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Stochastic Efficiency for Effusion as a Thermal Engine

K. Proesmans,∗ B. Cleuren, and C. Van den Broeck
Hasselt University, B-3590 Diepenbeek, Belgium

(Dated: November 14, 2014)

The stochastic efficiency of effusion as a thermal engine is investigated within the framework of
stochastic thermodynamics. Explicit results are obtained for the probability distribution of the
efficiency both at finite times and in the asymptotic regime of large deviations. The universal
features, derived in Verley et al., Nature Communications 5, 4721 (2014), are reproduced. The
effusion engine is a good candidate for both the numerical and experimental verification of these
predictions.

PACS numbers: 05.70.Ln, 05.70.Fh, 88.05.Bc

Effusion is the escape of particles through a narrow
aperture. The phenomenon has been used for many ap-
plications such as to enrich uranium, to coat light bulbs
and as a cooling device. Effusion between two compart-
ments, cf. Fig. 1(a), can also operate as a thermal engine,
namely when there is a net flow of particles n ≥ 0 from
the hot compartment, temperature Th, with low chemi-
cal potential µh, to the cold compartment, temperature
Tc, with high chemical potential µc. The work produced
is w = n∆µ (∆µ = µc − µh). If we denote by q the net
heat leaving the hot reservoir, the resulting thermody-
namic efficiency reads:

η = w/q. (1)

When operating for long times t, the quantities n/t and
q/t converge to the average particle and heat flux. Con-
comitantly, the efficiency η converges to its most proba-
ble value η̄, which corresponds to the standard ”macro-
scopic” efficiency. It is reproduced in Fig. 1(b) for the
case of an ideal gas. As required by the second law of
thermodynamics, this long-time efficiency is always be-
low the Carnot efficiency ηc = 1− Tc/Th.
When operating for a finite time, the quantities w and
q, and hence also the stochastic efficiency η, are differ-
ent from one run to another [1]. One may wonder about
thermodynamic implications for the probability distri-
bution P (η) of η. In a recent paper [2] (see also [3, 4]),
the following remarkable result was derived: in a non-
macroscopic machine running for long but finite times,
the reversible efficiency is least probable (in the sense of
large deviations [5]). This property is based on the gen-
eralisation of the second law of thermodynamics for small
systems, the so-called fluctuation theorem, and parallels
the derivation of Carnot or reversible efficiency of macro-
scopic machines. The simplest illustration is the work to
work transformation by a Brownian particle subjected to
competing external forces [2]. The reversible efficiency
is here 100%. Both work components are Gaussian and
the explicit analytic result is available for the probability
distribution of the stochastic efficiency [6] and its large
deviation function [2]. In this letter, we calculate the
stochastic efficiency for the effusion engine, which is, as
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FIG. 1: (Colour online) a) Effusion as a thermal engine b)
Efficiency η̄ for an ideal (mono-atomic) gas, plotted in colour
code as a function of µh/kBTh and µc/kBTh for ηc = 0.8. The
chemical potential is found from the Sackur-Tetrode formula,
µ = kBT ln

(

ρΛ3
)

, where Λ = h/
√
2πmkBT is the thermal

de Broglie wavelength, kB is Boltzmann’s constant, T the
temperature, ρ the density and m the mass per particle. The
engine regime (Th > Tc) is determined by µh < µc < (1 −

ηc)µh − 2kBTc ln(1− ηc).

we argue below, the simplest possible construction of a
thermal machine. The analytic expression for the large
deviation properties of work and heat can be obtained,
as well as that for the efficiency apart from a final step
involving a parametric elimination. Furthermore, the fi-
nite time regime with the approach to the large deviation
limit and the deviations from the Gaussian regime can be
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W
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Th
=ηC

ΔE =Q+W
 W = µ  ΔN

ηc = .8
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y

x

F1

F2
FTot

(a) Schematic representation of a Brownian work-to-
work converter, with ~F2 the work performing driving
force, and ~F1 the work receiving loading force.

0

1F2,y

F2,x

(b) Colour-coded macroscopic e�ciency of a Brow-
nian engine in function of ~F2 with ~F1 = (1, 0).
The black dot corresponds to ~F2 = (�3/2, 1). The
stochastic e�ciency for this case is represented in
Fig. 2a.

Figure 1: Characteristics of the Brownian engine

a device as a work-to-work converter was discussed in [35, 39]. The mathematics are

very simple. Considering for simplicity a two dimensional set-up, the displacement ~x of

the Brownian particle during a time t is characterised by a two-dimensional Gaussian

distribution. Under influence of the resulting force ~

F = ~

F1+ ~

F2 the average displacement

is h~xi = µ

~

Ft, µ being the mobility. The variance is isotropic and uncorrelated in

orthogonal directions, h�~x�~xi = 2Dt

~1, where D is the di↵usion coe�cient and ~1 the

unit matrix.

We first turn to the macroscopic e�ciency, which is very easy to evaluate, see also

Fig. 1b for a colour-coded illustration:

⌘̄ = �hw1i
hw2i

= �
~

F1 · h~xi
~

F2 · h~xi
= �

~

F1 · ~F
~

F2 · ~F
, (4)

where w1 = ~

F1 · ~x and w2 = ~

F2 · ~x are the stochastic amounts of work delivered by the

loading and driving force respectively. The engine regime, i.e., the regime where the

driving force delivers a positive amount of work to the loading force, is determined by:

�

��� ~F2

���
���~F1

���
 cos ✓  �

���~F1

���
���~F2

���
, (5)

with ✓ is the angle between ~

F1 and ~

F2. In combination with (4), it is clear from (5)

that, in the engine regime, the macroscopic e�ciency is bounded by ⌘̄  ⌘

r

= 1. The
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FIG. 2: (Colour online) Results for e↵usion with filters: a)
J(⌘)/J(1) as a function of ⌘ for di↵erent values of E2.
Parameter values: ⌘c = 0.8, E1 = 2 kbTh, µh = �kbTh,
µc = 0.8 kbTh. Note that the system becomes ”strongly cou-
pled” in the limit E2 ! E1 Inset: J(1) as a function of E2.
b) P (⌘) as a function of ⌘ for t/t0=2 ·104, 3 ·104, 5 ·104, with
t0 =

p
2⇡mkbTh

�⇢h�U , after 8·107 runs. Parameter values: ⌘c = 0.7,
µh = �kbTh, µc = 0.05 kbTh, E1 = 0.5 kbTh, E2 = 10 kbTh,
with their theoretical value. Inset: extrapolation of J(⌘) from
results of t/t0=2 · 104, 3 · 104, 5 · 104.

a zero in ⌘̄, a maximum at Carnot e�ciency, and equal
asymptotes for ⌘ ! 1, cf. Fig. 2.

One can repeat the above calculation for e↵usion
without energy filters. Results are shown in Fig. 3.
The large deviation function clearly di↵ers from the
Gaussian approximation. Note also in Fig. 3(b) the
”fine structure” appearing for small times around ⌘ = 0,
due to the fact that very few particles will cross. The
observed minimum of Pt(⌘) around zero is for example
due to the very unlikely single particle crossing with
high energy, the latter being required to obtain a small
value of ⌘.
We believe that the e↵usion engine provides the simplest
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FIG. 3: (Colour online) Results for plain e↵usion (no filters):
a) J(⌘)/J(1) as a function of ⌘ for ⌘c = 0.8, µh = �kbTh

and µc = 0. This point is also marked in Fig. 1(b). Inset:
J(⌘)/J(1) as a function of µc in the engine regime. b) P (⌘)

as a function of ⌘ for t/t0=5,10,20, with t0 =
p

2⇡m

�⇢h
p

kbTh
after

2 ·107 runs. Parameter values: ⌘c = 0.7, µh = �5 kbTh. Inset:
extrapolation of J(⌘) from results of t/t0=5,10,20.

