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1. Basics of the KPZ equation: Surface growth

Paper combustion, bacteria colony, crystal

growth, etc
Non-equilibrium statistical mechanics

Stochastic interacting particle systems
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Simulation models

Ex: ballistic deposition

Height fluctuation

O(t'B)a B = 1/3
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KPZ equation
h(x,t): height at position x € R and at time ¢t > 0
(not Knizhnik-Polyakov-Zamolodchikov)
Bth(x,t) = tA(Ozh(z,t))? + v82h(z,t) + vV Dn(z,t)
where 1) is the Gaussian noise with mean 0 and covariance
(n(z, t)n(z’,t')) = 6(x — x")o(t — t')
e Dynamical RG analysis: — 8 = 1/3 (KPZ class)

e A simplest nonequilibrium model with nonlinearity, noise and
oo-degrees of freedom

e By a simple scaling we can and will do set
v = %, A=D=1.



Most Famous(?) KPZ

e MBT-7001 KPz 70

Tank developed in 1960s by US and West Germany.
MBT(MAIN BATTLE TANK)-70 is the US name and
KPz(KampfPanzer)-70 is the German name.




New most famous KPZ in Japan(?)

A sushi restaurant franchise with character "kappa” [ (an

imaginary creature) [address: kpz.jp]
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A discrete model: ASEP
ASEP = asymmetric simple exclusion process

q p q p q

+@= <@ O @

-3 -2 -1 0 1 2 3
e TASEP(Totally ASEP, p = 0 or g = 0)

e N(x,t): Integrated current at (x,x + 1) upto time ¢
&< height for surface growth

e In a certain weakly asymmetric limit
ASEP = KPZ equation /\/\1/\




2. Exact solutions: Cole-Hopf transformation
If we set
Z(x,t) = exp (h(z,1))

this quantity (formally) satisfies

0 10°%Z(x,t)
—Z = — t)Z(x,t
= 2ty = 7 T ()2 (e, 1)

This can be interpreted as a (random) partition function for a

directed polymer in random environment 7.

h(x,t)

2A/8
I

The polymer from the origin: Z(x,0) = d(x) = (%ir%c(se_m/‘s
%

corresponds to narrow wedge for KPZ.



Replica approach

Feynmann-Kac expression for the partition function,
Z($, t) =E, (ef(f n(b(S),t—S)dsZ(b(t), O))

Because 717 is a Gaussian variable, one can take the average over
the noise 1) to see that the replica partition function can be

written as (for narrow wedge case)

(Z" (z,1)) = (z|e”"N?|0)

where H v is the Hamiltonian of the (attractive) 6-Bose gas,
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We are interested not only in the average (h) but the full
distribution of h. We expand the quantity of our interest as

oo —e —YtS

_eh(O,t)+2L4—7t8 Z
(e

=0

)N 2

(ZN(0,t)) e

Using the integrability (Bethe ansatz) of the §-Bose gas, one gets
explicit expressions for the moment (Z%V) and see that the
generating function can be written as a Fredholm determinant.
But for the KPZ, (ZN) ~ e’ Note that the §-Bose gas is

exactly solvable but is in general not a free fermion model.
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Explicit determinantal formula

Thm ( )
For the initial condition Z(x,0) = d(x) (narrow wedge for KPZ)

t
_eh(o’t)+ﬂ —YtS

(e

where v; = (t/2)Y/3 and K, is

> — det(l — KS,t)Lz(R_l_)

© Ai(z + A)Ai(y + A)

Ks,t(CUv y) — /_oo d\ vt (a—N) 1

A determinant for non-free-fermion model?

