Interplay of valence and magnetic fluctuations in heavy fermions

or

Super-exchange ferromagnetic correlations in Ruthenate – Origin of triplet superconductivity in Sr2RuO4 –

2d

3d

YKIS 2007

"Interaction and Nanostructural Effects in Low-Dimensional Systems" Microscopic Model for Spin-Triplet Superconductor Sr₂RuO₄ - Crucial Role of Oxygen -

K. Miyake KISOKO, Osaka University

In Collaboration with

Y. YoshiokaKISOKO, Osaka UniversityK. HoshiharaJapan Self-Defense Navy

OUTLINE

- 1) Introduction for Sr₂RuO₄
- 2) Role of oxygen in Sr₂RuO₄
 - 2-a) Specialty of Sr₂RuO₄ based 4d electrons
 - **2-b) Coulomb repulsion U_{pp} at oxygen site**
 - 2-c) Effect of p-orbitals on q-dependent spin susceptibility
- 3) Issue on anisotropy of d-vector of Sr₂RuO₄
 - 3-a) Knight shift & anomalous relaxation in superconducting state
 - **3-b) Microscopic calculation**

1) Introduction for Sr₂RuO₄

Crystal structure

Isomorphic to high-Tc cuprate

CEF level scheme of Ru4+

$$t_{2g} \qquad \stackrel{\bigstar}{\longleftarrow} \qquad \begin{array}{c} d_{x} \\ \stackrel{\bigstar}{\longleftarrow} \\ d_{zx} \\ d_{zx} \\ d_{yz} \\ \end{array}$$

A. P. Mackenzie and Y. Maeno: Rev. Mod. Phys. **75** (2003) 657.

Quasi-2d Fermi surface

I. I. Mazin and D. J. Singh: PRL **79** (1997) 733.

$$γ$$
 - band : d_{xy} + p_x + p_y
 $α$, $β$ - band : d_{zx} + p_z + p_x
& d_{yz} + p_y + p_x

Spin-triplet superconductivity with Tc \sim 1.5K

2) Roles of oxygen in Sr₂RuO₄

2-a) Specialty of Sr₂RuO₄ based 4d electrons

Band structure calculation

T. Oguchi: PRB **51** (1995) 1385.

Appreciable weight of 2p-component remaining at Fermi level

$$\frac{N_{\mathsf{F}}(\mathsf{O}_{\mathsf{I}}2p)}{N_{\mathsf{F}}(\mathsf{Ru}4d)} \simeq 0.17$$

$$\frac{N_{\mathsf{F}}(\mathsf{O}_{\mathsf{I}}2p)}{N_{\mathsf{F}}(\mathsf{Ru}4d_{xy})} \simeq 0.34$$

Roles of oxygen cannot be eliminated

Necessity of d-p model beyond Hubbard model

What kind of roles expected ?

2-b) Coulomb repulsion U_{pp} **at oxygen site** Hoshihara & KM: J. Phys. Soc. Jpn. **74** (2005) 2679

Microscopic Model: Coulomb repulsion at O site

In usual transition metal oxides, the Coulomb interaction at O site play only minor role because the weight of d-electron molecular orbital at O site small as in high- T_c cuprates.

On the other hand, in Sr_2RuO_4 , there seems to be a moderately strong hybridization between the wave functions of 4d-electron in Ru and 2p-electron in O, making the "d-electron".

The Coulomb interaction U_{pp} at O site may not be neglected, while the direct Coulomb interaction V at the nearest-neighbor Ru sites would be negligibly small.