possible scenario to study the stochastic e�ciency in a
thermal engine. It is a generic model for the case where
the transitions between the two heat compartments is
ruled by Poisson statistics. This will also be the case in
other models. For example exchange of particles between
reservoirs, which is ruled by Kramers’ escape over a high
potential barrier, or when the transition is ruled by a
chemical reaction rate. As a final discussion, we revisit
the salient features and predictions of our analysis. 1)
The main results of our analysis are that the predictions
of the general theory, in particular the generic properties
of the large deviation function J(⌘) of the stochastic
e�ciency ⌘, are verified [1]. 2) Both the Gaussian regime
and the strongly non-Gaussian regime can be easily
observed, as well as other special limits such as the
”strong coupling” limit or the limit to ”reversibility”.
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”fine structure” appearing for small times around ⌘ = 0,
due to the fact that very few particles will cross. The
observed minimum of Pt(⌘) around zero is for example
due to the very unlikely single particle crossing with
high energy, the latter being required to obtain a small
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FIG. 3: (Colour online) Results for plain e↵usion (no filters):
a) J(⌘)/J(1) as a function of ⌘ for ⌘c = 0.8, µh = �kbTh

and µc = 0. This point is also marked in Fig. 1(b). Inset:
J(⌘)/J(1) as a function of µc in the engine regime. b) P (⌘)

as a function of ⌘ for t/t0=5,10,20, with t0 =
p

2⇡m

�⇢h
p

kbTh
after

2 ·107 runs. Parameter values: ⌘c = 0.7, µh = �5 kbTh. Inset:
extrapolation of J(⌘) from results of t/t0=5,10,20.

possible scenario to study the stochastic e�ciency in a
thermal engine. It is a generic model for the case where
the transitions between the two heat compartments is
ruled by Poisson statistics. This will also be the case in
other models. For example exchange of particles between
reservoirs, which is ruled by Kramers’ escape over a high
potential barrier, or when the transition is ruled by a
chemical reaction rate. As a final discussion, we revisit
the salient features and predictions of our analysis. 1)
The main results of our analysis are that the predictions
of the general theory, in particular the generic properties
of the large deviation function J(⌘) of the stochastic
e�ciency ⌘, are verified [1]. 2) Both the Gaussian regime
and the strongly non-Gaussian regime can be easily
observed, as well as other special limits such as the
”strong coupling” limit or the limit to ”reversibility”.
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E↵usion is the escape of particles through a narrow
aperture. The phenomenom has been used to enrich ura-
nium, to coat light bulbs and as a cooling device. E↵usion
between two compartments, cf. Fig. 1, can also operate
as a thermal engine, namely when there is a net flow of
particles n � 0 from the hot compartment, temperature
Th, with low chemical potential µh, to the cold compart-
ment, temperature Tc, with high chemical potential µc.
The work produced is w = n�µ (�µ = µc � µh). If we
denote by q the net heat leaving the hot reservoir, the
resulting thermodynamic e�ciency reads:

⌘ = w/q. (1)

When operating for long times t, the quantities n/t and
q/t converge to the average particle and heat flux. Con-
comitantly, the e�ciency ⌘ converges to its most proba-
ble value ⌘̄, which corresponds to the standard ”macro-
scopic” e�ciency. It is reproduced in Fig. 1(b) for the
case of an ideal gas. As required by the second law of
thermodynamics, this long-time e�ciency is always be-
low the Carnot e�ciency ⌘c = 1� Tc/Th.
When operating for a finite time, the quantities n and
q, and hence also the stochastic e�ciency ⌘, are di↵er-
ent from one run to another. One may wonder about
thermodynamic implications for the probability distri-
bution P (⌘) of ⌘. In a recent paper [1] (see also [2, 3]),
the following remarkable result was derived: in a non-
macroscopic machine running for long but finite times,
the reversible e�ciency is least probably (in the sense of
large deviations [4]). This property is based on the gen-
eralisation of the second law of thermodynamics for small
systems, the so-called fluctuation theorem, and parallels
the derivation of Carnot or reversible e�ciency for macro-
scopic machines. The simplest illustration is the work to
work transformation by a Brownian particle subject to
competing external forces [1]. The reversible e�ciency
is here 100%. Both work components are Gaussian and
the explicit analytic result is available for the probability
distribution of the stochastic e�ciency [5] and its large
deviation function [1]. In this letter, we calculate the
stochastic e�ciency for the e↵usion engine, which is, as
we argue below, the simplest possible construction for a
thermal machine. The analytic expression for the large
deviation properties of work and heat can be obtained,
as well as that for the e�ciency apart from a final step
involving a parametric elimination. Furthermore, the fi-
nite time regime with the approach to the large deviation
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FIG. 1: (Colour online) a) E↵usion as a thermal engine b) E�-
ciency ⌘̄ for an ideal (mono-atomic) gas, plotted in colour code
as a function of µh and µc for ⌘c = 0.8. The chemical potential
is found from the Sackur-Tetrode formula, µ = kT ln

�
⇢⇤3

�
,

where m is the mass, k is Boltzmann’s constant, T the tem-
perature, ⇢ the density and ⇤ = h/

p
2⇡mkT the thermal de

Broglie wavelength. The engine regime (Th > Tc) is given by
µh < µc < (1� ⌘c)µh � 2kTh ln(1� ⌘c).

limit and the deviations from the Gaussian regime can be
studied in detail. All the results are of course in agree-
ment with the universal predictions from [1].
The simplicity of the e↵usion engine stems from the fact
that there is no auxiliary engine part that transfers the
energy. Furthermore, the crossing of the particles is de-
scribed by basic Poisson statistics. To illustrate the cal-
culations and to incidentally show how the Carnot e�-
ciency can be recovered, we first consider e↵usion oper-
ating with a filter, such that only particles with energies
in a small window ]E��E/2, E+�E/2[ are allowed to
cross. The number nh of particles leaving the hot reser-

η
c	
  
=	
  0.8.	
  

              

η =
w
qh
=

(µc −µh ) Δn
Δe−µhΔn

         kinetic theory→  Pt (Δn,Δe)→ Pt (η)

  Pt (η) ∝ e−tJ (η )

    large 
  deviation 
    function

J(η) = − lim
t→∞

lnPt (η) 
t

    Δn, Δe

ηc	
  =	
  .8	
  

€ 

η 

η ≈ .4
ηc=.8	
  



load	
  

driving	
  

!x

Work	
  to	
  work:	
  	
  
Brownian	
  par&cle	
  

F1	
  (load)	
  	
  	
  	
  F2	
  (driving)

!x : Brownian motion in force field 
!
F=
!
F1 +
!
F2

!x  bi-Gaussian    !x =

!
F
γ
t       δ !x  . δ !x = 2Dt  

!!
1      

η =
−
!
F1  . 
!x!

F2  . 
!x

  ratio of correlated Gaussians

 Pt (η) ∝ e
−tJ (η )

Stochastic E�ciency: Five Case Studies 6

(a) Probability distribution Pt(⌘) of the e�ciency ⌘
for the Brownian engine.

η

(b) Approach of � lnPt(⌘)/t for increasing values
of t/t0 (blue, red and green curve) to the large
deviation function J(⌘) (black curve). The purple
curve is obtained by extrapolation from the finite
time results. The black curve is given by equation
(9).

Figure 2: E�ciency fluctuations of a Brownian engine with ~

F1 = (1, 0), ~

F2 = (�3/2, 1)

and ⌘̄ = 0.29.

(a) Schematic representation of the e↵usion model.
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(b) Macroscopic e�ciency of the e↵usion engine in
terms of µh/kBTh and µc/kBTh, with ⌘C = 1/2.
The black dot corresponds to µh/kBTh = �1 and
µc/kBTh = �3/4. The stochastic e�ciency for this
case is represented in Fig. 4a.

Figure 3: Characteristics of the e↵usion model
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reversible e�ciency ⌘

r

= 1 can only be reached in the limit ~

F2 ! �~

F1 while ~

F 6? ~

F1.

This can also be seen in Fig. 1b.

We next investigate the stochastic e�ciency,

⌘ = �w1/w2 = �~

F1 · ~x/~F2 · ~x. (6)

Being the ratio of two correlated Gaussian variables, its probability distribution can be

evaluated analytically, see also [39]:
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and Erf(x) is the error function. The characteristic time t0 = 2D/

⇣
µ

���~F
���
⌘2

determines

the boundary between di↵usion dominated (t ⌧ t0) and drift dominated (t � t0)

dynamics. We note in passing that it is easy to show from equations (7) and (8) that

P

0
t

(0) > 0 and P

0
t

(1) < 0, implying that there exists at least one maximum in the interval

⌘ 2 [0, 1]. This can indeed be seen in the simulation results for t/t0 = 2, 5 and 10, shown

in Fig. 2a.

Universal features of the e�ciency fluctuations are revealed when studying the

asymptotic time behavior via the large deviation function of ⌘ [35]:

J(⌘) = � lim
t!1
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. (9)

This function has a minimum at the macroscopic e�ciency J(⌘̄) = 0, but also a

maximum at the reversible e�ciency ⌘

r

= 1, with equal asymptotes in the limits

⌘ ! ±1. To illustrate the approach to the large deviation regime, � ln(P
t

(⌘))/t is

plotted in Fig. 2b obtained from simulation results for t/t0 = 2, 5, and 10, together with

the limiting expression (9). We also include the result of an extrapolation ansatz [38],

described in more detail in Appendix A. The extrapolation, based on the t/t0 = 2, 5,

and 10 curves, is in surprisingly good agreement with the exact asymptotic expression.