Why Fermi distribution?
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Explicit formula for the height distribution
Thm

h(z,t) = —x?/2t — L) + 1és

where v¢ = (t/2)1/3. The distribution function of & is

& @)

Fi(s) =P& <s]=1-— / exp | — e"t(s_'“’)}

— OO

X(det(l — P, (Bt — Paj)P,) — det(1 — PuBtPu))d’u,

where Paj(x,y) = Ai(x)Ai(y), P, is the projection onto
[u, 00) and the kernel By is

©  Ai(z + AN)Ai(y + A
Biw.y) = [ axSEL WIS

— OO
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Finite time KPZ distribution and TW
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—: exact KPZ density F}(s) at v+ = 0.94
— —: Tracy-Widom density

e In the large t limit, F} tends to the GUE Tracy-Widom
distribution F5 from random matrix theory.
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Tracy-Widom distributions
For GUE (Gaussian unitary ensemble) with density

P(H)dH x e~ ™H*qH for H: N x N hermitian matrix, the
joint eigenvalue density is (with A(x) Vandelmonde)

2

%A(w)2 1;[6_“’@'

GUE Tracy-Widom distribution

= F2(8) == det(l — PSKQPS)

where Pg: projection onto lg, o) and Ko is the Airy kernel

Ko(x,y) = /0 dAAi(x + N Ai(y + )

There is also GOE TW (Fy) for GOE (Gaussian orthogonal

ensemble, real symmetric matrices, for flat surface)
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Probability densities of Tracy-Widom distributions
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Stationary 2pt correlation

Not only the height/current distributions but correlation functions
show universal behaviors.

e For the KPZ equation, the Brownian motion is stationary.

h(x,0) = B(x)

where B(x),x € R is the two sided BM.
e Two point correlation

h
A
WW
7 Oxh(x,)0.:h(0,0))
. s rf > ‘4"%\ WI{‘“ WM . - An i IW\* > x
" ’// \“"\v\«\ o /M’A'\"’W\f “WAM)' i O \mw;"va./ V\/""‘"m’v ‘u«j’ Y V‘\ ™ /\""urw ’"\»!f-\\
Y k
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Figure from the formula

(0:h(, 0.1 (0,0)) = (20)~2/3g] 2/ (20)/%)

The figure can be drawn from the exact formula (which is a bit

involved though).

0.5F

0.0

0.5 1.0 1.5 2.0

Stationary 2pt correlation function g;’(y) for ¢ := (%)% = 1.
The solid curve is the scaling limit g’/ (y).

18



3.1 Dualities for asymmetric processes
Rigorous replica approach

For ASEP the n-point function like ([T, g’¥(®i-*)) satisfies
the m particle dynamics of the same process (Duality). This is
a discrete generalization of 0-Bose gas for KPZ. One can
apply the replica approach to get a Fredholm det expression
for generating function for N (x, t).

Rigorous replica: the one for KPZ (which is not rigorous) can
be thought of as a shadow of the rigorous replica for ASEP.

Stationary case( ), Flat
case ( ), Generalized models (g-Hahn,
six-vertex, ...), Plancherel theorem,...

For ASEP, the duality is related to Ug,(sl2) symmetry.
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More general formulation

e Dualities have been an important tool in statistical mechanics

(e.g. Kramers-Wannier duality for Ising model).

e For symmetric processes, the duality has been used to study
Its various properties.
For symmetric simple exclusion process (SSEP), the n-point
function satisfies the n-body problem. This is related to the
SU (2) symmetry.
Another well-known example with duality is the Kipnis-

Marchioro-Pressutti (KMP) model of stochastic energy
transfer. Its duality is related to the SU (1, 1) symmetry.

