{i\mathbf{k}\mathbf{r}_{i\delta}}$$

$$G(\mathbf{k},0) = \frac{4}{U^2} \left(\sum_{\delta} 4\varepsilon_{\delta}(\mathbf{k}) \langle \mathbf{S}_{\delta} \cdot \mathbf{S}_{0} \rangle - \tilde{\mu}\right) + O\left(\frac{t_{ij}^{2}}{U^{3}}\right)$$

Results

a) LSR satisfied for model with particle – hole symmetry: Hubbard on bipartite lattice

b) (generally ?) violated on lattices without p-h symmetry:

Hubbard on triangular lattice

Summary

Hole – doped cuprates:

- Fermi surface evolution with doping: hole pocket large FS
- self energy: MFL part + pseudogap contribution
- H o le pseudogap vanishes in OD regime and for T>T* ~J

Electron – doped cuprates:

- Fermi surface: electron pocket large FS: no vanishing of MH gap
- pseudogap along zone diagonal
- double band: sue to SDW-like splitting

High – energy kink, waterfall:

- general feature in hole-dispersion for $\omega < 0$, not for EDC for $\omega < 0$!
- persists up to $T \sim t$, origin incoherent motion a la Brinkman-Rice ٠

Luttinger sum rule:

- (in principle) valid also for finite systems, violated for t J model
- violated for Mott Hubbard insulator without p h symmetry ٠

QP relaxation rate: momentum dependence

