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' Outline of this talk

‘ ‘ A journey of a thousand miles begins with a single step

) The ABC's of quantum computer
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‘ ‘ A possible new paradigm of information technology

( Quantum computers in a nutshell
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@ @ The ABC's of quantum computer

‘ ‘ A possible new paradigm of information technology

( Quantum computers in a nutshell

Abstract components
+ A bit (0 or 1) Usual (super-)computer
e nbits={0,1}". e
* Computation = Boolean function

f:4{0,1}" — {0,1}™

Mechanical computer Physical components

* Mechanical —
e Semiconductors %s{b;émm-wmmuﬁ ©RIKEN

Physics theory behind these components is

€ b ° Newton mechanics or Electrodynamics.
Integrated circuits




@ ‘ The ABC's of quantum computer

‘ A possible new paradigm of information technology

(_/Quantum computers in a nutshell

Physics theory behind the components is

quantum mechanics.

Physics theory behind these components is
Newton mechanics or Electrodynamics.

—




@ The ABC's of quantum computer

‘ ‘ A possible new paradigm of information technology

e Abit(oora)
 nbits={0,1}". Cartesian product

Quantum computers in a nutshell .+ Computation - Boolean function
f:4{0,1}" = {0, 1}™

Quantum computer Abstract components

g) € C% (al? + 8% = 1.

 n qubits © 2"-dimensional unit vector v € (C?)®™. Tensor product
* Computation = unitary transformation U € U(2"): v » Uv

* A qubit < 2-dimensional unit vector (

Physical components

Anything that obeys quantum mechanics.
e.g.) superconductors, atoms, ions, photons, etc...

IBM WILL RELEASE THE
 LARGEST QUANTUN
R EVER IN 2025

Physics theory behind the components is

quantum mechanics.
-




@ The ABC's of quantum computer

‘ ‘ A possible new paradigm of information technology

( Quantum computers in a nutshell

Quantum computer

A big speed-up is expected.

Upgrade

IBM WILL RELEASE THE

LARGEST

ORIKEN

EVER IN 2025

Information is expressed by 1 qubits.
& 2™-dim unit vector v € (C?)®"
Computation is by a unitary transformation.

U2")sU v~ Uv

Information is expressed by n bits {0,1}".
Computation by a Boolean function.

f:{0,1}" = {0,1}™




@ The ABC's of quantum computer

‘ ‘ A possible new paradigm of information technology

( Not all unitaries are efficient

LARGEST
EVER IN 2025

O In a quantum computer, computation is done by a unitary transformation.
» Fora practical reason, a unitary I € U(2") cannot be directly implemented in a quantum computer.
» Need a quantum circuit for U € U(2™) = a decomposition of U € U(2") to a series of unitary gates u € U(4).

m Each line denotes one qubit Unitary gates u; € U(4) are applied from left to right.

g us| ) 1. u{t? @ [34m)
u?) 2. (1(152) ® ué3,4) ® 1(5,6 ..... n)) (uglaz) ® 1(3,4 ..... ?’L))
U9 :
> n quItS 3. (1(1) 2 ugz,?») & (45 n)) (1(2,3) ® ué3,4) & [(5:6:--- n)) (ugl,z) & [Brdees n))
Uy
) : w )
" How can we find a quantum circuit for a given U € U(2")?

A R

Each box denotes a unitary gate



@ The ABC's of quantum computer

‘ ‘ A possible new paradigm of information technology

( Not all unitaries are efficient

LARGEST
EVER IN 2025

O In a quantum computer, computation is done by a unitary transformation.
» Fora practical reason, a unitary I € U(2") cannot be directly implemented in a quantum computer.
» Need a quantum circuit for U € U(2™) = a decomposition of U € U(2") to a series of unitary gates u € U(4).

m Each line denotes one qubit How can we find a quantum circuit for a given U € U(2")?

| - S Brute-force method is known, ending up with exp(n) unitary gates.
U1 us|_  If # of unitary gates = exp(n), itis INEFFICIENT and not practical.
 If # of unitary gates = poly(n), the Q circuit is EFFICIENT.

> n qubits

A challenge in quantum information
Fora given U € U(2™"), cleverly construct a quantum circuit

_/‘ / with minimal number of unitary gates.

llstep"

Each box denotes a unitary gate




@ The ABC's of quantum computer

‘ ‘ A possible new paradigm of information technology

( AII we need to remember

O A quantum computer is an upgrade of a usual computer based on quantum mechanics, in which
computation is done by a unitary transformation U,, € U(2").