20



e As explained, the duality for ASEP is useful to study its
current distribution. Its duality is related to Ug(sl2).

o presented a general
scheme to construct a duality from a (deformed) symmetry of
the process. As an application they have constructed a new
process with Ug(su(1,1)) symmetry and an asymmetric

version of the KMP process.
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3.2 A determinantal structure for a finite temperature
polymer

Semi-discrete directed polymer in random media
B;,1 < 1 < N: independent Brownian motions

Energy of the polymer 7

E[rw] = B1(s1) + B2(s1,82) + -+ + BN(sN-1,1)
with Bj(s,t) = Bj(t) — Bj(s), 3 =2,--- ,N fors <t

Partition function (3 = 1/kpT': inverse temperature )
Zn(t) = / ePEmldsy v dsn_1
0<s1<--<sny_1<t
In continuous limit, this becomes the polymer for KPZ equation.
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Zero-temperature limit

In the T — 0 (or B — o0) limit

t) := l. F 1) = E
fn(t):= lim Fy(t)= = max _ E[«]

Connection to random matrix theory

N

Prob (fn(1) < s) = /( . H dx; - Poue(x1,++ ,TN),
—00,8]™ j—q
N e—;1;32./2

PGUE(wla”' 7wN): H ) * H (wk_$3)2
jo=1dV2m 1<j<k<N

where Pgyg(x1,+++ ,xN) is the probability density function of
the eigenvalues in the Gaussian Unitary Ensemble (GUE)

23



A generalization to finite 3

Thm
_eTPUzN @) N
I <€ p2(N—=1) ) :/ Hdmng(wj —’U,)W(ibl, 7mN;t)
RN 32
N
W(wla e, N5t H H (wk — CBj) - det ("pk—l(wj; t));'\szl

j=1Y" 1<j<k<N

where fr(x) = 1/(eP® 4+ 1) is the Fermi distribution function
and

1 o0 oz a2 (zw)k
. — d twr—wt/2
Url@t) = o /_oo e T (1+iw/8)N

Proof by generalizing Warren's process on the Gelfand-Tsetlin cone
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4. Universalityl: Expeirments by Takeuchi-Sano
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Figure 2 | Family-Vicsek scaling. a,b, Interface width w{l, ¢} against the length scale I at different times t for the circular (a) and flat (b} interfaces.
The four data correspond, from bottom to top, to t = 2.0 5,4.0 5, 12.0 sand 30.0 s for the panel aand to ¢ = 4.0 5, 10.0 5, 25.0 sand 60.0 s for the panel b,

The insets show the same data with the rescaled axes. ¢, Growth of the averall width W(t) =/ {[h{x.t) — {h'plz;: The dashed lines are guides for the eyes
showing the exponent values of the KPZ class.
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Figure 3 | Universal luctuations. a, Histogram of the rescaled local height 3 = [k — 2.0/ (T The blue and red solid symbals show the histograms for
the circular interfaces at ¢ = 10 s and 30 s the light Blue and purple open symbols are for the flat interfaces at ¢ = 20 3 and 80 s, respectively. The dashed
and dotted curves show the GUE and GOE TW distributions, respectively. Note that for the GOE TW distribution y is multiplied by 27" in view of
the theoretical prediction™. b, The skewness (circle) and the kurtosis (cross) of the distribution of the interface fluctustions for the circubar {blue) and flat
[red) interfaces. The dashed and dotted lines indicate the values of the skewness and the kostasis of the GUE and COE TW distributions". ¢, d, Differences
in the cumulants between the experimental data {x%). and the corresponding TW distributions {xf,: ), for the ciroclar interfaces (¢} and {pfoe)

for the flat interfaces [d). The insets show the same data for s = 1 in logarithmic scales, The dashed lines are guides for the eyes with the slope —1/3,

Takeuchi Sano TS Spohn, Sci. Rep. 1,34(2011)
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Universality 2: Brownian motion with oblique reflection

We consider a system of Brownian motions in one-dimension in
which the jth particle is reflected by the (3 + 1)th particle with
weight p and also by the (3 — 1)th particle with weight g, where
j€Nandp>0,9g>0,p+q=1.
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Time evolution equation

Let us denote the position of the m particles by

y(t) = (Y1(t), .-, ym(t)) with y1(¢) < ... < ym(?).

