

Yukawa International Seminar 2007 (YKIS2007)

Interaction and Nanostructural Effects in Low-Dimensional Systems

Nov.5-30, 2007, Yukawa Institute for Theoretical Physics

Physics of graphene

Hideo Aoki Univ Tokyo, Japan

Yasuhiro Hatsugai Univ Tokyo / Tsukuba, Japan Takahiro Fukui Ibaraki Univ, Japan

Graphene

- atomically clean monolayer system with unusual ("massless Dirac") dispersion Band structure. group theory
 - anomalous integer QHE (one-body problem) topological quantum # bulk vs edge states

Many-body states

<u>Graphene</u> — monolayer graphite

10 µm

Mechanical exfoliation (Geim) SiC decomposition (de Heer) Benzene (Saiki)

(courtesy of Geim)

 π band K'

(Novoselov et al, Science 2006, suppl info)

Graphene's band dispersion

Massless Dirac eqn for graphene

(Lomer, Proc Roy Soc 1955)

$$\begin{aligned} \mathbf{\mathcal{H}} &= \frac{\gamma}{\hbar} \begin{pmatrix} \mathbf{K} & \mathbf{K'} \\ 0 & \pi_x - i\pi_y & 0 & 0 \\ \hline \frac{\pi_x + i\pi_y & 0}{0 & 0} & \frac{\pi_x + i\pi_y}{0} \\ \hline \frac{\pi_x + i\pi_y & 0}{0 & 0} & \frac{\pi_x + i\pi_y}{0} \end{pmatrix} \\ \hat{\boldsymbol{\pi}} &= \hat{\mathbf{p}} + e\mathbf{A}/c \end{aligned}$$

$$\mathbf{F}_{sk}^{K}(\mathbf{r}) &= \frac{1}{\sqrt{2L}} \exp(i\mathbf{k} \cdot \mathbf{r}) \begin{pmatrix} s \\ e^{i\varphi(\mathbf{k})} \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{F}_{sk}^{K'}(\mathbf{r}) &= \frac{1}{\sqrt{2L}} \exp(i\mathbf{k} \cdot \mathbf{r}) \begin{pmatrix} 0 \\ 0 \\ e^{i\varphi(\mathbf{k})} \\ s \end{pmatrix}$$

$$\mathbf{I} \quad \mathbf{F}_{nk}^{K}(\mathbf{r}) &= \frac{C_n}{\sqrt{L}} \exp(-iky) \begin{pmatrix} \frac{\operatorname{sgn}(n)i^{|n|-1}\phi_{|n|-1}}{i^{|n|}\phi_{|n|}} \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{F}_{nk}^{K'}(\mathbf{r}) &= \frac{C_n}{\sqrt{L}} \exp(-iky) \begin{pmatrix} 0 \\ 0 \\ 0 \\ i^{|n|}\phi_{|n|} \\ \operatorname{sgn}(n)i^{|n|-1}\phi_{|n|-1} \end{pmatrix} \end{aligned}$$

How does the massless Dirac appear on honeycomb (1)

How does the massless Dirac appear on honeycomb (2)

- * Group theory (Lomer, Proc Roy Soc 1955) 2-dim representation at K and K'
- * k p Hamiltonian [Wallece, PR 71, 622 (1947)] 📊

$$H = v_{\rm F}(\pm \sigma_x p_x + \sigma_y p_y)$$

Graphene Landau levels

* QHE (Novoselov et al, Nature 2005: Zhang et al, Nature 2005)

- * Spin Hall effect (spin-orbit: Kane & Mele PRL 2005)
- * Ferromagnetism (*B* = 0; Peres et al, PRB 2005)
- *** FQHE** (Apalkov & Chakraborty, PRL 2006)
- * Superconductivity (Uchoa & Castro Neto, PRL 2007)
- * Negative refractive index (Cheianov et al, Science 07)
- * Klein paradox (Katsnelson et al, nature phys 2006)
- * Gapped state (Nomura & MacDonald PRL 2006)
- * Bond-ordered state (Hatsugai et al, 2007)
- * Landau-level laser (Morimoto et al, 2007)
 - > 400 preprints on graphene in cond-mat in 2006-2007 (A review, incl. a brief history of graphene:

Andre Geim & Kostya Novoselov, nature materials 2007)

Edge states in graphene

Band F in nonmagnetic materials ?