Although these finite time results do not, in this particular instance, exhibit a maximum

close to the reversible e�ciency ⌘

r

= 1, it does show up by extrapolation.

2. E↵usion Engine

The e↵usion engine [38] consists of two reservoirs, exchanging heat and particles by

e↵usion via one or more small holes in the separating wall, cf. Fig. 3a. The reservoirs
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(a) Probability distribution Pt(⌘) of the e�ciency ⌘
for the Brownian engine.

η

(b) Approach of � lnPt(⌘)/t for increasing values
of t/t0 (blue, red and green curve) to the large
deviation function J(⌘) (black curve). The purple
curve is obtained by extrapolation from the finite
time results. The black curve is given by equation
(9).

Figure 2: E�ciency fluctuations of a Brownian engine with ~

F1 = (1, 0), ~

F2 = (�3/2, 1)

and ⌘̄ = 0.29.

(a) Schematic representation of the e↵usion model.
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(b) Macroscopic e�ciency of the e↵usion engine in
terms of µh/kBTh and µc/kBTh, with ⌘C = 1/2.
The black dot corresponds to µh/kBTh = �1 and
µc/kBTh = �3/4. The stochastic e�ciency for this
case is represented in Fig. 4a.
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voir during a time t is described by a Poisson distribution:

P (nh, t) =
n̄

nh
h

nh!
e

�n̄h
, n̄h = kt, (2)

with the crossing rate k prescribed by kinetic theory:

k =
�⇢h�Ep
2⇡mkbTh

E

kbTh
e

�E/kbTh
. (3)

A similar result holds for the crossing of particles coming
from the cold reservoir by formally replacing the sub-
script h by c and k by l. Since the crossings are inde-
pendent from each other, we find by convolution that
the probability to have a net transfer of n = nh � nc

particles, is given by:

P (n, t) = e

�t(k+l)

✓
k

l

◆n
2

In

⇣
2t
p
kl

⌘
. (4)

This is nothing but the probability distribution for a bi-
ased continuous-time random walk with stepping rates
k and l. The so-called large deviation function can be
written in terms of ṅ = n/t:

'(x) = lim
t!1

lnP (n = xt, t)

t

or P (n, t) ⇠ e

�t'(ṅ)
, (5)

is found from Stirling’s formula:

'(x) = k + l �
p
4kl + x

2

� x ln

 p
4kl + x

2 � x

2l

!
. (6)

Note that in the presence of a single energy filter, the net
energy flux u and net particle flux n become ”strongly
coupled”: u = En. Also work w = n�µ and heat q = u�
nµh = (E � µh)n are proportional to each other. Hence,
even while both w and q fluctuate through their depen-
dence on n, the e�ciency , ⌘ = w/q remains constant.
Since in this case ⌘ = ⌘̄, the second law requires ⌘  ⌘c.
It is revealing to show under which conditions Carnot ef-
ficiency can be reached in this e↵usion engine with single
filter [7, 8]: the Maxwell-Boltzmann density of particles
of energy E has to be the same in both compartments,

i.e. ⇢h exp(��hE)/T 3/2
h = ⇢c exp(��cE)T 3/2

c . Indeed,
this yields for an ideal gas (µ ⇠ T ln(⇢/T 3/2) apart from
a additive constant) ⌘ = w/q = (µc�µh)/(E�µh) = ⌘c.
Note that this point of equilibrium can be reached even
though density, chemical potential and temperature need
not be the same in both compartments.
To obtain a nontrivial result for P (⌘) we consider next
e↵usion through two separate windows, selective for en-
ergies E1 and E2, respectively. The discrete amount of
work and heat produced upon a net transfer (from hot to
cold) of i particles through window 1 and n� i particles
through window 2 is obviously given by:

w = n�µ , q = �q1i+ �q2(n� i), (7)

with �q1 and �q2 the transported heat when a particle
leaves the hot reservoir via filter 1 and 2, respectively :

�q1 = E1 � µh , �q2 = E2 � µh. (8)

Since the transport through both filters is statistically
independent, the corresponding joint probability Pt(w, q)
is given by the following convolution:

Pt(w, q) =
X

i1

X

i2

P1(i1, t)P2(i2, t)�
Kr
q,�q1i1+�q2i2�

Kr
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✓
q � �q2n

�q1 � �q2
, t

◆
P2

✓
�q1n� q

�q1 � �q2
, t

◆
, (9)

Pj(n, t) being probability for a net transfer of n particles
through the j-th filter after a time t, j = 1, 2, cf. Eq.
(2) with E,�E,� replaced by the corresponding values
for filter j. The variables q̇ = q/t and ẇ = w/t become
continuous for large t, and the large deviation function
of Pt(w, q) is found to be:

I(ẇ, q̇) = � lim
t!1

✓
ln

Pt(w = ẇt, q = q̇t)

t

◆
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◆
+ '2
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q̇ � �q1ẇ/�µ

�q2 � �q1

◆
,

(10)

where 'i (n, t) is the large deviation function of the net
particle transfer through the i-th filter,i = 1, 2, given by
(6).
Turning to the e�ciency ⌘ = w/q, we note that its prob-
ability distribution:

Pt(⌘) =
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2

���� dw, (11)

can be obtained for any finite time by combination with
Eq.(9), cf. Fig. 2(b). For the corresponding large devia-
tion function J(⌘), one finds:

J(⌘) = � lim
t!1

ln

✓
Pt(⌘)

t

◆

= min
q̇

I(⌘q̇, q̇)

= min
q̇

⇢
'1

✓
�1 (⌘)

�µ

q̇

◆
+ '2

✓
�2 (⌘)

�µ

q̇

◆�
.(12)

(13)

We have used the contraction principle [4], expressing
the fact that a given value of ⌘ is realised by the most
likely values of ẇ and q̇ for which ẇ/q̇ = ⌘. The
above minimization involves a transcendental equation
requiring a numerical solution. The resulting large
deviation function J(⌘) has the familiar shape [1], with

efficiencies larger than the Carnot efficiency correspond to
realizations along which the machine functions as a heat pump,
while those with efficiency lower than zero correspond to a dud
engine dissipating heat while absorbing work. The above
derivation has been illustrated on an heat engine operating in
continuous time, but the results remain valid for all other types of
machines, such as isothermal energy transducers, heat engines,
refrigerators or heat pumps, operating in non-equilibrium steady
states or cyclically as long as the driving cycle is invariant under
time reversal. The only difference is that the Carnot efficiency has
to be replaced by the reversible efficiency. Below, we give an
example of an isothermal work-to-work conversion where the
reversible efficiency is equal to 1 and thus corresponds to the least
likely efficiency.

Beyond these striking general conclusions about the least and
most likely efficiency, we proceed to show that the efficiency
fluctuations in the close-to-equilibrium regime have a universal
scaling form. Our starting point is that close-to-equilibrium, the
relevant work w and heat q fluctuations are generically Gaussian.
The resulting large deviation function for the efficiency, being the
ratio of two correlated Gaussian variables, is found to be:

JðZÞ ¼ 1
2

Z _qh iþ _wh ið Þ2

Z2Cqqþ 2ZCwqþCww
; ð8Þ

where Cwq%(/wqS&/wS/qS)/t, Cww and Cqq are the
elements of the symmetric covariance matrix. The crucial
thermodynamic ingredient is obtained by combining the
Gaussian statistics for _w and _q with the fluctuation theorem.
More precisely, noting that equation (7) has to be valid for all
values of w ¼ t _w and q ¼ t _q, one finds (cf. methods section):

_qh i ¼ ZCCqqþCwq

2Tc
; _wh i ¼ ZCCwqþCww

2Tc
: ð9Þ

The large deviation function J can therefore be solely expressed in
terms of the covariance matrix:

JðZÞ ¼ 1
8T2

c

½ZZCCqqþðZþ ZCÞCwqþCww(2

Z2Cqqþ 2ZCwqþCww
: ð10Þ

The above explicit expression for J(Z) is in agreement with the
general properties pointed out above, namely its minimum and
maximum are reached for Z ¼ !Z and Z¼ ZC, respectively. These
are also the two only extrema of the function. Remarkably, the
least likely decay rate, that is, the rate at Carnot efficiency, can be
rewritten from equations (9,10) solely in terms of the average heat
and work: JðZCÞ ¼ ðZC _qh iþ _wh iÞ=ð4TcÞ. This relation, which
ultimately derives from the fluctuation theorem, should be easy to
test experimentally. We also note that the two asymptotic values
of J(Z) at Z-±N coincide, namely Jð1Þ ¼ ðZCCqqþCwqÞ2=
ð8T2

c CqqÞ ¼ _qh i2=ð2CqqÞ. We used equation (9) for the second
equality. Since the covariance matrix is directly related to the
Onsager matrix (cf. methods section), this latter can be obtained
from measurements of efficiency fluctuations close to equili-
brium. In fact, the covariance matrix Cww, Cwq and Cqq is uniquely
specified by the most probable efficiency !Z, the value of large
deviation function at the Carnot efficiency J(ZC), and the
asymptotic value of the large deviation function J(N)
(cf. methods section), so that equation (10) can be rewritten as:

JðZÞ
JðZCÞ

¼ ðZ& ZÞ2

ðZ& 2Zþ ZCÞðZ& ZCÞþ
JðZCÞ
Jð1Þ ðZ& ZCÞ

2 : ð11Þ

Brownian work-to-work converter. As a first illustration of
our main results, we consider the simplest possible model for
work-to-work conversion28. An overdamped Brownian particle

subjected to two constant forces F1 and F2 diffuses on a plane, as
illustrated in Fig. 1. F2 is the driving force, allowing the particle to
move against an opposing force F1. For a given displacement
x¼ x(t) of the particle (assuming x(0)¼ 0), the work performed
by each force is given by w1¼F1?x and w2¼ F2?x. The
corresponding stochastic efficiency is Z¼ &w1/w2. The
displacement x(t) is a Gaussian random variable with average
/x(t)S¼mFt, where F¼F1þF2, m is the mobility and 2Dt is the
dispersion in any direction of motion: /xi(t)xi(t)S¼ 2Dt with
D the diffusion coefficient. The aforementioned Gaussian
scenario is thus exact in this model with the role of _w and _q
played by _w1 ¼ F1 ) x=t and _w2 ¼ F2 ) x=t. One obviously
has h _w1i ¼ mF1 ) F, and h _w2i ¼ mF2 ) F. The corresponding
correlation functions read C11¼ 2D ||F1||2, C22¼ 2D||F2||2 and
C12¼ 2DF1 ) F2. The large deviation of efficiency is given by

JðZÞ ¼ 1
2
ðZ _w2h iþ _w1h iÞ2

Z2C22þ 2ZC12þC11
¼ m2½ðZF2þF1Þ ) F(2

4DðZF2þ F1Þ2
: ð12Þ

One immediately verifies that J(Z) takes its maximum value
J(1)¼m2||F2||2/4D in Z¼ 1 which is the predicted reversible
efficiency for work-to-work conversion. Furthermore, the above
mentioned averages and correlations functions obey the relations
equation (9) on setting ZC¼ 1 and D¼mT from the Einstein
relation. One can thus also rewrite the J(Z) as in equation (10) or
equation (11) (with ZC¼ 1).

Photoelectric device. Our second model is a nano-sized photo-
electric device powered by black-body radiation at temperature
Th (ref. 29). The device is composed of two quantum dots,
each with a single-energy level El and Er (Er4El), respectively, cf.
Fig. 2. Coulomb repulsion prevents simultaneous occupation by
electrons of both quantum dots. Each dot can exchange electrons
with its neighbouring electronic lead. Both leads are at the same
temperature Tc, but at different voltages and therefore at different
chemical potentials mr4ml. Electron transfers between the two
quantum dots are induced either by hot black-body radiation at
Th or by cold thermal phonons at Tc. This device operates as an
heat engine fuelled by the heat q¼ np(Er&El), where np is the
number of photons absorbed from the hot black body, and
producing a positive work output &w¼ neDm, where ne is
the number of electrons transferred from left to right lead
against the chemical potential gradient Dm¼mr&ml40. The
stochastic efficiency is thus Z¼ &w/q. The rates describing the
Markovian dynamics of the device as well as the large deviation
function for the work and heat statistics are discussed in the
methods section. The resulting large deviation function for effi-
ciency is plotted in Fig. 3. All the predicted features—the least

F2

X

F=F1+F2

F1
0

w2

w1

Figure 1 | Work-to-work converter for an overdamped Brownian particle
diffusing in a plane. The particle is driven by the two forces F1 and F2. The
orange line is a specific trajectory ending at position x. The stochastic work
w1 and w2 are obtained from the scalar products (dashed lines) projecting x
on F1 and F2, respectively. The ratio of the lengths obtained from these
projections gives the stochastic efficiency for this specific trajectory.
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according to

_gtð0; g; lÞ
_gtðl; g; lÞ
_gtðr; g; lÞ

0

@

1

A ¼
$ kl0 $ kr0 k0l k0re$ gDm

kl0 $ k0l $ krl kc
lr þ kh

lre$lðEr $ ElÞ

kr0egDm kc
rl þ kh

rle
lðEr $ ElÞ $ k0r $ klr

2

4

3

5
gtð0; g; lÞ
gtðl; g; lÞ
gtðr; g; lÞ

0

@

1

A:

ð22Þ
When l¼ g¼ 0, equation (22) becomes a Markovian master equation for the
probability Pj¼ gt(j, 0, 0) to find the device in state j at time t. The rates kij denote
the probability per unit time to jump from state j to i. Introducing the Fermi–Dirac
distribution f(x)&1/(exþ 1) and the Bose–Einstein distribution b(x)&1/(ex$ 1),
they are defined by

kl0 & Gl f
El $ ml

Tc

! "
; k0l & Gl 1$ f

El $ml

Tc

! "# $
;

kr0 & Gr f
Er $mr

Tc

! "
; k0r & Gr 1$ f

Er $ mr

Tc

! "# $
;

knrl & Gnb
Er $ El

Tn

! "
; knlr & Gn 1þ b

Er $El

Tn

! "# $
;

ð23Þ

and kij & kc
ij þ kh

ij , where n¼ c, h denotes the cold and hot reservoir and the G’s
the coupling strength with the various reservoirs29 as illustrated in Fig. 2 of the
result section. For long times t, the work and heat-generating function is
dominated by the highest eigenvalue f(g, l) of the rate matrix in equation (22)

egwþ lq% &
¼
X

j¼0;l;r

gtðj; g; lÞ '
t!1

etfðg;lÞ: ð24Þ

The latter can be calculated analytically. The corresponding large deviation
function is obtained by the Legendre transform Ið _w; _qÞ ¼ maxg;lfg _wþ l _q
$fðg; lÞg. The large deviation function for efficiency fluctuations is
obtained from it using equation (6). Alternatively, it can be obtained using
J(Z)¼ $ming f(g, Zg). The proof will be provided in a forthcoming publication.
This latter minimization has been performed numerically to produce Fig. 3 in
the study.

Alternative expression of J(g). The three equations in the study for J(N), J(ZC)
and !Z expressed in term of the covariance matrix close-to-equilibrium can be
inverted to obtain

Cqq ¼
8JðZCÞ

2T2
c

ð!Z$ ZCÞ
2Jð1Þ

; ð25Þ

Cwq ¼ $ 8JðZCÞT2
c

Jð1Þ!Z$ Jð1ÞZC þ ZCJðZCÞ
Jð1Þð!Z2 $ 2!ZZC þ Z2

CÞ
; ð26Þ

Cww ¼ 8JðZCÞT2
c

Jð1Þ!Z2 þ Z2
CJðZCÞ$ Jð1ÞZ2

C

Jð1Þð!Z2 $ 2!ZZC þ Z2
CÞ

: ð27Þ

Using these coefficients, we recover equation (11) of the study.
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likely value at Carnot efficiency and the universal shape of
the large deviation function close-to-equilibrium—are perfectly
reproduced.

Discussion
The efficiency of macroscopic thermal machines is the ratio
between two averaged quantities, the extracted work and the heat
coming from the hot source. One of the momentous discoveries
in science, which lead to the formulation of the second law of
thermodynamics, is the observation by Carnot that this efficiency
has a maximum called Carnot efficiency. Contrary to macro-
scopic machines, the behaviour of small machines is subjected to
strong fluctuations. Their average behaviour thus provides an
incomplete description except in the macroscopic limit where
fluctuations are typically strongly peaked around the average. In
the present study, we introduce the concept of fluctuating
efficiency to accurately characterize the performance of small
machines and find universal features in its fluctuations. Using the
fluctuation theorem, which generalizes the second law at the
fluctuating level, we provide an analogue of the Carnot analysis
by proving that the Carnot efficiency becomes the least likely
efficiency when long measurement times are considered,
independently of any details of the machine or of its mode of
operation. Furthermore, we show that close-to-equilibrium, the
large deviation function of the efficiency fluctuations obeys a
universal form parametrized by the Onsager matrix of the engine.
Our study suggests a new direct application of the fluctuation
theorem, which was previously mostly invoked to measure free
energy differences18,30,31. Since heat and work fluctuations are
nowadays measured in a wide variety of systems12–18,20,24,
we expect that experimental measurements of the fluctuating
efficiency will become a valuable tool to characterize the
performance of small engines.