The probability density of the position evolves by
Ot f = %Ayf

with the boundary conditions for coinciding positions,

(P95 — 95+ 1)f|, _, . =0

This represents the oblique reflection of particles.
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Diffusive particle systems in KPZ class

e By using the duality again, one can prove that this interacting
Brownian motions with oblique reflection is in the KPZ

universality class.

e The above system with oblique reflection is obtained from
interacting Brownian motions with the potential V,

dz;(t) = —(pV'(z;(t)—zj+1(t))+qV'(z;(t) —z;j-1(t)))dt+d B

by taking the € — 0 limit of the the scaled potential
Ve(u) = V(u/e).

e Possible realization by colloidal particles? (

)
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Universality 3: Beijeren-Spohn Conjecture
e The scaled KPZ 2-pt function would appear in rather generic
1D multi-component systems

This would apply to (deterministic) 1D Hamiltonian dynamics
with three conserved quantities, such as the
Fermi-Pasta-Ulam chain with V() = %- —|— a —|— 64,.

There are two sound modes with veIOC|t|es +c and one heat
mode with velocity 0. The sound modes would be described
by KPZ; the heat mode by ——Levy.

e Now there have been several attempts to confirm this by

numerical simulations.

e Possibly applicable to quantum systems as well.
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MD simulations for shoulder potential
V(i) =0 (0 < x < %),1(% <xr<1l), 0O(x >1)

S (), t=1024 @ S50 (0™ SH(A0 et t)
P A
0.004 Iﬂl 025} Y D'ff \
1 | || 0.-:2[] ?’.4 H'|,
:I i! |I I .0'15 I fp-3 |I|I
el || I| /o0 N Joap \
aE | / \ - \
| L | /008 /0.1 \
| 1 |
\ JIN I A N / \
-2048 1024 1024 2048 © -6 -4 -2 2 4 ] —4 -2 2 <
(a) overview (b) heat, A = 1.624 (c) sound, A = 1.442

Figure 1: (Color online) MD simulation of an equal mass chain with shoulder potential as
defined in Eq. (2.2) and parameters N = 4096, p = 1.2, 8 = 2, at t = 1024. (a) Diagonal
matrix entries, S%_(4,1), of the correlator. The gray vertical lines show the sound speed
predicted from theory. The tails of the sound peaks reappear on the opposite side due to
periodic boundary conditions. (b) Rescaled heat and (c) right sound peak. The theoretical
scaling exponents are used and X is fitted numerically to minimize the L'-distance between
simulation and prediction. The dashed orange curve is the predicted %-Levy distribution
f15/3 and the dashed red curve shows fxpz.
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Stochastic model

The conjecture would hold also for stochastic models with more

than one conserved quantities.

model (1998)
e Rules
+03>0+
0— > —0

1
+ - — -+
e Two conserved quantities (numbers of + and — particles).

e Exact stationary measure is known in a matrix product form.
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The KPZ 2pt correlation describes those for the two modes.

Proving the conjecture for this process seems already difficult.
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KPZ in higher dimension?

In higher dimensions, there had been several conjectures for
exponents. There are almost no rigorous results.

New extensive Monte-Carlo simulations in 2D on the distributions.

log Inl"(&,l

FIG. 4 (color online). Universal PDFs: 2 + 1 DPRM point-

point and point-line geometries. Table inset: Distribution
moments.

New universal distributions?
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5. Summary
KPZ equation is a model equation to describe surface growth

but is of great importance from wider perspective.

One can write down explicit formulas for its height distribution
and the stationary space-time two point correlation function.

The understanding the mechanism of the exact solvability has
deepened considerably. The duality and free fermionic

structure have been playing important roles.

There is a strong universality associated with the KPZ
equation. There would be many other experimental relevance.
The appearance of KPZ universality seems much wider than
considered before. Understanding its nature is an outstanding

challenge for the future.
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" Derivation”

e Diffusion O:h(x,t) = %Bih(:c,t)
Not enough: no fluctuations in the stationary state

e Add noise: Edwards-Wilkinson equation
Oth(x,t) = %Qﬁh(a}, t) + n(x,t)
Not enough: does not give correct exponents

e Add nonlinearity (8,h(x,t))? = KPZ equation

ht <

o] Bh = v\/1+ (9:h)

\:/ix ~ v+ (v/2)(0h)% + ...