Ru 4dxy

O 2px

O 2py

Band structure calculation

Origin of the inter-site exchange interaction on the d-p model

Interaction terms

$$\mathcal{H}_{U} = U_{dd} \sum_{i} d^{\dagger}_{i\uparrow} d_{i\uparrow} d^{\dagger}_{i\downarrow} d_{i\downarrow} = -\frac{U_{dd}}{6} \sum_{i} \sum_{\alpha\beta\gamma\delta} d^{\dagger}_{i\alpha} d^{\dagger}_{i\gamma} d_{i\delta} d_{i\beta} (\vec{\sigma}_{\alpha\beta} \cdot \vec{\sigma}_{\gamma\delta})$$
$$\mathcal{H}_{ex} = U_{pp} \sum_{m,i} p^{\dagger}_{mi\uparrow} p_{mi\uparrow} p^{\dagger}_{mi\downarrow} p_{mi\downarrow} = -\frac{U_{pp}}{6} \sum_{m,i} \sum_{\alpha\beta\gamma\delta} p^{\dagger}_{mi\alpha} p^{\dagger}_{mi\gamma} p_{mi\delta} p_{mi\beta} (\vec{\sigma}_{\alpha\beta} \cdot \vec{\sigma}_{\gamma\delta})$$

 $a_{\mathbf{k}\sigma}$: The operator for the "d–electron"

$$\mathcal{H}_{ex}^{(x)} = -\frac{U_{pp}}{6} \sum_{\mathbf{kk'q}} \sum_{\alpha\beta\gamma\delta} \frac{V_{x\mathbf{k}+\mathbf{q}}V_{x\mathbf{k'}-\mathbf{q}}V_{x\mathbf{k}}}{D_{\mathbf{k}+\mathbf{q}}D_{\mathbf{k'}-\mathbf{q}}D_{\mathbf{k}'}D_{\mathbf{k}}} a_{\mathbf{k}+\mathbf{q}\alpha}^{\dagger} a_{\mathbf{k'}-\mathbf{q}\gamma}^{\dagger} a_{\mathbf{k}'\delta}a_{\mathbf{k}\beta}(\vec{\sigma}_{\alpha\beta}\cdot\vec{\sigma}_{\gamma\delta})$$

$$V_{x\mathbf{k}+\mathbf{q}}V_{x\mathbf{k'}-\mathbf{q}}V_{x\mathbf{k'}}V_{x\mathbf{k}}/(2it_{dp})^{4} = \frac{1}{8} \left\{ 1+\cos q_{x}+\cos(k_{x}-k'_{x}+q_{x})+\cos(k_{x}+k'_{x})-\cos k_{x}-\cos k'_{x}-\cos(k_{x}+q_{x})-\cos(k'_{x}-q_{x}) \right\}$$

$$Fourier transformation (\mathbf{k} to \mathbf{x}) \qquad D_{\mathbf{k}+\mathbf{q}}D_{\mathbf{k'}-\mathbf{q}}D_{\mathbf{k}'}D_{\mathbf{k}} \equiv D^{4} = \text{const.}$$

$$\mathcal{H}_{ex} = -\frac{U_{pp}t_{dp}^{4}}{3D^{4}} \sum_{\langle i,j \rangle} \sum_{\alpha\beta\gamma\delta} \left\{ (i,i,i,i)+(i,j,j,i)+(i,j,i,j)+(i,i,j,j)-(i,i,i,j)-(i,i,j,i)-(j,i,i,i)-(i,j,i,i) \right\} (\vec{\sigma}_{\alpha\beta}\vec{\sigma}_{\gamma\delta})$$

$$(i,j,j,i) \equiv a_{i\alpha}^{\dagger}a_{j\gamma}^{\dagger}a_{j\delta}a_{i\beta}$$

$$Fourier transformation (\mathbf{x} to \mathbf{k})$$

$$Fourier transformation (\mathbf{x} to \mathbf{k})$$

$$\mathcal{H}_{ex} = -\frac{1}{4} \sum_{\mathbf{kk'q}} \sum_{\alpha\beta\gamma\delta} J_{\mathbf{k},\mathbf{k'};\mathbf{q}} a_{\mathbf{k}+\mathbf{q}\alpha}^{\dagger}a_{\mathbf{k'}-\mathbf{q}\gamma}^{\dagger}a_{\mathbf{k}'\delta}a_{\mathbf{k}\beta}(\vec{\sigma}_{\alpha\beta}\cdot\vec{\sigma}_{\gamma\delta} - \delta_{\alpha\beta}\delta_{\gamma\delta})$$