Methods
Linear response and fluctuation theorem. For the photoelectric device, the
average photon and electron currents, _Np ! hnpi=t and _Ne ! hnei=t, read in the
linear regime

_Ne ¼ LeeDm=Tc þ LepDEDb; ð13Þ

_Np ¼ LepDm=Tc þ LppDEDb; ð14Þ

where Db¼ 1/Tc& 1/Th40, DE¼Er& El40 and L is the symmetric Onsager

matrix with LppZ0, LeeZ0 and det LZ0. The average work and heat per unit time
can thus be written as

_W ¼ Dm _Ne ¼
1

Tc
LeeDm2 þ ZCLepDmDE
! "

; ð15Þ

_Q ¼ DE _Np ¼
1

Tc
LepDmDEþ ZCLppDE2! "

: ð16Þ

From Green–Kubo relation, the linear response coefficients are related to
equilibrium fluctuations by

Lep ¼ lim
t!1

1
2t
h½ne tð Þ& hneieq(½np 0ð Þ& hnpieq(ieq: ð17Þ

This implies that in the long time limit, Cwq/2-DmDELep. Proceeding similarly
for the other response coefficients, we find Cww/2-Dm2Lee and Cqq/2-DE2Lpp.
Equations (15–16) thus lead to equation (9) of the results section. These equalities
may also be derived using the fluctuation theorem for work and heat in the
Gaussian limit. Indeed, using

Ið _w; _qÞ& Ið& _w; & _qÞ ¼ & ðZC _qþ _wÞ 1
Tc
; ð18Þ

and the quadratic large deviation function

Ið _w; _qÞ ¼

_w& _W
_q& _Q

# $T Cqq &Cwq

&Cwq Cww

% &
_w& _W
_q& _Q

# $

2 det C
; ð19Þ

we get

det C
2Tc
ðZC _qþ _wÞ ¼ _w _WCqq þ _q _QCww &Cwqð _w _Qþ _q _WÞ: ð20Þ

Since this relation must hold true for any values of _w and _q, we obtain

1
det C

Cqq &Cwq

&Cwq Cww

% &
_W
_Q

# $
¼ 1=2Tc

ZC=ð2TcÞ

# $
ð21Þ

which reproduces the expected result when solved for _W and _Q.

Photoelectric device: heat and work statistics. The work w and heat q statistics
in the photoelectric device is obtained by considering the generating function
gt(j, g, l)¼/egwþ lqSj where the subscript j denotes that the trajectory average is
conditioned on the final state j of the device at time t. The three different states of
the device are denoted j¼ 0, l, r for respectively no electrons in the device, one
electron in the energy level El connected to the left lead or one electron in the
energy level Er connected to the right lead. The generating function evolves

Tc

Tc

Tc

Th

El

Er

!l

Γh

Γr

!r

Γc

Black-body radiation

Left
lead

Right
lead

Engine

Phonon bath

Γl

Figure 2 | Sketch of a photoelectric device. The device consists of two
single-level quantum dots (in white) connected to two leads (in blue) at
temperature Tc and at different chemical potentials ml and mr. The electron
transitions between left and right quantum dots are induced either by
photons from the black-body radiation at temperature Th (in red) or by
phonons at temperature Tc (in blue). The arrows indicate possible electronic
transitions between different energy levels and the G’s represent the
coupling strengths with the reservoirs.
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Figure 3 | Large deviation functions of efficiency J(g). The curves are
obtained from equation (6) for the photoelectric device of Fig. 2 operating
on average as an heat engine. Each curve corresponds to a given
temperature and chemical potential differences, black circles denote heat
engine realizations, red triangles (resp. gold squares) denote heat pump
(resp. a dud engine) realizations. The blue-filled squares denote the least
likely Carnot efficiency, while the zeros correspond to the most likely one.
The left and right horizontal asymptotes coincide and correspond to
realizations with low-heat exchange. Inset: the close-to-equilibrium
approximation (symbols) fits very well with the exact result equation (10)
(black solid line). Parameters for the curves are El¼0.5, Er¼ 2.5, ml¼ 1,
Tc¼ 1, DT¼ Th& Tc, Gh¼Gl¼Gr¼ 10 and Gc¼ 1.
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A
B

C
D

FIG. 1. Typical contour lines of the LDF I(σ1,σ2). The point
C corresponds to the most probable value I(⟨σ1⟩ , ⟨σ2⟩) = 0.
A straight line through the origin with slope ηD touches the
contour line, whose I-value equals J(ηD) (idem for point B
sharing the same J value). The maximum of J(η) corresponds
to I-value of the contour crossing the origin J(η∗) = I(0, 0)
(blue long dashed line), while J(∞) to that of the contour
touching the σ2-axis in A (red solid line).

C upward, the LDF J(η) increases until the contour line
crosses the origin corresponding to I(0, 0) = J(η∗) where
η∗ is the contour slope at the origin. This efficiency cor-
responds, as shown above, to the maximum value of J(η),
hence η∗ is the least probable efficiency in the sense of
large deviations. For η ≥ η∗, the intersection between
the contour and the efficiency line moves from the upper
right corner to the lower left corner of the plane, and
the LDF decreases until its limiting value is reached for
η = +∞. Positive and negative infinite efficiencies share
the same contour line touching the vertical axis in A,
with the same limiting J(∞)-value.

C. Least likely and reversible efficiency

We have shown that the least probable efficiency is
given by the slope in zero of the contour line crossing the
origin. Along this contour line the total differential of I
has to vanish

dI =
∂I

∂σ1
dσ1 +

∂I

∂σ2
dσ2 = 0. (10)

Evaluating this equation at the origin one gets

η∗ = −
dσ2

dσ1
=

∂I

∂σ1

(

∂I

∂σ2

)−1

(11)

and similarly for the machine subjected to the time-
reversed driving cycle

η̂∗ = −
dσ2

dσ1
=

∂Î

∂σ1

(

∂Î

∂σ2

)−1

, (12)

C

B D

FIG. 2. Typical shape of the efficiency LDF J(η). For steady
state machines or machines with time-symmetric driving cy-
cles, the shape is the same and the maximum is at the re-
versible efficiency η∗ = η̄rev = 1. The horizontal asymptote
corresponds to the point A of Fig. 1.

where η∗ and η̂∗ are defined by J(η∗) = I(0, 0) and
Ĵ(η̂∗) = Î(0, 0). Taking the partial derivative with re-
spect to σ1 and σ2 of the fluctuation theorem (5) and
evaluating it at vanishing EPs leads to the following two
equations

∂I

∂σ1
+

∂Î

∂σ1
= −1,

∂I

∂σ2
+

∂Î

∂σ2
= −1. (13)

Therefore, the least probable efficiency of the machine
subjected to the time-reversed driving cycle is related to
the EPs LDF of the original machine by

η̂∗ =

(

1 +
∂I

∂σ1

)(

1 +
∂I

∂σ2

)−1

. (14)

For machines operating at steady state or subjected to
time-symmetric driving cycles, I(σ1,σ2) = Î(σ1,σ2) and
from Eq. (13), one recovers the result first derived in
Ref.[11] stating that the least probable efficiency is the
reversible efficiency: η∗ = η̂∗ = η̄rev = 1. However, if the
machine works with non-time-symmetric cyclic driving,
the reversible efficiency is not the least probable any more
but remains a special point of the LDF. Indeed, if we
evaluate Eq. (5) in σ2 = −η̄revσ1 = −σ1, we find that

I(σ1,−η̄revσ1) = Î(−σ1, η̄revσ1), (15)

which after minimization over σ1 implies that

J(η̄rev) = Ĵ(η̄rev). (16)

Hence, the efficiency LDF takes the same value for both
machines, forward and reverse, at the value of the re-
versible efficiency. The two LDFs will thus cross at this
point.

