Dimensional Tuninig Of Electronic States Under Strong And Frustrated Interactions

Kyoto Sangyo University Chisa HOTTA

- Introduction to strongly correlated metals.
- Geometrically Frustrated Interactions play particular role in the geometry of the Metallic state.

- I) anisotropic triangular lattice
- II) anisotropic kagome lattice

C. H, F. Pollmann, arXiv:0711.3075v1

Frank Pollmann MPIPKS, Dresden

Metallicity

Small electronic correlations Just a renormalization of Density of states Formai Liewid mieture Electronic correlations

Fermi Liquid picture

In a class of strongly correlated electrons, the effective geometry of metallicity is somewhat modified.

Stripe phases in high-temperature superconductors

V. J. Emery*, S. A. Kivelson^{†‡}, and J. M. Tranquada*

*Department of Physics, Brookhaven National Laboratory, Upton, NY 11973-5000; and †Department of Physics, University of California, Los Angeles, CA 90095

Stripe phases are predicted and observed to occur in a class of strongly correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representatives. <u>The existence of stripe correlations</u> necessitates the development of new principles for describing charge transport and especially superconductivity in these materials.

square lattice + correlation= stripe formation 1D propagation of carriers

Strongly Correlated Metals: example2

Y. Tokura^{1,2} and N. Nagaosa¹

An electron in a solid, that is, bound to or nearly localized on the specific atomic site, has three attributes: charge, spin, and orbital. <u>The orbital represents the shape of the electron cloud in solid</u>. In transition-metal oxides with anisotropic-shaped d-orbital electrons, the Coulomb interaction between the electrons (strong electron correlation effect) is of importance for understanding their metal-insulator transitions and properties such as high-temperature superconductivity and colossal magnetoresistance. The orbital degree of freedom occasionally plays an important role in these phenomena, and its correlation and/or order-disorder transition causes a variety of phenomena through strong coupling with charge, spin, and lattice dynamics. An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons.

Kugel-Khomskii model $H = \sum_{ij} \left[J_{ij}(\vec{T}_i, \vec{T}_j) \vec{S}_i \cdot \vec{S}_j + K_{ij}(\vec{T}_i, \vec{T}_j) \right]$

real space physics

reciprocal / k-space physics

Strongly Correlated Metals: example3

Spinless Fermions on a Triangular Lattice Strong nearest neighbor repulsion $\frac{t}{V} \sim 0$

C.H, N.Furukawa ('06)

1/3 filling

Wigner X-tal ground state $E_v = 0$

excited state $E_V = 2V$

Spinless Fermions on a Triangular Lattice

Strong nearest neighbor repulsion $\frac{t}{V} \sim 0$

1/3 filling +1 particle

Charge order (solid) + Metal (liquid)

1/3 filling

Wigner X-tal ground state Ev =0

excited state $E_V = 2V$

Geometry Modification of the "Lattice"

Related works

Experimental Organic Solid θ-ET₂X

- (1) Anisotropic triangular lattice
- (2) Charge Ordering (CO)

due to strong nearest neighbor coulomb repulsion at 1/4-filling c.f. Mila-Zotos,Penc ('94)

Seo-Fukuyama ('97)

(3) Anomalous transport

Theoretical

tV- Model studies

PinballsC.H, Furukawa,Nakagawa, Kubo('06)Variational MCMiyazaki, et.al. ('07)2D-DMRGNishimoto, et.al. ('07)

Hard core boson studies

Wessel-Troyer, Heidarian-Damle, Melko, et.al. ('05)

An organic thyristor Vol 437|22 September 2005|doi:10.1038/nature04087

F. Sawano¹, I. Terasaki¹, H. Mori^{2,3}, T. Mori⁴, M. Watanabe⁵, N. Ikeda⁶, Y. Nogami^{3,7} & Y. Noda⁵

Exact diagonalizationMerino-Seo-Ogata('05)Variational MCWatanabe-Ogata('05)2D-DMRGNishimoto-Ohta('07)DMFTMerino,et.al.('07)

Spinless Fermions on the geometrically frustrated systems with anisotropy

t-V Model of Spinless Fermions

$$H = \sum_{\langle ij \rangle} \left(-t_{ij} c_i^{\dagger} c_j + \text{h.c.} \right) + \sum_{\langle ij \rangle} V_{ij} n_i n_j$$

We start from the strong coupling limit (Classical limit)
t=0

- Same physics holds for two representative lattices.
 - I) Triangular lattice
 - II) Kagome lattice

Lattice I. Anisotropic triangular lattice

• We focus on half-filling

1 fermion / site

ground state at large V is a striped charge ordered insulator

Classical limit t=0 Ground state at half-filling

Classical limit + dynamics *t*

Quantum ground state V'>V

Quantum ground state V'>V

Half-filling + 1 Particle

V'>V horizontal stripe

V'>V horizontal stripe

1D "confined state"

Particle cannot go over the CO walls..

Spectral Function: tV model

Horizontal Stripe + 1Particle

(1) Propagete along the CO walls. *x*-direction

Horizontal Stripe + 1Particle

(1) Propagete along the CO walls. (2) Bonds move separately *y*-direction

Horizontal Stripe + 1Particle

V'>V
(1) Bonds propagate together along the CO walls
(2) Bonds can separate in the direction perpendicular to the wall.

" fractional charge" $e \rightarrow \frac{e}{2} + \frac{e}{2}$

Fractional Charge $V'>V \gg t,t'$

effective model at $V \sim$

$$\mathcal{H}_{\mathcal{P}} = \sum_{\langle ij \rangle} \mathcal{P}(t_{ij}c_i^+c_j^- + h.c.)\mathcal{P}$$

ig projector onto
the Ising ground states

Dispersion (1st order)

Fractional Charge $V'>V \gg t,t'$

effective model at V~

ky

M

1D free particle

We find a characteristic dispersion which is the 1+1 combination free particle motion (non-fractionalized) + fractionalized collective mode.

Spectral Function: projection model

Fractional Charge $V'>V \gg t,t'$

Lattice II. Anisotropic Kagome lattice

We focus on 2/3-filling

2 fermion / 3site

 \Rightarrow ground state at large V is a striped charge ordered insulator

Anisotropic Kagome lattice

2/3-filling 2 fermion / 3site

Ground state = classically degenerate

Unique ground state is selected from degenerate stripes ~ 2^{L} by 6th order ring exchange of *t* around the hexagons.

Anisotropic Kagome lattice

2/3-filling + 1hole

For both horizontal and diagonal stripes, doping of hole yields...

- fractionalization of charge perpendicular to the stripe
- free propagation along the stripe

Confinement of two fractions :

coherence length ~ $(V / t)^5$

linear potential at the 6th order of t.

good hexagons replaced by bad ones

Summary

• Strong coupling stories of interacting fermions.

 $V' \neq V \gg t, t'$

- <u>Partially frustrated lattices</u> (triangular & kagome) yield exotic tuning of electronic propagation in the vicinity of insulating state (particle doping).
 - Fractionalization
 - non-fractionalized free propagation

dimension **1** \otimes **1** < **2**

• Hard core bosons also have such state.

Geometry and the degree of cofinement differs a bit due to statistics. (fermionic exchange sign).