Unitary Designs in Quantum Information Theory

Yoshifumi Nakata

YITP, Kyoto University

February 19th, 2025 @The 6th RIKEN AIP Mathematics Joint Seminar

2

3

4

Outline of this talk

A journey of a thousand miles begins with a single step

The ABC's of quantum computer

Unitary t-designs

Exact construction of a ur

Conclusion and outlook

itary t-design

The ABC's of quantum computer A possible new paradigm of information technology

uantum computers in a nutshell

Usual (super-)computer

Quantum computer

APUTER EVER 2025

A possible new paradigm of information technology

uantum computers in a nutshell

Abstract components

- A bit (o or 1)
- *n* bits = $\{0,1\}^n$.
- Computation = Boolean function

 $f: \{0,1\}^n \to \{0,1\}^m$

Physical components

- Mechanical
- Semiconductors

Mechanical computer

Usual (super-)computer

Physics theory behind these components is Newton mechanics or Electrodynamics.

A possible new paradigm of information technology

uantum computers in a nutshell

Physics theory behind the components is quantum mechanics.

Physics theory behind these components is Newton mechanics or Electrodynamics.

A possible new paradigm of information technology

uantum computers in a nutshell

Quantum computer

COMPUTER EVER IN 2025

LARGEST OU

Abstract components

- A **qubit** \Leftrightarrow 2-dimensional unit
- n **qubits** $\Leftrightarrow 2^n$ -dimensional ur
- Computation = unitary transf

Physical components

Anything that obeys **quantum mechanics**. e.g.) superconductors, atoms, ions, photons, etc...

Physics theory behind the components is quantum mechanics.

Usual computer

- A bit (o or 1)
- *n* bits = $\{0,1\}^n$. Cartesian product
- Computation = Boolean function $f: \{0,1\}^n \to \{0,1\}^m$

vector
$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in \mathbb{C}^2 (|\alpha|^2 + |\beta|^2 = 1).$$

nit vector $v \in (\mathbb{C}^2)^{\otimes n}$. Tensor product
formation $U \in \mathbb{U}(2^n)$: $v \mapsto Uv$

A possible new paradigm of information technology

uantum computers in a nutshell

Usual (super-)computer

A big speed-up is expected. Upgrade

Information is expressed by n bits $\{0,1\}^n$. Computation by a Boolean function.

$$f: \{0,1\}^n \to \{0,1\}^m$$

Information is expressed by *n* qubits.

 $\Leftrightarrow 2^{n} \text{-dim unit vector } v \in (\mathbb{C}^{2})^{\otimes n}$ Computation is by a unitary transformation. $\mathbb{U}(2^{n}) \ni U : v \mapsto Uv$

Quantum computer

A possible new paradigm of information technology

Not all unitaries are efficient

□ In a quantum computer, computation is done by a unitary transformation.

- For a practical reason, a unitary $U \in \mathbb{U}(2^n)$ cannot be directly implemented in a quantum computer.
- Need a quantum circuit for $U \in \mathbb{U}(2^n)$ = a decomposition of $U \in \mathbb{U}(2^n)$ to a series of unitary gates $u \in \mathbb{U}(4)$.

Unitary gates $u_i \in \mathbb{U}(4)$ are applied from left to right.

 $u_1^{(1,2)} \otimes I^{(3,4,\ldots,n)}$ $(I^{(1,2)} \otimes u_2^{(3,4)} \otimes I^{(5,6,\ldots,n)})(u_1^{(1,2)} \otimes I^{(3,4,\ldots,n)})$ 3. $(I^{(1)} \otimes u_3^{(2,3)} \otimes I^{(4,5,\ldots,n)})(I^{(2,3)} \otimes u_2^{(3,4)} \otimes I^{(5,6,\ldots,n)})(u_1^{(1,2)} \otimes I^{(3,4,\ldots,n)})$

How can we find a quantum circuit for a given $U \in \mathbb{U}(2^n)$?

