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1. Basics of the KPZ equation: Surface growth

• Paper combustion, bacteria colony, crystal

growth, etc

• Non-equilibrium statistical mechanics

• Stochastic interacting particle systems

• Connections to integrable systems, representation theory, etc
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Simulation models

Ex: ballistic deposition
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KPZ equation

h(x, t): height at position x ∈ R and at time t ≥ 0

1986 Kardar Parisi Zhang (not Knizhnik-Polyakov-Zamolodchikov)

∂th(x, t) = 1
2
λ(∂xh(x, t))

2 + ν∂2
xh(x, t) +

√
Dη(x, t)

where η is the Gaussian noise with mean 0 and covariance

⟨η(x, t)η(x′, t′)⟩ = δ(x− x′)δ(t− t′)

• Dynamical RG analysis: → β = 1/3 (KPZ class)

• A simplest nonequilibrium model with nonlinearity, noise and

∞-degrees of freedom

• By a simple scaling we can and will do set

ν = 1
2
, λ = D = 1.
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Most Famous(?) KPZ

• MBT-70／ KPz 70

Tank developed in 1960s by US and West Germany.

MBT(MAIN BATTLE TANK)-70 is the US name and

KPz(KampfPanzer)-70 is the German name.
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New most famous KPZ in Japan(?)

A sushi restaurant franchise with character ”kappa”　 (an

imaginary creature) [address: kpz.jp]
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A discrete model: ASEP
ASEP = asymmetric simple exclusion process

· · · ⇒

p

⇐

q

⇐

q

⇒

p
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q

· · ·
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• TASEP(Totally ASEP, p = 0 or q = 0)

• N(x, t): Integrated current at (x, x+ 1) upto time t

⇔ height for surface growth

• In a certain weakly asymmetric limit

ASEP ⇒ KPZ equation
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2. Exact solutions: Cole-Hopf transformation
If we set

Z(x, t) = exp (h(x, t))

this quantity (formally) satisfies

∂

∂t
Z(x, t) =

1

2

∂2Z(x, t)

∂x2
+ η(x, t)Z(x, t)

This can be interpreted as a (random) partition function for a

directed polymer in random environment η.
2λt/δ

x

h(x,t)

The polymer from the origin: Z(x, 0) = δ(x) = lim
δ→0

cδe
−|x|/δ

corresponds to narrow wedge for KPZ.
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Replica approach

Dotsenko, Le Doussal, Calabrese

Feynmann-Kac expression for the partition function,

Z(x, t) = Ex

(
e
∫ t
0 η(b(s),t−s)dsZ(b(t), 0)

)
Because η is a Gaussian variable, one can take the average over

the noise η to see that the replica partition function can be

written as (for narrow wedge case)

⟨ZN(x, t)⟩ = ⟨x|e−HN t|0⟩

where HN is the Hamiltonian of the (attractive) δ-Bose gas,

HN = −
1

2

N∑
j=1

∂2

∂x2
j

−
1

2

N∑
j ̸=k

δ(xj − xk).
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We are interested not only in the average ⟨h⟩ but the full

distribution of h. We expand the quantity of our interest as

⟨e−eh(0,t)+ t
24−γts⟩ =

∞∑
N=0

(
−e−γts

)N
N !

⟨
ZN(0, t)

⟩
eN

γ3
t

12

Using the integrability (Bethe ansatz) of the δ-Bose gas, one gets

explicit expressions for the moment ⟨ZN⟩ and see that the

generating function can be written as a Fredholm determinant.

But for the KPZ, ⟨ZN⟩ ∼ eN
3
! Note that the δ-Bose gas is

exactly solvable but is in general not a free fermion model.
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Explicit determinantal formula

Thm (2010 TS Spohn, Amir Corwin Quastel )

For the initial condition Z(x, 0) = δ(x) (narrow wedge for KPZ)

⟨e−eh(0,t)+ t
24−γts⟩ = det(1 −Ks,t)L2(R+)

where γt = (t/2)1/3 and Ks,t is

Ks,t(x, y) =

∫ ∞

−∞
dλ

Ai(x+ λ)Ai(y + λ)

eγt(s−λ) + 1

A determinant for non-free-fermion model?