» Quantum circuit: decompose U,, into a series of unitary gatesu € U(4).

> Efficiency: # of unitary gates = poly(n) < efficient. Otherwise, inefficient and not practical.
» CHALLENGE: how can we find a quantum circuit for a given U € U(2") with minimal number of unitary gates?
Any algorithm to check if U € U(2™) can be implemented by a quantum circuit with poly(n) unitary gates?

etc...

> n qubits

IBM WILL RELEASE THE
LARGEST QUANTUM :
COMPUTER EVER IN 2025 = U4
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' Outline of this talk

‘ ‘ A journey of a thousand miles begins with a single step

) Unitary t-designs
t) Exact construction of a unitary t-design

and




@ @ Unitary designs

(normalzed) Haar measure

‘ ‘ An approximation of a Haar random unitary | ® #rear(95) = Braar(S9) = thaar(S)  VBorelsetS € U(2"), vg € U(2")
® MHaar(U(Qn)) =1

CDefinition of a unitary t-design

Definition [a unitary t-design on U(2™)]
Let t be a positive integer. A (finite) set {Uj}l-{_ U; € U(2™)) is a unitary t-design if

1 K

&1 TRt __ ®t TRt
/U(zn)U QU dﬂHaar(U)—_ZUj QU

~: complex conjugate in a fixed basis

K

j=1

O A unitary t-design is extremely useful in quantum information (many applications).

O Quantum circuit implementations for a unitary t-design?
» Many implementations are known for APPROXIMATE unitary t-designs.




@ @ Unitary designs

‘ ‘ An approximation of a Haar random unitary

CDefinition of a unitary t-design

Definition [a unitary t-design on U(2™)]
Let t be a positive integer. A (finite) set {Uj}ﬁ-il (U; € U(2™)) is a unitary t-design if

~: complex conjugate in a fixed basis

K
_ 1 _
~/U(2'”') ( K Z J J

j=1

APPROXIMATE unitary t-designs.




@ Unitary designs

‘ ‘ An approximation of a Haar random unitary

Definition of a unitary t-design

~: complex conjugate in a fixed basis

Definition [a unitary t-design on U(2™)]
Let t be a positive integer. A (finite) set {Uj}ﬁ-il (U; € U(2™)) is a unitary t-design if

K
_ 1 _
~/U(2’”') ( ) K Z J J

j=1

O A unitary t-design is extremely useful in quantum information (many applications).

O Quantum circuit implementations for a unitary t-design?
» Many implementations are known for APPROXIMATE unitary t-designs.
» In applications, approximate ones are sufficient.

O How can we implement an EXACT unitary t-design by quantum circuit?

[E. Bannai, YN, T. Okuda, and D. Zhao, Advances in Mathematics Vol. 405, 108457 (2022).]
[YN, D. Zhao, T. Okuda, E. Bannai, and et. al.,, PRX Quantum 2, 030339 (2021).]




' Outline of this talk

‘ ‘ A journey of a thousand miles begins with a single step

t) Exact construction of a unitary t-design

and




@ ) Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Group representation

dOe; ‘““S [a unitary t-design on U(2™)]
" ike?

-




Exact construction of a t-design

‘ ‘ A representation-theoretic approach

Group representation

More “natural” way of thinking:

O How does f[U(Zn) U®" @ U dpipaar(U) gafC me: U o USE Q Ut as representation of U(2™).
> AsU € U(2™), UBt @ U®t isa 221" x 22" matrix and may look like complicated one...
- 2

%k 3k 3k 3k 3k 3k 3k 3k 5k 3k 5k 3k 5k sk 5k sk 5k >k 5k >k 5k >k ok ok ok ok
%k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 5k sk 5k sk 5k >k 5k >k 5k >k ok ok k ok
7H([r) kK 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 5k sk 5k sk 5k >k 5k >k 5k kok ok sk ok

“ %k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k sk 5k sk 5k >k 5k >k 5k >kok ok k ok
K 3K 2K 3K 3k >k 3k 3k 3k 3k >k 5k 3k 3k 3k K 5k ok ok Kk 5k ki k kK