X
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The KPZ equation is not well-defined

e With n(x,t)” = ”dB(x,t)/dt, the equation for Z can be
written as (Stochastic heat equation)

10%Z(x,t
dZ(x,t) = s 823332 )dt + Z(x,t) X dB(x,t)

Here B(x,t) is the cylindrical Brownian motion with
covariance dB(x, t)dB(x’,t) = 6(x — x’)dt.

e Interpretation of the product Z(x,t) X dB(x,t) should be
Stratonovich Z(x,t) o dB(x,t) since we used usual
calculus. Switching to Ito by
Z(x,t)odB(x,t) = Z(x,t)dB(x,t)+dZ(x,t)dB(x,t),

we encounter §(0).
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e On the other hand SHE with lto interpretation from the
beginning

10%Z(x.t
dZ(z,t) = — (2, )dt + Z(x,t)dB(x,t)
2  Ox?
Is well-defined. For this Z one can define the " Cole-Hopf”

solution of the KPZ equation by h = log Z.

So the well-defined version of the KPZ equation may be

written as
Oth(x,t) = %(8wh(a:, t))? + %th(:c, t) — oo + n(x,t)

o found a way to define the KPZ equation without but
equivalent to Cole-Hopf (using ideas from rough path and

renormalization).
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g-TASAEP and q-TAZRP

e g-TASEP
A particle ¢ hops with rate 1 — g%i-1—%i—1
m
—~
m m m
o0 e e 06006 e 080 o0 or ‘.‘.‘.‘ ‘.‘.‘ ‘
Te Ty Ty r3 I9 T Ye¢ Ys Y4 Y3 Y2 Y1 Yo

o qg-TAZRP

The dynamics of the gaps y; = ;1 — x; — 1 is a version of
totally asymmetric zero range process in which a particle hops
to the right site with rate 1 — g¥:. The generator of the
process can be written in terms of g-boson operators.

e N(x,t): Integrated current for g-TAZRP
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Various generalizations and developments

e Flat case (replica) ( )
The limiting distribution is GOE TW Fy (Geometry

dependence)
e Multi-point case (replica) ( )

e Stochastic integrability...Connections to quantum integrable

systems

quantum Toda lattice, XXZ chain, Macdonald polynomials...

40



Polymer and Toda lattice

Semi-discrete finite temperature directed polymer - -+ quantum
Toda lattice

Partition function

zNE) = |

o<1 <..<tny—-1<t

N
exp O <Z(Bi(ti) — Bi(ti—1)>

B;(t): independent Brownian motions

41



Macdonald process

Measure written as

~ PA(@)Q(b)
where P, Q are Macdonald polynomials.
A generalization of Schur measure
Includes Toda, Schur and KPZ as special and limiting cases

Non-determinantal but expectation value of certain

"observables’ can be written as Fredholm determinants.
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More precisely, for the case with m particles, we consider

y(t) = (y1(2)s .-, ym(t)) with y1(¢) < ... < ym(t) which
satisfies

yj(t) = yj + Bj(t) — pAUITD () + gAU=1I)(2)
where A0 () = A(mm+1)(¢) = 0 and
AT+ () = [¥i+17Y5i (., 0)
is the local time for yj4+1(+) — y;(+).

Set

W;'»,; = {y € R™|y1
W ={y € R"|y1

IA

Vv

43



Generator

Let f : W;"n — R be a C?-function and define

f(ya t) — IEy (f(y(t))

with [E,, denoting expectation of the y(t) process starting at y.
Then
Ot f = %Ayf

for y € (W+)° and
(P95 — @95+ 1) f|, _, . =0,

the directional derivative being taken from the interior of W:ﬁ
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