Why Fermi distribution?
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Explicit formula for the height distribution

Thm

h(x, t) = −x2/2t− 1
12
γ3
t + γtξt

where γt = (t/2)1/3. The distribution function of ξt is

Ft(s) = P[ξt ≤ s] = 1 −
∫ ∞

−∞
exp

[
− eγt(s−u)

]
×
(
det(1 − Pu(Bt − PAi)Pu) − det(1 − PuBtPu)

)
du

where PAi(x, y) = Ai(x)Ai(y), Pu is the projection onto

[u,∞) and the kernel Bt is

Bt(x, y) =

∫ ∞

−∞
dλ

Ai(x+ λ)Ai(y + λ)

eγtλ − 1
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Finite time KPZ distribution and TW
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s
: exact KPZ density F ′

t (s) at γt = 0.94

−−: Tracy-Widom density

• In the large t limit, Ft tends to the GUE Tracy-Widom

distribution F2 from random matrix theory.

14



Tracy-Widom distributions
For GUE (Gaussian unitary ensemble) with density

P (H)dH ∝ e−TrH2
dH for H: N ×N hermitian matrix, the

joint eigenvalue density is (with ∆(x) Vandelmonde)
1

Z
∆(x)2

∏
i

e−x2
i

GUE Tracy-Widom distribution

lim
N→∞

P

[
xmax −

√
2N

2−1/2N−1/6
< s

]
= F2(s) = det(1 − PsK2Ps)

where Ps: projection onto [s,∞) and K2 is the Airy kernel

K2(x, y) =

∫ ∞

0
dλAi(x+ λ)Ai(y + λ)

There is also GOE TW (F1) for GOE (Gaussian orthogonal

ensemble, real symmetric matrices, for flat surface)
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Probability densities of Tracy-Widom distributions

F ′
2(GUE), F

′
1(GOE)
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Stationary 2pt correlation

Not only the height/current distributions but correlation functions

show universal behaviors.

• For the KPZ equation, the Brownian motion is stationary.

h(x, 0) = B(x)

where B(x), x ∈ R is the two sided BM.

• Two point correlation

x

h

t2/3 t1/3

∂xh(x,t)∂xh(0,0)

o
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Figure from the formula

Imamura TS (2012)

⟨∂xh(x, t)∂xh(0, 0)⟩ =
1

2
(2t)−2/3g′′t (x/(2t)

2/3)

The figure can be drawn from the exact formula (which is a bit

involved though).
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Stationary 2pt correlation function g′′t (y) for γt := ( t
2
)

1
3 = 1.

The solid curve is the scaling limit g′′(y).
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3.1 Dualities for asymmetric processes
2012-2015 Borodin-Corwin-TS Rigorous replica approach

• For ASEP the n-point function like ⟨
∏

i q
N(xi,t)⟩ satisfies

the n particle dynamics of the same process (Duality). This is

a discrete generalization of δ-Bose gas for KPZ. One can

apply the replica approach to get a Fredholm det expression

for generating function for N(x, t).

• Rigorous replica: the one for KPZ (which is not rigorous) can

be thought of as a shadow of the rigorous replica for ASEP.

• Stationary case(Borodin Corwin Ferrari Veto (2014)), Flat

case (Quastel et al (2014), Generalized models (q-Hahn,

six-vertex, ...), Plancherel theorem,...

• For ASEP, the duality is related to Uq(sl2) symmetry.
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More general formulation

• Dualities have been an important tool in statistical mechanics

(e.g. Kramers-Wannier duality for Ising model).

• For symmetric processes, the duality has been used to study

its various properties.

For symmetric simple exclusion process (SSEP), the n-point

function satisfies the n-body problem. This is related to the

SU(2) symmetry.

Another well-known example with duality is the Kipnis-

Marchioro-Pressutti (KMP) model of stochastic energy

transfer. Its duality is related to the SU(1, 1) symmetry.
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• As explained, the duality for ASEP is useful to study its

current distribution. Its duality is related to Uq(sl2).

• Carinci Giardina Redig TS (2014,2015) presented a general

scheme to construct a duality from a (deformed) symmetry of

the process. As an application they have constructed a new

process with Uq(su(1, 1)) symmetry and an asymmetric

version of the KMP process.
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3.2 A determinantal structure for a finite temperature

polymer2001 O’Connell Yor

Semi-discrete directed polymer in random media

Bi, 1 ≤ i ≤ N : independent Brownian motions

Energy of the polymer π

E[π] = B1(s1) +B2(s1, s2) + · · · +BN(sN−1, t)

with Bj(s, t) = Bj(t) −Bj(s), j = 2, · · · , N for s < t

Partition function (β = 1/kBT : inverse temperature )

ZN(t) =

∫
0<s1<···<sN−1<t

eβE[π]ds1 · · · dsN−1

In continuous limit, this becomes the polymer for KPZ equation.
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Zero-temperature limit

In the T → 0 (or β → ∞) limit

fN(t) := lim
β→∞

FN(t) = max
0<s1<···<sN−1<t

E[π]