Criterion (Stoner's) for band F: $UD(E_F) > 1 ---$ too crude a criterion **Flat-band ferromagnetism** (Lieb 1989; Mielke 1991; Tasaki 1992)

(a) Flat one-electron band

(b) Connectivity condition(``Wannier" orbits overlap)i.e., band ferromagnetism

Edge states in graphene

Nakata et al, PRB 54, 17954 (1996)

Long-period graphene

Graphene Landau levels

Landau levels for massive Dirac particles

(MacDonald, PRB 1983)

Dirac eqn

$$[(\mathscr{C} - eEx)^{2} - (c\vec{p} - e\vec{A})^{2}$$
Energy
$$-m^{2}c^{4} + e\hbar cH \sigma_{z} + ie\hbar cE \sigma_{x}]\phi = 0$$

$$\mathscr{C}(\vec{k}_{\perp}, n, \pm) = \frac{H}{\sqrt{H^{2} - E^{2}}}$$

$$\times \{m^{2}c^{4} + mc^{2}[\hbar\omega_{c}(2n + 1 \pm 1)]\}^{1/2}$$

$$massless Dirac$$

$$\mathscr{C} = mc^{2}$$

$$\lim_{c \to \infty} mc^{2} \exp (mc^{2} \exp ansion)$$

$$+\hbar\omega_{c}(n + 1 \pm \frac{1}{2}) + \frac{m}{2}\left(\frac{cE}{H}\right)^{2} + \cdots$$

$$\omega_{c} = eH/mc$$

QHE can reflect band structures

q2D organic metal (TMTSF)₂PF₆ (Chaikin et al)

B_☉

Lab. de Physique des Solides

Incomplete nesting → Landau levels in Fermi pockets → IQHE

What's so special about graphene Landau level

QHE in honeycomb lattice

QHE in graphene

(Novoselov et al, Nature 2005: Nature Phys 2006: Zhang et al, Nature 2005)

B = 14 T and T = 4 K

Integer quantum Hall effect

(Aoki & Ando 1980)

(Aoki, Rep Prog Phys 1987)

QHE in ordinary valence / conduction bands

QHE for massless Dirac

Can we interpret this in terms of topoogical quantum #?

Hall conductivity = a topological number

(Thouless, Kohmoto, Nightingale & den Nijs, 1982)

Questions about graphene IQHE

(A) How does the topological nature appear ?

(B) How do the edge states look like ?

For these, effective-mass \rightarrow original lattice

Whole spectrum for honeycomb lattice

OHF # over the whole spectrum

"Massless Dirac" for a sequence of

Adiabatic continuity for QHE

Persistent gap \rightarrow topological σ_{xy} protected

$\sigma_{xy}^{bulk} = \sigma_{xy}^{edge}$ in honeycomb

Edge Landau states

Boundary states with STM

***** STM for graphite:

Edge (Niimi et al, PRB 2006)

Point defect in *B* (Niimi et al, PRL 2006)

2D crystals should not exist

Related structures: GIC, MgB₂

MgB₂ bandstructure

FIG. 1 (color). Band structure of MgB₂ with the B *p* character. The radii of the red (black) circles are proportional to the B p_z (B $p_{x,y}$) character.

(Kortus et al, PRL 2001)

cf. p wave SC becomes p + ip at K point in honeycomb (Uchoa & Castro Neto, PRL 2007)

Why the bands stick together at Bz edges

2D (graphite)

helical symmetry \rightarrow band sticking (see, eg, Heine 1960)

(gyroid system: [Koshino & Aoki, PRB 2005])

Band for diamond (s orbits)

Optical spectroscopy for graphene Landau levels

Observed splitting of Landau levels

(Zhang et al, PRL 2006)

Many-body effects in graphene Landau levels

Various phases in the quantum Hall system

As strongly-correlated systems:

HTC	FQHE	graphene
Coulomb anisotropic	<section-header><section-header></section-header></section-header>	n = 0

Reminds us of Kohn-Luttinger 1965 every metal \longrightarrow normal states become instable $T \rightarrow 0$

Observed splitting of Landau levels

(Zhang et al, PRL 2006)

B

Proposed mechanisms for split Landau levels

- * Excitonic gap (Gusynin et al, PRB 2006)
- * SU(4) breaking (Nomura & MacDonald, PRL 2007)
- * FQHE (Apalkov & Chakraborty, PRL 2006)
- * Peierls distortion (Fuchs & Lederer, PRL 2007)
- ☑ Bond order (Hatsugai et al, 2007)
- • •

Bond ordering

(Hatsugai, Fukui & Aoki, 2007)

Gap opening with the bond ordering

Domain structures in bond ordering

Charge Density of the in-gap states

Summary

Graphene: one-body ● massless Dirac + B → peculiar QHE ● QHE: topological → bulk-edge correspondence Graphene: many-body ● Landau level + interaction → various instabilities expected

Future problems

re-doing the condensed-matt phys picking up anomalies on the way