!w

!q



&me	
  asymmetric	
  	
  
engine	
  

J and !J cross in ηc     same  asymptotes     same  maximum

1st  law        w = qh − qc −Δe

2nd  law    Δstot =
−qh
Th

+
qc
Tc

 + Δs

              P(qh,w)
!P(−qh,−w)

∝ eΔstot Pt (η) ∝ e
−tJ (η )       !Pt (η) ∝ e

−t !J (η )

2

u

T T
b)

c)

uu

0 l L

T
h

T
h

0 l L

a)
u

T

T
c

T
c

u

T
c

T
h

Figure 1: Schematic representation of: a) The constitutive
process: a single particle bounces back and forth between a
thermal wall on the left and a moving piston on the right. b)
The Szilard engine: a piston is inserted a distance l from the
left wall, and subsequently moves away from the particle. c) A
simplified Carnot heat engine: alternating cycles of expansion
and compression, while in contact with a hot or cold left wall
at temperatures Th and Tc respectively; note the absence of
an adiabatic expansion and compression phase.

A. The Szilard engine

For the Szilard engine, shown in figure 1b, the vari-
ous steps per cycle are as follows. At the start, a par-
ticle bounces back and forth between two thermal walls
at temperature T and separated by a distance L. The
probability distribution for its position x0 and (dimen-
sionless) velocity v0 is given by thermal equilibrium:

pL(x0, v0) =
1

L

1√
2π

exp

(

−
v20
2

)

. (2)

A piston is then inserted a distance l from the left wall,
trapping the particle either on its left or right hand side.
A measurement is performed to find out in which com-
partment the particle resides. If the particle is in the

left compartment, the thermodynamic cost of the mea-
surement is: kB∆i = −kB lnx [40], where x = l/L is
the compression ratio. The equilibrium distribution is
now restricted to the left compartment, i.e. given by (2)
but with L replaced by l. The piston next moves to the
right with velocity u until the full length L is reproduced,
and an amount of work w is delivered. For finite piston
speed, the system will deviate from equilibrium and the
average of this work is bounded by the decrease ∆F in
free energy, ⟨w⟩ ≤ ∆F with:

∆F = −kBT lnx (3)

When the particle is found in the right compartment,
analogous results hold for the measurement cost ∆i, the
decrease in free energy ∆F and the work w, by replacing
x with 1− x. The efficiency of the above information to
work conversion is defined as:

η =
w

kBT∆i
. (4)

We will investigate the properties of this stochastic quan-
tity in more detail below. Upon repeating the Szilard
cycle many times, η will converge to a macroscopic ef-
ficiency η̄, which is, as we show below, bounded by the
reversible efficiency 1:

η̄ =
⟨w⟩

kBT ⟨∆i⟩
≤ 1, (5)

see also figure 2a. Referring to the discussion of stochas-
tic efficiency, we also require the time-reversed process
of the Szilard engine, which is defined as follows. Ini-
tially, the particle is in thermal equilibrium and moving
between the two thermalising walls. The piston is then
brought in from one of the sides and pushed inward up
to position l. The piston either starts at position 0, with
probability 1−x, or at position L probability x. In both
cases, work is converted into information.

B. The simplified Carnot heat engine

The various stages of the single particle Carnot heat
engine are represented in figure 1c. When discussing the
heat engine, velocities are calculated with respect to the
thermal velocity at temperature Th. The cycle starts
with the piston moving outward (stage 1) at constant ve-
locity u until it reaches its final position L. The particle
is allowed to relax (stage 2), i.e. the equilibrium distri-
bution Eq. (2) is restored. After relaxation, the temper-
ature of the heat bath is instantaneously switched to the
lower value Tc < Th, and the particle is again allowed
to relax to the new equilibrium state (stage 3). Next
(stage 4) the piston moves inwards with velocity u until
it has returned to its original position l, after which the
particle again relaxes (stage 5). Finally, the temperature
is instantaneously switched back to the higher value Th,
followed by a final relaxation (stage 6). The inclusion

6

P1(η) =

∫

dv φ(v)

(

θ(2u− v)δ(η) + θ(v − 2u)δ

(

η −
4u(v − u)

v2

))

=
(

1− e−2u2
)

δ(η) +
2u2

η3
f(η)4e−2( f(η)u

η )
2

f(η)− η
θ(1 − η2), (25)
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Figure 6: −(1/n) lnPn(η) for 5 (blue), 10 (red) and 20 (green)
cycles of the heat engine and its time-inverse, with Th = 2Tc

(i.e. ηC = 1/2), u = 0.3 and x = 0.5. The purple curve is
the extrapolation to the LDF. The macroscopic efficiency is
given by η̄ = −0.02 Inset: convergence of the intersections
efficiency η∗ of forward and time-reverse curves to ηC as the
number n of cycles increases. The dashed line is a power law
fit of the form α/nβ , with α = 5.49 · 10−3 and β = 0.13

with f(η) = 1 +
√
1− η and θ(x) the Heaviside func-

tion. The LDF can be found by numerically contracting
the cumulant generating function, as is done in the ap-
pendix. The results are shown in figure 7. It is clear that,
even at a stochastic level, only efficiencies between 0 and
1(= ηC) can be reached. Furthermore, the LDF diverges
at Carnot efficiency and the results from the extrapola-
tion are in good agreement with the analytical formula
derived in appendix B.

V. DISCUSSION

We have analysed the performance of two typical sin-
gle particle engines, the Szilard engine and a simplified
heat engine. Their analysis is based on the dynamics of
a single particle moving back and forth between a ther-
malising wall and a moving piston. For both engines,
we have shown that the distribution of delivered work
during one cycle becomes Gaussian in the quasi-static
limit. More precisely, the corrections of the first two cu-
mulants in the quasi-static limit scale as u ln(u), whereas

-1

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1.0

n = 1
n = 2
n = 5

extrapolation

-1

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1.0

η

J(η)

η

P1(η)
J(η)

Figure 7: −(1/n) lnPn(η) for 1 (blue), 2 (red) and 5 (green)
cycles of the zero-temperature heat engine, with u = 0.1. The
purple curve is the extrapolation to the LDF and the black
curve is the analytical LDF. The macroscopic efficiency is
given by η̄ = 0.23. Inset: P1(η).

the higher order cumulants are proportional to u. For
the heat engine, both work w and heat q can take on any
real value, and the fluctuations of efficiency η reproduce
the familiar universal features. For the Szilard engine
however, the information gain per cycle can only take on
two (positive) values − ln(x) or − ln(1− x). As a result,
the asymptotes of the LDF’s for the efficiency diverge,
since extreme (positive or negative) efficiencies can only
arise from a corresponding extreme value of the deliv-
ered work. On the other hand, the universal crossing of
forward and time-reverse LDF’s at reversible efficiency
1 is reproduced. Our results can easily be extended to
other systems such as the full Carnot cycle [31] and the
Andersen cycle [34]. A question for further research is
to clarify how the sub-linear u lnu behavior fits into the
linear thermodynamics description of piston engines [29].
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process J̃(η) intersect at reversible efficiency ηr [17, 20]:

J(ηr) = J̃(ηr). (24)

In our numerical simulations, it is of course impossible
to take the limit of an infinite number of cycles n → ∞.
However the convergence to this asymptotic limit is in it-
self an interesting feature. We include the estimate of the

large deviation function using an extrapolation scheme,
which is presented in detail in [18, 19], and which leads
to accurate results.

The approach to the LDF for the Szilard engine are
shown in figure 5, including the result of the aforemen-
tioned extrapolation scheme. The obtained estimate
of the efficiency LDF reproduces the expected results:
J(η) ≥ 0 and reaches zero at macroscopic efficiency; the
LDF of forward and the reversed process intersect at
reversible efficiency ηr. Note however that the present
model differs from the theory discussed in [17, 18, 21],
because the information gain/loss in the engine cannot
become zero, even at a stochastic level. Consequently,
the LDF has no finite plateau at infinity and no power-
law behaviour is found in the corresponding probability
distribution distribution.

The approach to the LDF of the time-forward and
the time-reversed heat engine are plotted in figure 6.
The LDFs intersect at Carnot efficiency, as expected.
The other predictions of the general analysis [17] are
reproduced: the maxima of both LDFs have the same
height J(η) converges to the same finite plateau value
for η → ±∞, and similarly so for the time-reversed pro-
cess. Concerning the finite time regime, we note that the
crossing of the probability distributions is actually always
quite close to the reversible efficiency and seems to con-
verge to Carnot efficiency as a power law in function of
the number of cycles, cf. inset of figure 6.