A possible new paradigm of information technology

Not all unitaries are efficient

□ In a quantum computer, computation is done by a unitary transformation.

- For a practical reason, a unitary $U \in \mathbb{U}(2^n)$ cannot be directly implemented in a quantum computer.
- Need a **quantum circuit** for $U \in \mathbb{U}(2^n)$ = a decomposition of $U \in \mathbb{U}(2^n)$ to a series of unitary gates $u \in \mathbb{U}(4)$.

How can we find a quantum circuit for a given $U \in \mathbb{U}(2^n)$?

Brute-force method is known, ending up with exp(n) unitary gates. • If # of unitary gates = exp(n), it is **INEFFICIENT** and not practical. • If # of unitary gates = poly(n), the Q circuit is **EFFICIENT**.

A challenge in quantum information For a given $U \in \mathbb{U}(2^n)$, cleverly construct a quantum circuit with **minimal** number of unitary gates.

A possible new paradigm of information technology

All we need to remember

• A quantum computer is an upgrade of a usual computer based on quantum mechanics, in which computation is done by a unitary transformation $U_n \in \mathbb{U}(2^n)$.

Quantum circuit: decompose U_n into a series of unitary gates $u \in \mathbb{U}(4)$.

- **Efficiency**: # of unitary gates = $poly(n) \Leftrightarrow efficient$. Otherwise, inefficient and not practical.
- \succ CHALLENGE: how can we find a quantum circuit for a given $U \in \mathbb{U}(2^n)$ with minimal number of unitary gates?

Any algorithm to check if $U \in \mathbb{U}(2^n)$ can be implemented by a quantum circuit with poly(n) unitary gates?

 $\mathbb{U}(2^n) \ni U_n$

etc...

Advertisement

A self-contained textbook about quantum information is now available!

2

3

4

Outline of this talk

A journey of a thousand miles begins with a single step

The ABC's of quantum computer 1

Unitary t-designs

Exact construction of a unitary t-design

Conclusion and outlook

- A unitary t-design is <u>extremely useful</u> in quantum information (many applications).
- Quantum circuit implementations for a unitary *t*-design?
 - Many implementations are known for APPROXIMATE unitary t-designs.

$$(2^n))$$
 is a unitary t-design if

$$U_j^{\otimes t} \otimes \bar{U}_j^{\otimes t}.$$

Unitary designs

An approximation of a Haar random unitary

efinition of a unitary t-design

Definition [a unitary t-design on $\mathbb{U}(2^n)$] Let t be a positive integer. A (finite) set $\{U_j\}_{j=1}^K (U_j \in \mathbb{U}(2^n))$

□ A unitary *t*-design is *extremely useful* in quantum in ormation

Quantum circuit implementations for a unitary tradesign?

> Many implementations are known for **APPROXIMATE** unitary *t*-designs.

-: complex conjugate in a fixed basis

teger. A (finite) set
$$\{U_j\}_{j=1}^K (U_j \in \mathbb{U}(2^n))$$
 is a unitary t-design if
 $U^{\otimes t} \otimes \overline{U}^{\otimes t} d\mu_{\mathsf{Haar}}(U) \approx \frac{1}{K} \sum_{j=1}^K U_j^{\otimes t} \otimes \overline{U}_j^{\otimes t}.$

many applications).

Unitary designs

An approximation of a Haar random unitary

efinition of a unitary t-design

Definition [a unitary *t*-design on $\mathbb{U}(2^n)$] Let t be a positive integer. A (finite) set $\{U_i\}_{i=1}^K (U_i \in \mathbb{U})$ $\int_{\mathbb{U}(2^n)} U^{\otimes t} \otimes \bar{U}^{\otimes t} d\mu_{\mathsf{Haar}}(U) \approx \frac{1}{K} \sum_{i=1}^{K} U^{\otimes t} d\mu_{\mathsf{Haar}}(U) \approx \frac{1}{K} \sum_{i=1}^{K} U^{\otimes t} d\mu_{\mathsf{Haar}}(U) = \frac{1}{K} \sum_{i=$

- Quantum circuit implementations for a unitary *t*-design?
 - Many implementations are known for **APPROXIMATE** unitary *t*-designs.
 - In applications, approximate ones are sufficient.