$$J_{\mathbf{k},\mathbf{k}';\mathbf{q}} = \frac{2U_{pp}t_{dp}^4}{D_{\mathbf{k}+\mathbf{q}}D_{\mathbf{k}'-\mathbf{q}}D_{\mathbf{k}'}D_{\mathbf{k}}} \sum_m \left\{ \frac{1}{2} + \cos q_m - \cos k_m - \cos k_m' + \frac{1}{2}\cos(k_m + k_m') \right\}$$

In order that H_{ex} plays an important role, the ratio t_{dp}/D should not be too small.

Such a condition is expected to be fulfilled in Ru-oxide, because the energy level of 4d-electron in Ru is deeper than that of 3d-electron in Fe or of 5d-electron in Os in general, and is located near that of 2p-electron in O.

This implies that there exists a moderately strong hybridization between electrons in Ru and O. T. Oguchi: PRB 51 (1995) 1385., D. J. Singh: PRB 52 (1995) 1358.

Pairing interaction up to the second order perturbation

cf. 3rd order perturbation is necessary for theory on multi-band Hubbard model Nomura & Yamada : J. Phys. Soc. Jpn. 69 (2000) 3678

Of course, SU(2) symmetry is preserved, namely: $V_{\mathbf{k},\mathbf{k}'}^t = \frac{\Gamma_{\mathbf{k},\mathbf{k}'}^{\uparrow\uparrow} - \Gamma_{\mathbf{k},-\mathbf{k}'}^{\uparrow\uparrow}}{2} = \frac{\Gamma_{\mathbf{k},\mathbf{k}'}^{\uparrow\downarrow} - \Gamma_{\mathbf{k},-\mathbf{k}'}^{\uparrow\downarrow}}{2}$

Structure of the SC gap and transition temperature Variational Solution

Specified gaps $\Delta_{\mathbf{k}}$: Linearized gap equation $\sqrt{2}\sin k_x \ (p_x \text{-pairing})$ $\Delta_{\mathbf{k}} = -\sum_{\mathbf{k}'} V_{\mathbf{k},\mathbf{k}'}^{\mathbf{t},s} \frac{\Delta_{\mathbf{k}'}}{\xi_{\mathbf{k}'}} \tanh\left(\frac{\xi_{\mathbf{k}'}}{2T_c}\right)$ $\sqrt{2}\sin(k_x+k_y)$ (p_{x+y} -pairing) $2\sin k_x \sin k_y \ (d_{xy}$ -pairing) $\cos k_x - \cos k_y \ (d_{x^2-y^2}$ -pairing) Sr_2RuO_4 corresponds to the parameters, n=1.33, 0.6=buU D=0.15 and a moderate value of U_{pp} . n=1.33 10^{1} - D=0.05 - D=0.1 - (D=0.15) 10^{2} T_c is enhanced as U_{pp} is applied and D becomes → D=0.2 smaller. 10 T_c is also enhanced when the system is located U_{dd}=3.0 away from the half-filling (n=1.0). 10^{1} D=0.15 n=1.5 It is noted that U_{dd} and U_{pp} are the renormalized n=1.4 (n=1.33 10^{2} interaction so that U_{pp} =4.0t_{dp} is not unrealistically n=1.2 large. 10^{3}

2

1

0

3

Upp

5

6

7

Short-range ferromagnetic correlations

Spin susceptibility including the vertex correction up to the first order perturbation

Theory

Good Agreement?