In order to derive analytical results for the efficiency
fluctuations, we introduce a slightly modified version of
the heat engine, and take the limit Tc → 0. When the
temperature of the thermal wall is zero, the particle sticks
to it upon collision. The modification is that the hot
reservoir at temperature Th is present only during an in-
finitesimal short time at the start of the cycle. In this
way, the particle is launched with a velocity v drawn
from the Rayleigh distribution (Eq. (1)) at temperature
Th. Immediately following the launch, the temperature
of the thermal wall is dropped to zero. Keeping the relax-
ation step after the expansion of the piston, the particle
eventually returns to the thermal wall and the piston can
be returned to its initial position without delivering any
work. It is clear that the relaxation step at the end of the
cycle becomes irrelevant, as the particle is immobilised,
and can be discarded. With this time-symmetric proto-
col, the particle will collide exactly once with the piston
during each cycle. Furthermore, setting x = 0.5, the
particle delivers work only when v > 2u. The efficiency
distribution during one cycle is given by:
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Figure 1: Schematic representation of: a) The constitutive
process: a single particle bounces back and forth between a
thermal wall on the left and a moving piston on the right. b)
The Szilard engine: a piston is inserted a distance l from the
left wall, and subsequently moves away from the particle. c) A
simplified Carnot heat engine: alternating cycles of expansion
and compression, while in contact with a hot or cold left wall
at temperatures Th and Tc respectively; note the absence of
an adiabatic expansion and compression phase.

A. The Szilard engine

For the Szilard engine, shown in figure 1b, the vari-
ous steps per cycle are as follows. At the start, a par-
ticle bounces back and forth between two thermal walls
at temperature T and separated by a distance L. The
probability distribution for its position x0 and (dimen-
sionless) velocity v0 is given by thermal equilibrium:

pL(x0, v0) =
1

L

1√
2π

exp

(

−
v20
2

)

. (2)

A piston is then inserted a distance l from the left wall,
trapping the particle either on its left or right hand side.
A measurement is performed to find out in which com-
partment the particle resides. If the particle is in the

left compartment, the thermodynamic cost of the mea-
surement is: kB∆i = −kB lnx [40], where x = l/L is
the compression ratio. The equilibrium distribution is
now restricted to the left compartment, i.e. given by (2)
but with L replaced by l. The piston next moves to the
right with velocity u until the full length L is reproduced,
and an amount of work w is delivered. For finite piston
speed, the system will deviate from equilibrium and the
average of this work is bounded by the decrease ∆F in
free energy, ⟨w⟩ ≤ ∆F with:

∆F = −kBT lnx (3)

When the particle is found in the right compartment,
analogous results hold for the measurement cost ∆i, the
decrease in free energy ∆F and the work w, by replacing
x with 1− x. The efficiency of the above information to
work conversion is defined as:

η =
w

kBT∆i
. (4)

We will investigate the properties of this stochastic quan-
tity in more detail below. Upon repeating the Szilard
cycle many times, η will converge to a macroscopic ef-
ficiency η̄, which is, as we show below, bounded by the
reversible efficiency 1:

η̄ =
⟨w⟩

kBT ⟨∆i⟩
≤ 1, (5)

see also figure 2a. Referring to the discussion of stochas-
tic efficiency, we also require the time-reversed process
of the Szilard engine, which is defined as follows. Ini-
tially, the particle is in thermal equilibrium and moving
between the two thermalising walls. The piston is then
brought in from one of the sides and pushed inward up
to position l. The piston either starts at position 0, with
probability 1−x, or at position L probability x. In both
cases, work is converted into information.

B. The simplified Carnot heat engine

The various stages of the single particle Carnot heat
engine are represented in figure 1c. When discussing the
heat engine, velocities are calculated with respect to the
thermal velocity at temperature Th. The cycle starts
with the piston moving outward (stage 1) at constant ve-
locity u until it reaches its final position L. The particle
is allowed to relax (stage 2), i.e. the equilibrium distri-
bution Eq. (2) is restored. After relaxation, the temper-
ature of the heat bath is instantaneously switched to the
lower value Tc < Th, and the particle is again allowed
to relax to the new equilibrium state (stage 3). Next
(stage 4) the piston moves inwards with velocity u until
it has returned to its original position l, after which the
particle again relaxes (stage 5). Finally, the temperature
is instantaneously switched back to the higher value Th,
followed by a final relaxation (stage 6). The inclusion
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Figure 1: Schematic representation of: a) The constitutive
process: a single particle bounces back and forth between a
thermal wall on the left and a moving piston on the right. b)
The Szilard engine: a piston is inserted a distance l from the
left wall, and subsequently moves away from the particle. c) A
simplified Carnot heat engine: alternating cycles of expansion
and compression, while in contact with a hot or cold left wall
at temperatures Th and Tc respectively; note the absence of
an adiabatic expansion and compression phase.

A. The Szilard engine

For the Szilard engine, shown in figure 1b, the vari-
ous steps per cycle are as follows. At the start, a par-
ticle bounces back and forth between two thermal walls
at temperature T and separated by a distance L. The
probability distribution for its position x0 and (dimen-
sionless) velocity v0 is given by thermal equilibrium:

pL(x0, v0) =
1

L

1√
2π

exp

(

−
v20
2

)

. (2)

A piston is then inserted a distance l from the left wall,
trapping the particle either on its left or right hand side.
A measurement is performed to find out in which com-
partment the particle resides. If the particle is in the

left compartment, the thermodynamic cost of the mea-
surement is: kB∆i = −kB lnx [40], where x = l/L is
the compression ratio. The equilibrium distribution is
now restricted to the left compartment, i.e. given by (2)
but with L replaced by l. The piston next moves to the
right with velocity u until the full length L is reproduced,
and an amount of work w is delivered. For finite piston
speed, the system will deviate from equilibrium and the
average of this work is bounded by the decrease ∆F in
free energy, ⟨w⟩ ≤ ∆F with:

∆F = −kBT lnx (3)

When the particle is found in the right compartment,
analogous results hold for the measurement cost ∆i, the
decrease in free energy ∆F and the work w, by replacing
x with 1− x. The efficiency of the above information to
work conversion is defined as:

η =
w

kBT∆i
. (4)

We will investigate the properties of this stochastic quan-
tity in more detail below. Upon repeating the Szilard
cycle many times, η will converge to a macroscopic ef-
ficiency η̄, which is, as we show below, bounded by the
reversible efficiency 1:

η̄ =
⟨w⟩

kBT ⟨∆i⟩
≤ 1, (5)

see also figure 2a. Referring to the discussion of stochas-
tic efficiency, we also require the time-reversed process
of the Szilard engine, which is defined as follows. Ini-
tially, the particle is in thermal equilibrium and moving
between the two thermalising walls. The piston is then
brought in from one of the sides and pushed inward up
to position l. The piston either starts at position 0, with
probability 1−x, or at position L probability x. In both
cases, work is converted into information.

B. The simplified Carnot heat engine

The various stages of the single particle Carnot heat
engine are represented in figure 1c. When discussing the
heat engine, velocities are calculated with respect to the
thermal velocity at temperature Th. The cycle starts
with the piston moving outward (stage 1) at constant ve-
locity u until it reaches its final position L. The particle
is allowed to relax (stage 2), i.e. the equilibrium distri-
bution Eq. (2) is restored. After relaxation, the temper-
ature of the heat bath is instantaneously switched to the
lower value Tc < Th, and the particle is again allowed
to relax to the new equilibrium state (stage 3). Next
(stage 4) the piston moves inwards with velocity u until
it has returned to its original position l, after which the
particle again relaxes (stage 5). Finally, the temperature
is instantaneously switched back to the higher value Th,
followed by a final relaxation (stage 6). The inclusion

Δi = − ln l
L

Δi = − ln L − l
L
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FIG. 2: Energetics of the Brownian Carnot engine.

(A) Ensemble averages of stochastic work (hW⌧ i, blue stars)
and heat (hQ⌧ i, red pluses) transferred in one cycle as a
function of the cycle duration. Green crosses are the aver-
age total energy change of the working substance h�H⌧ i.
Thin lines are fits to Sekimoto-Sasa law, A + B/⌧ . (B)

Power output P⌧ = �hW⌧ i/⌧ (black diamonds, left axis)
and long-term e�ciency ⌘⌧ (yellow hexagons, right axis)
as a function of the inverse of the cycle time. The black
curve is a fit P⌧ = (hW1i + ⌃

ss

/⌧)/⌧ , yielding hW1i =
(�0.38 ± 0.01)kTc and ⌃

ss

= (5.7 ± 0.3)kTc ms with a re-
duced chi-square of �2

red

= 1.08. The solid yellow line is
a fit to ⌘⌧ = (⌘C + ⌧W /⌧)/(1 + ⌧Q/⌧), which yields ⌘1 =
(0.92 ± 0.06)⌘C , ⌧W = (�11 ± 2)ms, ⌧Q = (�0.6 ± 6.0)ms
with �2

red

= 0.76. Yellow dash-dot line is the Curzon-Alborn
e�ciency ⌘

CA

= 1 �
p

Tc/Th = 0.25 = 0.57⌘C , which is in
excellent agreement with the location of the maximum power
(vertical black dashed line). Ensemble averages are done over
50 s and error bars are obtained with a statistical significance
of 90%.
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FIG. 3: E�ciency fluctuations at maximum power.