□ How can we implement an **EXACT** unitary *t*-design by quantum circuit?

[E. Bannai, YN, T. Okuda, and D. Zhao, Advances in Mathematics Vol. 405, 108457 (2022).] [YN, D. Zhao, T. Okuda, E. Bannai, and et. al., PRX Quantum 2, 030339 (2021).]

-: complex conjugate in a fixed basis

$$(2^n))$$
 is a unitary t-design if $U_j^{\otimes t} \otimes \bar{U}_j^{\otimes t}.$

2

3

4

Outline of this talk

A journey of a thousand miles begins with a single step

The ABC's of quantum computer

Unitary t-designs

Exact construction of a unitary t-design

Conclusion and outlook

A representation-theoretic approach

Group representation

■ How does $\int_{\mathbb{U}(2^n)} U^{\otimes t} \otimes \overline{U}^{\otimes t} d\mu_{\text{Haar}}(U)$ lock: $\pi_t: U \mapsto U^{\otimes t} \otimes \overline{U}^{\otimes t}$ as representation of $\mathbb{U}(2^n)$. > As $U \in \mathbb{U}(2^n)$, $U^{\otimes t} \otimes \overline{U}^{\otimes t}$ is a $2^{2tn} \times 2^{2tn}$ matrix and may look like complicated one...

 $\pi_t(U)$ \parallel $U^{\otimes t} \otimes \bar{U}^{\otimes t} =$

More "natural" way of thinking:

A representation-theoretic approach

Group representation

 \square How does $\int_{\mathbb{U}(2^n)} U^{\otimes t} \otimes \overline{U}^{\otimes t} d\mu_{\mathsf{Haar}}(U)$ look?

> The irreducible decomposition of π_t looks like...

$$\int_{\mathbb{U}(2^n)} \pi_t(U) d\mu_{\text{Haar}}(U) \\ \| \\ \int_{\mathbb{U}(2^n)} U^{\otimes t} \otimes \overline{U}^{\otimes t} = \\ d\mu_{\text{Haar}}(U)$$

	vial irrep	DS.	\mathbf{O}
**** **** **** ****		Non	-trivial
	**** **** **** ****		
0		***** ********************************	******* ******************************

$\pi_t: \mathbb{U}(2^n) \to \mathbb{U}(2^{2tn})$ $U \mapsto U^{\bigotimes t} \bigotimes \overline{U}^{\bigotimes t}$

A representation-theoretic approach

Group representation

D How does $\int_{\mathbb{U}(2^n)} U^{\otimes t} \otimes \overline{U}^{\otimes t} d\mu_{\mathsf{Haar}}(U)$ look?

 \succ The irreducible decomposition of π_t looks like...

$\pi_t: \overline{\mathbb{U}(2^n)} \to \overline{\mathbb{U}(2^{2tn})}$ $U \mapsto U^{\bigotimes t} \bigotimes \overline{U}^{\bigotimes t}$

 $\in \mathbb{U}(2^{2tn})$

...due to the Schur's orthogonality...

$$\pi_t: \mathbb{U}(2^n) \to \mathbb{U}(2^{2tn})$$
$$U \mapsto U^{\bigotimes t} \bigotimes \overline{U}^{\bigotimes t}$$

- \succ The LHS is a projection onto the trivial irreps of π_t .
- > How can we find a finite set of unitaries that ends up with the same projection after taking the average?
 - Our strategy is to use a *specific* subgroup of $\mathbb{U}(2^n)$.