U®t R (_]@t _ sk 3k 5k sk sk 5k sk sk 5k 5k sk sk 5k 5k sk sk 5k 5k sk 5k 5k %k sk 5k k % c U(22tn)
sk sk 3k 5k 5k 5k sk sk sk sk 5k 5k 5k 5k 5k sk sk sk sk 5k 5k 5k 5k k % %
sk 5k 3k 5k 5k %k sk sk %k 5k 5k 5k 5k 5k 5k sk %k %k 5k 5k 5k 5k % % % %

K 3K K K 3k >k K K K 3k kK kK kK K kK K Kk Sk kR kK
K 3K 2K K 3k >k 3K K K 3k kK Kk Kk K K kK K Kk kR kK
%k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k sk 5k sk 5k >k 5k >k 5k kok ok kK
K 3K KKk >k K K Kk kK Kk Kk Kk kK K Kk kR kK

\**************************)




@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Group representation

O How does [i;pn) U¥* ® Ut dpinaqar(U) look?

» The irreducible decomposition of i looks like...

1

me s U(2™) — U(227)

U U®t RQ Ut

& . . .
e— Trivial irreps.

/L@ ?}(l])dMH&”a]) E * ok % % [1
| EXXX S—— Non-trivial irreps.
; ~ ot % %k % sk z// 2t
Apitizar (U)

sk sk sk sk sk %k % sk

sk sk sk sk %k %k % k

O sk 3k 3k 3k 3k %k %k %

sk sk sk sk sk sk sk sk

sk sk sk sk sk %k %k sk

sk sk %k sk 5k %k % k

sk sk sk sk sk sk sk sk

sk sk sk sk sk sk sk sk




@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Group representation

0 How does fU(zn) U @ UP dunaqar(U) look? 7 U(27%) — U(227)

U U®t RQ Ut

» The irreducible decomposition of i looks like...

4 L )
1 1T//anal irreps.
/U(2”§Tt(U)dﬂHaar(U) T O
| 0 Non-trivial irreps.
[] St R (7@75 — U 22tn
~/U(2”) dMHaar(U) O E ( )

O O ...due to the Schur’s orthogonality...




@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
roup representation U o U®t ® IOt

Definition [a unitary t-design on U(2")]
Let t be a positive integer. A (finite) set {Uj}ﬁ-{=1 (U; € U(2™)) is a unitary t-design if
K

_ 1 _
/ U @ U dptnaar(U) = 72 ) U @ U,
U(2n) o

f Trivial irreps. ) » The LHS is a projection onto the trivial irreps of ;.

it 0 » How can we find a finite set of unitaries that ends up with

0 Non-trivial irreps. the same projection after taking the average?
/U(Qn) Tt (U)dpivtaar (U) = 0 m) Our strategy is to use a specific subgroup of U(2™).

O O Gelfand pairs and zonal spherical functlons

- S




@ Exact construction of a t-design

. ‘ A representation-theoretic approach
( Gelfand pair and zonal spherical function U UBt Q UO®t

me s U(2") — U(22™)

[ Let G be a compact group, and K € G be a subgroup.
> (G, K)is a Gelfand pair < Virreps p of G, dim Span{v cV,:plk)v=uv, Vk € K} =0,1
» Example: (U(2"),W:=TU(2" ") x U(2" 1))

3

O/C‘ @g/

O Interested in r,: U(2Y) —» URM), U » URt Q US (5 /]ivial irreps of V.
co ],

For U € V C U(2"),

If (U, V) is not a Gelfand pair,
some irreps of U(2™) contains multiple trivial irreps of V.




@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Gelfand pair and zonal spherical function U UBt Q UO®t

[ Let G be a compact group, and K € G be a subgroup.
> (G, K)isa Gelfand pair < Virreps p of G, dim Span{v cV,:plk)v=uv, Vk € K} = 0,1
» Example: (U(2"),W:=TU(2" ") x U(2" 1))

O Interested in T,: U(2Y) - U2M), U » USt Q Ut e - /7vial irreps of W. O N
) 1‘=/ :

me s U(2") — U(22™)

by

/L
@

Ox /
@}js

For U e W=U2" Y xU@2" 1Y), m(U)=

...because (U(2™), W) is a Gelfand pair...