As far as short-range ferromagnetic correlations are concerned

Experiment of Neutron Scattering

Conclusions of 2-b)

- We have derived from the so-called d-p model the effective inter-site interaction H_{ex}, whose origin is the on-site Coulomb interaction at O site.
- Unlike the Cuprates, H_{ex} is important in Sr_2RuO_4 due to a moderately strong hybridization between electrons in Ru and O.
- Short-range ferromagnetic correlations were induced by H_{ex}.
- Within the second order perturbation theory, we have shown that the triplet superconducting state of $(\sin p_x + i \sin p_y)$ -type is promoted as applying U_{pp}.

2-c) Effect of p-orbitals on q-dependent spin susceptibility

$$\chi^{(0)}_{\perp}(q,0) \equiv -T \sum_{\epsilon_n} \sum_{\mathbf{k}} G^{(0)}_{\gamma}(\mathbf{k},i\epsilon_n) \times G^{(0)}_{\gamma}(\mathbf{k}+\mathbf{q},i\epsilon_n)$$

Hoshihara & KM

$$\chi_{\perp}^{(0)}(q,0) \equiv -T \sum_{\epsilon_n} \sum_{\mathbf{k}} \sum_{n,m} G_{nm}^{(0)}(\mathbf{k}, \mathbf{i}\epsilon_n) \times G_{mn}^{(0)}(\mathbf{k} + \mathbf{q}, \mathbf{i}\epsilon_n)$$
$$(n,m = p_x, p_y, d_{xy})$$
$$G_{nm}^{(0)}(k) = \sum_{a} U_{na}(\mathbf{k}) U_{ma}^*(\mathbf{k}) G_a^{(0)}(k)$$

$$(a = \gamma, \tilde{p}_1, \tilde{p}_2)$$

Yoshioka & KM

Agreement between experiment and theory greatly improved

Role of p-orbitals cannot be neglected even for non-interacting case

$$\begin{aligned} \mathcal{H}_{dp}^{(0)} &= \sum_{\mathbf{k}\sigma} \left(\begin{array}{cc} d_{\mathbf{k}\sigma}^{\dagger} & p_{x\mathbf{k}\sigma}^{\dagger} & p_{y\mathbf{k}\sigma}^{\dagger} \end{array} \right) \left(\begin{array}{cc} \varepsilon_{d} & V_{y\mathbf{k}}^{*} & V_{x\mathbf{k}}^{*} \\ V_{y\mathbf{k}} & \varepsilon_{p} & W_{\mathbf{k}} \\ V_{x\mathbf{k}} & W_{\mathbf{k}} & \varepsilon_{p} \end{array} \right) \left(\begin{array}{cc} d_{\mathbf{k}\sigma} \\ p_{x\mathbf{k}\sigma} \\ V_{x\mathbf{k}} & W_{\mathbf{k}} & \varepsilon_{p} \end{array} \right) \left(\begin{array}{cc} d_{\mathbf{k}\sigma} \\ p_{x\mathbf{k}\sigma} \\ p_{y\mathbf{k}\sigma} \end{array} \right) \\ \mathcal{H}_{dp}^{(0)} &= \sum_{\mathbf{k}\sigma} \left(\begin{array}{cc} a_{1\mathbf{k}\sigma}^{\dagger} & a_{2\mathbf{k}\sigma}^{\dagger} & a_{3\mathbf{k}\sigma}^{\dagger} \end{array} \right) \left(\begin{array}{cc} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{array} \right) \left(\begin{array}{cc} a_{1\mathbf{k}\sigma} \\ a_{2\mathbf{k}\sigma} \\ a_{3\mathbf{k}\sigma} \end{array} \right) = U^{-1}(\mathbf{k}) \left(\begin{array}{cc} d_{\mathbf{k}\sigma} \\ p_{x\mathbf{k}\sigma} \\ p_{y\mathbf{k}\sigma} \end{array} \right) \\ \mathcal{H}_{int} &= \sum_{\mathbf{k}\mathbf{k}'\mathbf{q}} \tilde{J}_{\mathbf{k},\mathbf{k}';\mathbf{q}} a_{\mathbf{k}+\mathbf{q}\uparrow}^{\dagger} a_{\mathbf{k}'-\mathbf{q}\downarrow}^{\dagger} a_{\mathbf{k}'\downarrow}^{\dagger} a_{\mathbf{k}\uparrow} \\ \tilde{J}_{\mathbf{k},\mathbf{k}';\mathbf{q}} &= U_{\mathbf{k},\mathbf{k}';\mathbf{q}} + J_{\mathbf{k},\mathbf{k}';\mathbf{q}} + J_{\mathbf{k}',\mathbf{k};\mathbf{k}-\mathbf{k}'+\mathbf{q} \end{aligned} \right) \quad \text{FFT is unavailable} \end{aligned}$$

