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Geometrically Frustrated Interactions play particular role
in the geometry of the Metallic state.

MPIPKS, DresdenFrank Pollmann

Outline

C. H, F. Pollmann, arXiv:0711.3075v1

Introduction to strongly correlated metals.

I) anisotropic triangular lattice
II) anisotropic kagome lattice



Strongly Correlated Metals

Electronic
correlations

Metallicity

competition of two different
energy scales

kinetic energy Coulomb energyvs



Strongly Correlated Metals

Electronic
correlations

Metallicity

Just a renormalization of
Density of states

Small electronic correlations

Fermi Liquid picture



Strong electronic correlations

Density of states changes(collective excitations)

Metallicity is either suppressed or modified much in space.

Metallicity

Electronic
correlations

non-Fermi liquidInsulator

Strongly Correlated Metals

In a class of strongly correlated electrons,
the effective geometry of metallicity is somewhat modified.



Strongly Correlated Metals: example1

square lattice + correlation= stripe formation
1D propagation of carriers



Two degrees of freedom coupled:
Orbital + spin

Strongly Correlated Metals: example2

Kugel-Khomskii model

FM AFM

e.g. Manganese Oxides



Strongly Correlated Metals

How about designing the effective geometry of metal
by using the geometrical frustration?

real space physics reciprocal / k-space physics

Electronic
correlationsMetallicity

Frustration

DOS
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Spinless Fermions on a Triangular Lattice

~0V
tStrong nearest neighbor repulsion

Strongly Correlated Metals: example3

C.H, N.Furukawa (‘06)



+1 particle1/3 filling

=3VEv

Spinless Fermions on a Triangular Lattice
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tStrong nearest neighbor repulsion
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Geometry Modification of the “Lattice”

pins
ball

triangle Honeycomb

Fermi liquid Non Fermi liquid

Weak coupling Strong coupling

“pinball liquid“
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Theoretical

due to strong nearest neighbor coulomb
repulsion at 1/4-filling

Extended Hubbard Model studiestV- Model studies

Pinballs
Variational MC
2D-DMRG

Exact diagonalization
Variational MC
2D-DMRG
DMFT

C
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C.H, Furukawa,Nakagawa, Kubo(‘06)
Miyazaki, et.al. (‘07)
Nishimoto, et.al. (‘07)

Hard core boson studies
Wessel-Troyer, Heidarian-Damle, Melko, et.al. (‘05)

Merino-Seo-Ogata(‘05)
Watanabe-Ogata(‘05)
Nishimoto-Ohta(‘07)
Merino,et.al.(‘07)



Spinless Fermions
on the geometrically frustrated systems
with anisotropy

edge sharing

corner sharing

(1) Triangular lattice

(2) Kagome lattice
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We start from the strong coupling limit (Classical limit)

I) Triangular lattice
II) Kagome lattice

Same physics holds for two representative lattices.

Neel ordercharge order



V t

V' t’

We focus on half-filling

Lattice I. Anisotropic triangular lattice

1 fermion / site

ground state at large V is
a striped charge ordered insulator

CO



Classical limit t=0

+...+

chain stripe

2~ L

vertical stripe
V’>V V’<V

degenerate stripes unique stripe

V
V'

C
O

CO

semi-macroscopic degeneracy

Ground state at half-filling



Classical limit + dynamics t

chain stripe vertical stripe
V’>V V’<V

Horizontal stripe

quantum dynamics+t
no intrinsic change

(just an exchange energy gain)

V
V'

degeneracy is lifted
t
V

2
~



good plaquette bad plaquette

4th order process

horizontalkinkdiagonal

2~ L...

+t

classically degenerate

Quantum ground state V’>V



horizontal

diagonalE
ε4

classical disorder quantum order
t=0 t=0

good plaquette bad plaquette

4th order process

horizontalkinkdiagonal

2~ L...

Quantum ground state V’>V

L
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Half-filling + 1 Particle

horizontal stripe vertical stripeV
V'V’>V



V’<V

C
O

CO

1D “confined state”
Particle cannot go over the CO walls..

+1 particle
=E0+4V

E0

EexE

Half-filling + 1 Particle

horizontal stripe vertical stripeV
V'V’>V V’<V

C
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horizontal stripe vertical stripe
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Spectral Function: tV model

1D free particle

V’<V

horizontal stripe

vertical stripe
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V'

V’>V

ω /t

Incoherent
broad spectrum

What is happening?



V’>V
(1) Propagete along the CO walls. x-direction

Horizontal Stripe + 1Particle



Horizontal Stripe + 1Particle

V’>V (2) Bonds move separately y-direction



Horizontal Stripe + 1Particle

V’>V (1) Bonds propagate together along the CO walls

(2) Bonds can separate in the direction
perpendicular to the wall.

e/2
e e
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2

“ fractional charge” e/2



projector onto
the Ising ground states

Fractional Charge V’>V t,t’

Dispersion (1st order)
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continuum
bulk limit

effective model at V~∞

1D Wigner lattice

P. Horsch, et.al.(‘05)



Fractional Charge V’>V t,t’
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projector onto
the Ising ground states

effective model at V~∞

We find a characteristic dispersion which is the 1+1 combination
free particle motion (non-fractionalized)

+ fractionalized collective mode.

Γ X

MY

kx

ky

1D free particle

collective mode
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Spectral Function: projection model

Fractional Charge
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weakened van Hove singularity
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Fractional Charge V’>V t,t’

bad good plaquette
ε4 = 5t 4

(2V’-V) V’2=

Confinement (4th order)

Good plaquettes are replaced by the bad ones

Distance between fractions

V=100 V’=200

5 10
|y1-y2|

0

1
-510

t=1 t’=0.5

t=0 t’=1
Λc

the linear potentials
∞∞ fractions moving in

fractions never separate to infinite distance

e/2
e/2

coherence length ~ t /ε4 3~ (V/ t )



V t

V' t’

We focus on 2/3-filling

Lattice II. Anisotropic Kagome lattice

ground state at large V is
a striped charge ordered insulator

2 fermion / 3site



kinks

2/3-filling

Anisotropic Kagome lattice

2 fermion / 3site

Unique ground state is selected from degenerate stripes ~ 2L

by 6th order ring exchange of t around the hexagons.

Ground state = classically degenerate

1< V’/V <1.5~ 1.5< V’/V~

diagonal horizontal

V’/V1



2/3-filling + 1hole

Anisotropic Kagome lattice

doping of hole yields...

fractionalization of charge perpendicular to the stripe
free propagation along the stripe

For both horizontal and diagonal stripes,

Confinement of two fractions :

good hexagons replaced by bad ones

linear potential at the 6th order of t.

coherence length ~ (V / t )5



Summary

V’=V t,t’

Partially frustrated lattices (triangular & kagome) yield exotic
tuning of electronic propagation in the vicinity of insulating state
(particle doping).

Strong coupling stories of interacting fermions.

Fractionalization
non-fractionalized free propagation

dimension 1 + 1 < 2

Hard core bosons also have such state.
Geometry and the degree of cofinement differs a bit due to statistics.

(fermionic exchange sign).
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