@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Gelfand pair and zonal spherical function U UBt Q UO®t

me s U(2") — U(22™)

[ Let G be a compact group, and K € G be a subgroup.
> (G, K)isa Gelfand pair < Virreps p of G, dim Span{v cV,:plk)v=uv, Vk € K} = 0,1
» Example: (U(2"),W:=TU(2" ") x U(2" 1))

O Interested in ir,: U(2Y) - URM), U » USt Q U (3

by

/L
@

Ox /
(22, %




@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Gelfand pair and zonal spherical function U UBt Q UO®t

me s U(2") — U(22™)

[ Let G be a compact group, and K € G be a subgroup.
> (G, K)is a Gelfand pair < Virreps p of G, dim Span{v cV,:plk)v=uv, Vk € K} =0,1
» Example: (U(2"),W:=TU(2" ") x U(2" 1))

%

O Interested in m;: [U(Zt) — [U(Ztn)’ U — Ut 02 [t ( - /?vial irreps of W. O N
) 1‘=/ :

...due to the Schur’s orthogonality...



@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Gelfand pair and zonal spherical function U UBt Q UO®t

me s U(2") — U(22™)

O For a Gelfand pair (U(2"), W), the integral over W resembles the Haar integral.

» Allirreps of U that contains a single irrep of W have been already specified!

» A t-design is obtained if we can “erase” undesired trivial irreps of W.
- zeros of zonal spherical functions

r ~N ( Tr|V|aI irreps of W. ~N
0 (o5 0
/1//. . P
A,

%, |1 %,
Or, Ox,
NC 1o, G 80, »

(< K. (< ¥, .
872) & O z‘/-/i//c‘?/‘ e) | /,n/./‘
/ /,

B oF 7 (U) dpivaar (U) = ! oF
/[[J(2n) Wt(U)dUHaar(U) — O 0@72 /W O \/ @Qb

0 0 0 0

. S

Integral over U(2™) Integral over W = U(2"™1) x U(2"™* @




@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Gelfand pair and zonal spherical function U UBt Q UO®t

O Zonal spherical functions ZE,G’K) : G — C fora Gelfand pair (G, K) and an irrep p of G.

me s U(2") — U(22™)

> Let v € V, be a K-invariant vector. Then, ZéG’K) (9) := (v, p(g)v)

—)

We can write down the explicit form!

Gelfand pair (U(2"), W)

Trivial irreps of W. ~N
7 (U,W) (U) (G fﬁ/ O
P1 Z :

Rk kok Kk kkkkk
%k 3k 5k >k >k 5k >k sk k ok
)k kkkk ok kok %k
Rk kK kkkkkkk
)k kk ok k ok sk ok %k
kR kkkk ok kok %k
%k 3k 5k >k 3k 5k >k %k k ok

% 3k >k 3k ok ok ok ok ok sk
Xk kkkkkkok k

%k 3k 5k >k 3k 5k >k %k k ok
%k 3k 5k >k >k >k >k >k >k k

Integral over W = U(2"1) x U(2"1 @

For U € U(2"), p1(U) =

%k 3k ok 3k ok ok ok k ok k
KXXKXKXKXXKXK ¥




@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Gelfand pair and zonal spherical function U UBt Q UO®t

O Zonal spherical functions Z(G’K) : G — C fora Gelfand pair (G, K) and an irrep p of G.

me s U(2") — U(22™)

> Let v € V, be a K-invariant vector. Then, Z(G %) (g) := (v, p(g)v)

—)

We can write down the explicit form!

Gelfand pair (U(2"), W)

(e Trivial irreps of W. ~N
By solving Zé?’w)(U) =0, Z[()EJ’W) (Vl) =0 B

we can find V; € U(2") such that Uy o —
Y b ;

Rk kok Kk kkkkk

sk sk sk sk sk sk sk 5k sk 5k N
sk sk sk sk sk 5k sk sk 5k 5k A;MUMMMﬂU \

Of@

(25
k 3k 3k sk sk k 5k 5k %k k () x J
%k sk %k 5k 5k %k %k 5k %k *k : |
%k sk %k 5k sk %k %k 5k %k *k
%k sk sk 5k sk sk k 5k %k k ()
sk sk sk sk sk sk 5k sk 5k k ()
%k sk sk 5k 5k sk k 5k %k k
%k sk %k 5k sk %k k 5k %k *k
% sk %k 5k sk %k k 5k %k *k \_

Integral over W = U(2"1) x U(2"1

p1(V1) =

%k 3k ok 3k ok ok ok k ok k
KXXKXKXKXXKXK ¥




@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Gelfand pair and zonal spherical function U UBt Q UO®t

O Zonal spherical functions ZE,G’K) : G — C fora Gelfand pair (G, K) and an irrep p of G.

me s U(2") — U(22™)

> Let v € V, be a K-invariant vector. Then, ZéG’K) (9) := (v, p(g)v)

—)

We can write down the explicit form!