$$G_{nm}^{(0)}(k) = -T_{\tau} \langle c_{nk\sigma} c_{mk\sigma}^{\dagger} \rangle$$

$$= \sum_{ab} -T_{\tau} \langle a_{ak\sigma} a_{bk\sigma}^{\dagger} \rangle U_{na}(\mathbf{k}) U_{mb}^{*}(\mathbf{k})$$

$$= \sum_{a} U_{na}(\mathbf{k}) U_{ma}^{*}(\mathbf{k}) G_{a}^{(0)}(k)$$

$$= \sum_{a} U_{na}(\mathbf{k}) U_{ma}^{*}(\mathbf{k}) G_{a}^{(0)}(k)$$
Matrix Green's function enables us to use FFT method.

3rd order perturbation for pairing interaction (Yoshioka & KM)

Results of T_c on 3rd order perturbation

- Tc monotonically increases with U_{pp}, indicating the importance of U_{pp} for spin-triplet superconductivity.
- It is noted that U_{dd} and U_{pp} are the renormalized interaction so that $U_{pp} \sim U_{dd}$ is not unrealistic.

Effect of 3rd order perturbation is very small: vertex correction is not important

In contrast to the case of Nomura & Yamada for Hubbard model

Gap function on 3rd order perturbation

Since only spin-triplet pairing appears within 2nd order perturbation, we solve the Eliashberg equation for spin-triplet channel.

Right figure shows the resulting gap function, which has nearly sin-wave structure.

Nomura & Yamada

J. Phys. Soc. Jpn. 71 (2002) 404

Yoshioka & KM

Conclusions of 2-c)

- Effect of p-orbitals is very crucial for q-dependence of spin-susceptibility, and leads to better agreement between experiment. So obtained short-range ferromagnetic correlations promote the spin-triplet pairing.
- Tc is calculated on the d-p model within the 3rd order perturbation, leading to essentially the same value calculated within 2nd order perturbation in which effect of U_{pp} is crucial.
- The resultant superconducting state is (sin p_x + i sin p_y) which is promoted by U_{pp}.

3) Issue on anisotropy of d-vector of Sr₂RuO₄

d-vector of spin-triplet pairing

0.05T < H < 1.1T **d** // c (z)

 $\mathbf{d}(\mathbf{k}) = \hat{z}\Delta_0(\sin k_x \pm \mathrm{i}\sin k_y)$

Recent development of Knight shift measurements

Knight Shift for H // c (z) Murakawa et al: Phys. Rev. Lett. **93** (2004) 167004

J. Phys. Soc. Jpn. 76 (2007) 024716

d ⊥ c (z)

Summary of d-vector under magnetic field H

```
H \perp c(z): 0.05T < H < 1.1T d // c(z)
```

```
H // c (z): 0.02T < H < 0.8T d \perp c (z)
```

Pinning force of d-vector expressed by anisotropy field $\rm H_{a}$

Dipole-dipole interaction : **d** // c (z)

by anisotropy field H_a expected picture

H_c

H_{ab}

H_a ~ 0.05T Hasegawa: JPSJ 72 (2003) 2456 cf. 3He-A (Leggett)