Contour plot of the probability density function of the ef-
ficiency ⇢⌧=40ms,i(⌘) computed summing over i = 1 to 400
cycles (left axis). The long-term e�ciency (averaged over
⌧
exp

= 50 s) is shown with a vertical blue dashed line. Su-
per Carnot e�ciencies appear even far from quasistatic driv-
ing. Inset: Tails of the distribution for ⇢⌧=40ms,10(⌘) (blue
squares, positive tail; red circles, negative tail). The green
line is a fit to a power-law to all the data shown, whose ex-
ponent is � = (�1.9± 0.3).

(Fig. 2B), P⌧ = �hW⌧ i/⌧ . For ⌧ = 10ms, hW⌧ i is
positive, the particle behaves as a heat pump and the
power is negative. For larger values of ⌧ the power in-
creases, becoming positive, and eventually reaches a max-
imum value P

max

= 6.34 kTc/s. Above that maximum,
P⌧ decreases monotonically when increasing the cycle
length. The data of P⌧ vs ⌧ fits well to the expected
law P⌧ = �(hW1i + ⌃

ss

/⌧)/⌧ . The e�ciency is given
by the ratio between the extracted work and the input
of heat, which is usually considered as the heat flowing
from the hot thermal bath to the system. In our experi-
ment, however, there is a non zero fluctuating heat in the
adiabatic steps, which must be taken into account in the
definition of the stochastic e�ciency of the engine during
a finite number of cycles. Here we will consider this heat
as input (see Methods for alternative definitions of the

e�ciency). We define W
(i)
⌧ as the sum of the total work

exerted on the particle along i � 1 cycles of duration ⌧ ,

and Q
(i)
↵,⌧ the sum over i cycles of the heat transferred

to the particle in the ↵�th subprocess (↵ = 1, 2, 3, 4, cf.
Fig. 1). We therefore introduce the following definition
of stochastic e�ciency:

⌘(i)⌧ =
�W

(i)
⌧

Q
(i)
2,⌧ +Q

(i)
3,⌧ +Q

(i)
4,⌧

. (1)

The long-term e�ciency of the motor is given by ⌘⌧ ⌘ ⌘
(i)
⌧

with i ! 1. In the quasistatic limit, the average heat in
the adiabatic processes vanishes yielding ⌘1 = ⌘C = 1�
Tc/Th ' 0.43 (Fig. 2B). Moreover, the standard e�ciency
at maximum power, ⌘? ' (0.25 ± 0.05), is in agreement
with the Curzon-Ahlborn expression for finite-time cycles
⌘
CA

= 1�
p
Tc/Th ' 0.25 [21, 22].

Fluctuation theorems impose universal constraints to
the statistical properties of the e�ciency of stochastic en-
gines [23]. In order to test these theoretical predictions,
we measure the probability density function ⇢⌧,i(⌘) of

the stochastic e�ciency ⌘
(i)
⌧ (Methods). Close to equilib-

rium, near the maximum power output of the engine, the
distribution is bimodal when summing over several cycles
(Fig. 3) [9, 24]. Indeed, local maxima of ⇢⌧,i(⌘) appear
above standard e�ciency for large values of i. Another
universal feature tested here is that the tails of the dis-
tribution follow a power-law, ⇢⌧,i(⌘ ! ±1) ⇠ ⌘�2 (inset
of Fig. 3) [9, 25].
We have realized the first Brownian Carnot engine

with a single microscopic particle as a working sub-
stance which is able to transform the heat transferred
from thermal fluctuations into mechanical work, char-
acterizing both its mean behavior and fluctuations. At
slow driving, our engine attains the fundamental limit
of Carnot e�ciency. The maximum power performed by
our engine is ⇠ 250 larger than that of previous micro-
engines [3] and only one order of magnitude below the
power developed by some biological molecular motors
such as myosin [2]. Our results could be exploited in
the design of novel biologically-inspired nano engines [26]

bimodality	
  
P(η)∼1/η
	
  

Brownian Carnot engine
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The Carnot cycle imposes a fundamental up-
per limit to the e�ciency of a macroscopic motor
operating between two thermal baths [1]. How-
ever, this bound needs to be reinterpreted at
microscopic scales, where molecular bio-motors
[2] and some artificial micro-engines [3–5] oper-
ate. As described by stochastic thermodynamics
[6, 7], energy transfers in microscopic systems are
random and thermal fluctuations induce transient
decreases of entropy, allowing for possible viola-
tions of the Carnot limit [8]. Despite its potential
relevance for the development of a thermodynam-
ics of small systems, an experimental study of mi-
croscopic Carnot engines is still lacking. Here we
report on an experimental realization of a Carnot
engine with a single optically trapped Brownian
particle as working substance. We present an
exhaustive study of the energetics of the engine
and analyze the fluctuations of the finite-time ef-
ficiency, showing that the Carnot bound can be
surpassed for a small number of non-equilibrium
cycles. As its macroscopic counterpart, the ener-
getics of our Carnot device exhibits basic proper-
ties that one would expect to observe in any mi-
croscopic energy transducer operating with baths
at di↵erent temperatures [9]. Our results charac-
terize the sources of irreversibility in the engine
and the statistical properties of the e�ciency —
an insight that could inspire novel strategies in
the design of e�cient nano-motors.

The Carnot cycle consists of two isothermal processes,
where the working substance is respectively in contact
with thermal baths at di↵erent temperatures T

h

and T
c

,
connected by two adiabatic processes, where the sub-
stance is isolated and heat is not delivered nor absorbed.
An external parameter is changed in such a way that
the whole cycle is carried out reversibly. Following this
scheme, one could devise a progressing miniaturization
of a Carnot engine and eventually reproduce the cycle
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with a single Brownian particle. In fact, a variety of
thermodynamic processes and even a complete Stirling
cycle have been already implemented in the mesoscale
using micro manipulation techniques [3–5, 10–12]. In-
terestingly, the exchange of energy between the particle
and its surrounding environment becomes stochastic at
the micro scale and yet one can rigorously define work,
heat, and e�ciency, within the framework of the recently
developed stochastic thermodynamics [6, 7].

The experimental realization of a Carnot cycle with
a single Brownian particle has remained elusive due to
the di�culties of implementing an adiabatic process. In
particular, it is not clear how to isolate a particle from
the surrounding fluid [13]. A more feasible strategy is to
simultaneously change the temperature and the external
parameter keeping constant the Shannon entropy of the
particle. However, the necessary fine tuning of the tem-
perature is an experimental challenge as well. Here we
construct a Brownian Carnot engine putting forward an
experimental technique that allows a precise control of
both the e↵ective temperature and the accesible volume
of a single microscopic particle (See Methods and [14–
16]). We use a particle with an inherent electric charge
and apply a noisy electrostatic force that mimics a ther-
mal bath. In this way, we can achieve temperatures rang-
ing from room temperature (no electrostatic force) up to
hundreds or even thousands of Kelvins, far above the
boiling point of water.

The working substance of our engine is a single opti-
cally trapped colloidal particle immersed in water [12].
For small displacements x from the trap equilibrium
position, the optical potential is harmonic, U(x, t) =
x(t)2/2, with sti↵ness . The Hamiltonian or total en-
ergy of the particle is H = x2/2+ p2/(2m), p = mẋ be-
ing the linear momentum of the particle. The conjugated
force for the external parameter  is F(t) ⌘ @H/@ =
x2(t)/2. As a result, the work necessary to implement a
change d in the external parameter, dW (t) = F(t)d,
and the heat or energy transfer from the thermal bath
to the particle, dQ(t) = dH(t) � dW (t), are fluctuating
quantities.

The Carnot cycle is implemented by modifying the
sti↵ness  and the environment temperature T (Figs. 1A-
B) and consists of two isothermal processes (T is kept
constant and  changes, blue and red curves in Fig. 1B)
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