Gelfand pair (U(2"), W)
(U,W) )‘( - .KTriviaIirreps of W. ~
Zy, ' (U) i \ 0

Rk kok Kk kkkkk
%k 3k 5k >k >k 5k >k sk k ok
)k kkkk ok kok %k
Rk kK kkkkkkk
)k kk ok k ok sk ok %k
kR kkkk ok kok %k
%k 3k 5k >k 3k 5k >k %k k ok

% 3k >k 3k ok ok ok ok ok sk
Xk kkkkkkok k

%k 3k 5k >k 3k 5k >k %k k ok
%k 3k 5k >k >k >k >k >k >k k

Integral over W = U(2"1) x U(2"1 @

For U € U(2"), p2(U) =

%k 3k ok 3k ok ok ok k ok k
KXXKXKXKXXKXK ¥




@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Gelfand pair and zonal spherical function U UBt Q UO®t

O Zonal spherical functions Z(G’K) : G — C fora Gelfand pair (G, K) and an irrep p of G.

me s U(2") — U(22™)

> Let v € V, be a K-invariant vector. Then, Z(G %) (g) := (v, p(g)v)

—)

We can write down the explicit form!

Gelfand pair (U(2"), W)
(U,W) _ )‘( - .KTriviaIirreps of W. ~
ZP2 (VQ) 0 s, I_l// A O

By solving Z\7"")(U =0 , K ok ok K ok Kok ok K

we can find V, € U(2") such that iiiiiiiiii
p2(V2) =

Rk kK kkkkkkk
)k kk ok k ok sk ok %k
kR kkkk ok kok %k
%k 3k 5k >k 3k 5k >k %k k ok

% 3k >k 3k ok ok ok ok ok sk
Xk kkkkkkok k

%k 3k 5k >k 3k 5k >k %k k ok
%k 3k 5k >k >k >k >k >k >k k

Integral over W = U(2"1) x U(2"1 @

%k 3k ok 3k ok ok ok k ok k
KXXKXKXKXXKXK ¥




@ Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Gelfand pair and zonal spherical function U UBt Q UO®t

me s U(2") — U(22™)

O Zonal spherical functions ZE,G’K) : G — C fora Gelfand pair (G, K) and an irrep p of G.
» Let v € I/, be a K-invariant vector. Then, ZéG’K) (9) := (v, p(g)v)

» From the zeros of zonal spherical functions, we obtain {Vl, Vo, ..., Vm} (V; € U(2™))

Gelfand pair (U(2"), W)
O:Zé//}ﬁ T 4/0,7\ 5. ( 1 <« | A
@3%4‘ Ok * % /l”é//)_ );7,// /
***** f%&o %, 1 /VO
%2 $ K 7
/],/ /)-
)

*****

—_ ‘v,
T (Vl) — % S
3
N . 4[ N
o) ".9/,/; 3
f@@gﬁ * ",
/-@,OS
/)
Tt (V2) — % =

* etc
L . Integral over W = U(2"1) x U(2"1




@ ) Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Design from Gelfand pair and zonal spherical function

O Inductive construction of a unitary t-design on U(2™)
A unitary t-design on

- I Tl—l I I
» Suppose the Haar measure (or t-design) on U(2"" ") is available. mm, W= U2 1) x U@ )

» Consider (/W,,Tt(U)duHaar(U))m(Vl)(/ert(U)dMHaar(U))

Trivial irreps of W. ~N
r 3 (m< / O
Pty Y s, L %
O}“@\Q//,lﬁ e, " @3% 1 5
(2 %& 0 k% % % %5y, 0 %,
T Ik > ﬁ@,os
***** @’OS Wt(U)dMHaar(U) = 93
ox (/Q
T V —_— 0@’2 v O \/ Y
t\V1 % ,
1




@ ) Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Design from Gelfand pair and zonal spherical function

O Inductive construction of a unitary t-design on U(2™)
A unitary t-design on

— I n_l I I
> Supp.ose the Haar measure (or t-design) on U(2" ") is available. mmy W= U2 1) x U@ )
> Consider ([ ,U)dumaal))m (D) | 7 diinan V)

W

/ \ Trivial irrep of W in p; disappears!