2001 Baryshnikov Connection to random matrix theory

Prob (fN(1) ≤ s) =

∫
(−∞,s]N

N∏
j=1

dxj · PGUE(x1, · · · , xN),

PGUE(x1, · · · , xN) =
N∏

j=1

e−x2
j/2

j!
√
2π

·
∏

1≤j<k≤N

(xk − xj)
2

where PGUE(x1, · · · , xN) is the probability density function of

the eigenvalues in the Gaussian Unitary Ensemble (GUE)
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A generalization to finite β

Thm Imamura TS (2015)

E

(
e
−e−βuZN (t)

β2(N−1)

)
=

∫
RN

N∏
j=1

dxjfF (xj − u) ·W (x1, · · · , xN ; t)

W (x1, · · · , xN ; t) =

N∏
j=1

1

j!

∏
1≤j<k≤N

(xk − xj) · det (ψk−1(xj; t))
N
j,k=1

where fF (x) = 1/(eβx + 1) is the Fermi distribution function

and

ψk(x; t) =
1

2π

∫ ∞

−∞
dwe−iwx−w2t/2 (iw)k

Γ (1 + iw/β)N

Proof by generalizing Warren’s process on the Gelfand-Tsetlin cone
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4. Universality1: Expeirments by Takeuchi-Sano
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Takeuchi Sano TS Spohn, Sci. Rep. 1,34(2011)
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Universality 2: Brownian motion with oblique reflection

TS Spohn (2014)

We consider a system of Brownian motions in one-dimension in

which the jth particle is reflected by the (j + 1)th particle with

weight p and also by the (j − 1)th particle with weight q, where

j ∈ N and p ≥ 0, q ≥ 0, p+ q = 1.

x

t
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Time evolution equation

Let us denote the position of the m particles by

y(t) = (y1(t), . . . , ym(t)) with y1(t) ≤ . . . ≤ ym(t).

The probability density of the position evolves by

∂tf = 1
2
∆yf

with the boundary conditions for coinciding positions,

(p∂j − q∂j+1)f
∣∣
yj=yj+1

= 0

This represents the oblique reflection of particles.
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Diffusive particle systems in KPZ class

• By using the duality again, one can prove that this interacting

Brownian motions with oblique reflection is in the KPZ

universality class.

• The above system with oblique reflection is obtained from

interacting Brownian motions with the potential V ,

dxj(t) = −
(
pV ′(xj(t)−xj+1(t))+qV

′(xj(t)−xj−1(t))
)
dt+dBj(t)

by taking the ϵ → 0 limit of the the scaled potential

Vϵ(u) = V (u/ϵ).

• Possible realization by colloidal particles? (Bechinger,

Seifert(?))
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Universality 3: Beijeren-Spohn Conjecture
• The scaled KPZ 2-pt function would appear in rather generic

1D multi-component systems

This would apply to (deterministic) 1D Hamiltonian dynamics

with three conserved quantities, such as the

Fermi-Pasta-Ulam chain with V (x) = x2

2
+ αx3

3!
+ βx4

4!
.

There are two sound modes with velocities ±c and one heat

mode with velocity 0. The sound modes would be described

by KPZ; the heat mode by 5
3
−Levy.

• Now there have been several attempts to confirm this by

numerical simulations. Mendl, Spohn, Dhar, Beijeren, Lepri,

Saito, …

• Possibly applicable to quantum systems as well.
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Mendl Spohn

MD simulations for shoulder potential

V (x) = ∞ (0 < x < 1
2
), 1(1

2
< x < 1), 0(x > 1)
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Stochastic model

The conjecture would hold also for stochastic models with more

than one conserved quantities.

Arndt-Heinzel-Rittenberg(AHR) model (1998)

• Rules

+ 0
α→ 0 +

0 − α→ − 0

+ − 1→ − +

• Two conserved quantities (numbers of + and − particles).

• Exact stationary measure is known in a matrix product form.
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2013 Ferrari TS Spohn
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The KPZ 2pt correlation describes those for the two modes.

Proving the conjecture for this process seems already difficult.
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KPZ in higher dimension?

In higher dimensions, there had been several conjectures for

exponents. There are almost no rigorous results.
2012 Halpin-Healy
New extensive Monte-Carlo simulations in 2D on the distributions.

New universal distributions?
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5. Summary
• KPZ equation is a model equation to describe surface growth

but is of great importance from wider perspective.

• One can write down explicit formulas for its height distribution

and the stationary space-time two point correlation function.

• The understanding the mechanism of the exact solvability has

deepened considerably. The duality and free fermionic

structure have been playing important roles.

• There is a strong universality associated with the KPZ

equation. There would be many other experimental relevance.