Spin-orbit interaction of atomic origin : **d** // **c** (**z**)

H_a ~ 0.015T Yanase & Ogata: JPSJ 72 (2003) 673

Multiband Hubbard model (3rd order purturbation) + atomic spin-orbit + Hund coupling

These pinning forces cannot explain Knight shift measurements under magnetic field H

 $d \perp c (z)$ may be intrinsic direction of d -vector and there exists a missing pinning force

d-vector (2nd order perturbation theory)

To violate SU(2) symmetry in the spin space, namely to make difference between $V_{\uparrow\uparrow}$ and $V_{\uparrow\downarrow}$, we introduce atomic spin-orbit interaction λ up to second order and Hund-coupling J_H up to first order.

Green's function containing α - and β -band

M. Ogata: J. Phys. Chem. Solids **63** (2002) 1329 K. K. Ng and M. Sigrist: Europhys. Lett. **49** (2000) 473

$$\begin{split} H_{SO} &= \left(\begin{array}{ccc} c_{k\alpha\sigma}^{\dagger} & c_{k\beta\sigma}^{\dagger} & c_{k\gamma-\sigma}^{\dagger} \end{array}\right) \left(\begin{array}{ccc} \varepsilon_{\alpha} & -i\sigma\frac{\lambda}{2} & b_{k\sigma} \\ i\sigma\frac{\lambda}{2} & \varepsilon_{\beta} & i\sigma b_{k\sigma} \\ b_{k\sigma}^{*} & -i\sigma b_{k\sigma}^{*} & \varepsilon_{\gamma} \end{array}\right) \left(\begin{array}{c} c_{k\alpha\sigma} \\ c_{k\beta\sigma} \\ c_{k\gamma-\sigma} \end{array}\right) \\ \\ \text{e.g.} \\ G_{\alpha\uparrow\gamma\downarrow}(k) &= b_{k\uparrow}G_{\alpha}(k)G_{\gamma}(k) \end{split}$$

 $\Delta T_c = T_c(\uparrow\uparrow) - T_c(\uparrow\downarrow) \sim 0.03T_c$

d∥ab ~750Oe

Conclusion of 3)

Paring interaction on d-p model together with the atomic spin-orbit coupling of Ru site and the Hund-rule coupling stabilizes the d-vector perpendicular to the c-axis.

In contrast to previous theories on the basis of multi-band Hubbard model

In agreement with recent experiment of Knight shift

At H=0, d // ab

Ferromagnetic transition of SrRuO₃ (3d perovskite)

K Appreciable weight of

p-component at FS

 $\frac{N_{\mathsf{F}}(\mathsf{O}2p)}{N_{\mathsf{F}}(\mathsf{Ru}4d)}$

Callagham et al : Inorg Chem **5** (1966) 1572

Open question for origin of FM

Super-exchange FM interaction via Coulomb correlation at O-site as a possible origin

Band structure calculation

Allen et al : PRB 53 (1996) 4393

$\begin{array}{cccc} Sr & Ru & O_3 \\ \hline Paramagnetic & 12 & 246 & 67 \\ \hline Up & 5 & 84 & 25 \\ Magnetic & Down & 4 & 55 & 17 \end{array}$	
Paramagnetic 12 246 67 Up 5 84 25 Magnetic Down 4 55 17	Total
Up 5 84 25 Magnetic Down 4 55 17	325
Magnetic Down 4 55 17	114
	76
Total 9 139 42	190

cf. 0.17 (Sr₂RuO₄)

 $\simeq 0.27$

Effect of Spin-Orbit Interaction in Spin-Triplet Superconductor: Structure of d-vector and Anomalous O¹⁷-NQR Relaxation in Sr₂RuO₄

K. Miyake and H. Kohno