\
R N
E 0 ] (o 0 (@
%, i /[/ o *.
1 1 1 Ofé"’%@ [ Y,
1 % %k % K 1 2 k%7

\
0 (22 20 G
0 * %ok % k 0 J& 0 %//f,@
K % K K % DSO/C@
0 § 0 — 0] "
1 *
0 0 * 0 0 0 0
. v . J . S \_ Y,




@ ) Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Design from Gelfand pair and zonal spherical function

O Inductive construction of a unitary t-design on U(2™)

> Suppose the Haar measure (or t-design) on U(2" 1) is available.

» Consider LL"M(U)dﬂHaar(U))Wt(Vl)(/ Wt(U)dMHaar(U)) (Vo) (/ Wt(U)dMHaar(U))Wt(Vl)(/ Wt(U)dﬂHaar(U))

R\V\VA AW\
[V “Vx;r v& v&

I/
. s r & )
(I 2 5 = _
[//;9 g b /V " .
%% (o) &y (o)
2 \ gy A gy A "
/‘G SO /“@ so /"G e

/|
7 Ly 7.
%, 1] ” o, %, 11 Dy L ” 4 s, L1 Y
@Q)f%& ¢ @@ ﬁ%s L, o/ @@}5%& & “Q-Rs 7
0 /, X 77 0 /, <% 0 %
2, @,osof 2505 ye,
&, & @, — o
O Q) K @}j O Q) — O Q@
* 0 *
\ /X ./ 0

Trivial irrep of W in p, disappears!




@ ) Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Design from Gelfand pair and zonal spherical function

O Inductive construction of a unitary t-design on U(2™)
A unitary t-design on

W:=U2" 1) x U™ 1)
> By repeating this for all {V1, V%, ...,V }, all (undesired) trivial irreps. of W vanish, and we obtain

> Suppose the Haar measure (or t-design) on U(2" 1) is available. =)

1&”/

- U

O Non-trivial irreps. Of [U(Zn)

0 _ /U o T (0)

0 0
aO

(,T <——— Trivial irreps. Of [U(Zn) W




@ ) Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Design from Gelfand pair and zonal spherical function

O Inductive construction of a unitary t-design on U(2™)
Induction down to a t-design on U(1),

> A unitary t-design on U(2") from a t-design on U(2"71). ‘ which is easy to construct by hand.

" A

v~

WAViWaVa .o Wi Vi Wi | s a unitary t-desi
{ 1ViWa Vo T ew is a unitary t-design.

: * W arefromat-designon W = U(2"™1) x U(2"1).
 V: are zeros of zonal spherical functions.
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@ ) Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Design from Gelfand pair and zonal spherical function

O Inductive construction of a unitary t-design on U(2™)

. . _ _ Induction down to a t-design on U(1),
» A unitary t-design on U(2") from a t-design on U(2"™ ). ‘ which is easy to construct by hand.
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> A unitary t-design on U(2™) can be explicitly constructed from that on U(1).
» This construction can be easily translated to a quantum circuit.

“Tree-like” structure
due to the induction




@ ) Exact construction of a t-design

‘ ‘ A representation-theoretic approach
( Design from Gelfand pair and zonal spherical function

O Inductive construction of a unitary t-design on U(2™)

» The first-ever EXPLICIT construction of an exact unitary t-design!
» However, the # of unitary gates = O(Z"ﬁwo the induction.
Inefficient and unpractical...

Open: can we improve this? l.e., quantum circuit for a unitary t-design with poly(n, t) unitary gates?

“Tree-like” structure o
due to the induction —




' Outline of this talk

‘ ‘ A journey of a thousand miles begins with a single step

and




What's next? B0 WIL RELEASE THE

EVER IN 2025

Q. Circuit for unitary t-design

and

O Quantum computation is by a unitary transformation U € U(2").

» Quantum circuit: decomposition of a unitary U € U(2") into a series of unitary gates.
» Challenge: Given U € U(2"), find a quantum circuit with minimal number of unitary gates!

O A unitary t-design
» Unitary t-designs are extremely useful in quantum information.

» We constructed a quantum circuit for an exact unitary t-design.
» Group representation approach (Gelfand pair and zonal spherical functions).

»> Due to the inductive construction, it requires 0(2"‘/?) unitary gates, which is inefficient.
» Challenge: quantum circuits with poly(n, t) unitary gates? or prove that this is impossible!

O Final remark
» Group representation is everywhere in quantum information! Welcome to join!! ‘
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