The appearance of KPZ universality seems much wider than

considered before. Understanding its nature is an outstanding

challenge for the future.
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”Derivation”

• Diffusion ∂th(x, t) = 1
2
∂2
xh(x, t)

Not enough: no fluctuations in the stationary state

• Add noise: Edwards-Wilkinson equation

∂th(x, t) = 1
2
∂2
xh(x, t) + η(x, t)

Not enough: does not give correct exponents

• Add nonlinearity (∂xh(x, t))
2 ⇒ KPZ equation

∂th = v
√

1 + (∂xh)2

≃ v + (v/2)(∂xh)
2 + . . .

36



The KPZ equation is not well-defined

• With η(x, t)” = ”dB(x, t)/dt, the equation for Z can be

written as (Stochastic heat equation)

dZ(x, t) =
1

2

∂2Z(x, t)

∂x2
dt+ Z(x, t) × dB(x, t)

Here B(x, t) is the cylindrical Brownian motion with

covariance dB(x, t)dB(x′, t) = δ(x− x′)dt.

• Interpretation of the product Z(x, t) × dB(x, t) should be

Stratonovich Z(x, t) ◦ dB(x, t) since we used usual

calculus. Switching to Ito by

Z(x, t)◦dB(x, t) = Z(x, t)dB(x, t)+dZ(x, t)dB(x, t),

we encounter δ(0).
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• On the other hand SHE with Ito interpretation from the

beginning

dZ(x, t) =
1

2

∂2Z(x, t)

∂x2
dt+ Z(x, t)dB(x, t)

is well-defined. For this Z one can define the ”Cole-Hopf”

solution of the KPZ equation by h = logZ.

So the well-defined version of the KPZ equation may be

written as

∂th(x, t) = 1
2
(∂xh(x, t))

2 + 1
2
∂2
xh(x, t) − ∞ + η(x, t)

• Hairer found a way to define the KPZ equation without but

equivalent to Cole-Hopf (using ideas from rough path and

renormalization).
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q-TASAEP and q-TAZRP

• q-TASEP 2011 Borodin-Corwin

A particle i hops with rate 1 − qxi−1−xi−1.

x1x2x3x4x5x6
y0y1y2y3y4y5y6

• q-TAZRP 1998 TS Wadati

The dynamics of the gaps yi = xi−1 − xi − 1 is a version of

totally asymmetric zero range process in which a particle hops

to the right site with rate 1 − qyi . The generator of the

process can be written in terms of q-boson operators.

• N(x, t): Integrated current for q-TAZRP
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Various generalizations and developments

• Flat case (replica) (Le Doussal, Calabrese)

The limiting distribution is GOE TW F1 (Geometry

dependence)

• Multi-point case (replica) (Dotsenko)

• Stochastic integrability...Connections to quantum integrable

systems

quantum Toda lattice, XXZ chain, Macdonald polynomials...
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Polymer and Toda lattice

O’Connell

Semi-discrete finite temperature directed polymer · · · quantum

Toda lattice

Partition function

ZN
t (β) =

∫
0<t1<...<tN−1<t

expβ

(
N∑
i=1

(Bi(ti) −Bi(ti−1)

)

Bi(t): independent Brownian motions
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Macdonald process

2011 Borodin, Corwin

• Measure written as

1

Z
Pλ(a)Qλ(b)

where P,Q are Macdonald polynomials.

• A generalization of Schur measure

• Includes Toda, Schur and KPZ as special and limiting cases

• Non-determinantal but expectation value of certain

”observables” can be written as Fredholm determinants.
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More precisely, for the case with m particles, we consider

y(t) = (y1(t), . . . , ym(t)) with y1(t) ≤ . . . ≤ ym(t) which

satisfies

yj(t) = yj +Bj(t) − pΛ(j,j+1)(t) + qΛ(j−1,j)(t)

where Λ(0,1)(t) = Λ(m,m+1)(t) = 0 and

Λ(j,j+1)(·) = Lyj+1−yj(·, 0)

is the local time for yj+1(·) − yj(·).

Set

W+
m = {y ∈ Rm|y1 ≤ . . . ≤ ym}

W−
m = {y ∈ Rm|y1 ≥ . . . ≥ ym}
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Generator

Let f : W+
m → R be a C2-function and define

f(y, t) = Ey

(
f(y(t)

)
with Ey denoting expectation of the y(t) process starting at y.

Then

∂tf = 1
2
∆yf

for y ∈ (W+
m)◦ and

(p∂j − q∂j+1)f
∣∣
yj=yj+1

= 0 ,

the directional derivative being taken from the interior of W+
m.
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