Gelfand pairs and **zonal spherical functions**

A representation-theoretic approach

Gelfand pair and zonal spherical function

 \Box Let \mathbb{G} be a compact group, and $\mathbb{K} \subseteq \mathbb{G}$ be a subgroup.

- \succ (G, K) is a Gelfand pair $\Leftrightarrow \forall \text{irreps } \rho \text{ of } G, \dim \text{span} \{ v \in \mathcal{S} \}$
- \succ Example: $(\mathbb{U}(2^n), \mathbb{W} := \mathbb{U}(2^{n-1}) \times \mathbb{U}(2^{n-1}))$

 $\Box \text{ Interested in } \pi_t: \mathbb{U}(2^t) \to \mathbb{U}(2^{tn}), U \mapsto U^{\otimes t} \otimes \overline{U}^{\otimes t}$

For $U \in \mathbb{V} \subseteq \mathbb{U}(2^n)$, $\pi_t(U) =$

Non-trivial irreps of W

If (\mathbb{U}, \mathbb{V}) is not a Gelfand pair, some irreps of $\mathbb{U}(2^n)$ contains multiple trivial irreps of \mathbb{V} .

$$\pi_t: \mathbb{U}(2^n) \to \mathbb{U}(2^{2tn})$$
$$U \mapsto U^{\bigotimes t} \bigotimes \overline{U}^{\bigotimes t}$$

$$V_{\rho}: \rho(k)v = v, \ \forall k \in \mathbb{K} \big\} = 0, 1$$

A representation-theoretic approach

Jelfand pair and zonal spherical function

 \Box Let \mathbb{G} be a compact group, and $\mathbb{K} \subseteq \mathbb{G}$ be a subgroup.

- \succ (G, K) is a Gelfand pair $\Leftrightarrow \forall \text{irreps } \rho \text{ of } G, \dim \text{span} \{ v \in \mathcal{S} \}$
- \succ Example: $(\mathbb{U}(2^n), \mathbb{W} := \mathbb{U}(2^{n-1}) \times \mathbb{U}(2^{n-1}))$

 $\Box \text{ Interested in } \pi_t : \mathbb{U}(2^t) \to \mathbb{U}(2^{tn}), U \mapsto U^{\otimes t} \otimes \overline{U}^{\otimes t}$

For
$$U \in \mathbb{W} = \mathbb{U}(2^{n-1}) \times \mathbb{U}(2^{n-1}), \ \pi_t(U)$$

Non-trivial irreps of W

...because $(\mathbb{U}(2^n), \mathbb{W})$ is a Gelfand pair...

$$\pi_t: \mathbb{U}(2^n) \to \mathbb{U}(2^{2tn})$$
$$U \mapsto U^{\bigotimes t} \bigotimes \overline{U}^{\bigotimes t}$$

$$V_{\rho}: \rho(k)v = v, \ \forall k \in \mathbb{K} \big\} = 0, 1$$

A representation-theoretic approach

Uelfand pair and zonal spherical function

 \Box Let \mathbb{G} be a compact group, and $\mathbb{K} \subseteq \mathbb{G}$ be a subgroup.

- \succ (G, K) is a Gelfand pair $\Leftrightarrow \forall \text{irreps } \rho \text{ of } G, \dim \text{span} \{ v \in \mathcal{V} \}$
- \succ Example: $(\mathbb{U}(2^n), \mathbb{W} := \mathbb{U}(2^{n-1}) \times \mathbb{U}(2^{n-1}))$

 $\Box \text{ Interested in } \pi_t : \mathbb{U}(2^t) \to \mathbb{U}(2^{tn}), U \mapsto U^{\otimes t} \otimes \overline{U}^{\otimes t}$

 $\int_{--} \pi_t(U) d\mu_{\mathsf{Haar}}(U) =$

Non-trivial irreps of W

 $\pi_t: \mathbb{U}(2^n) \to \mathbb{U}(2^{2tn})$ $U \mapsto U^{\otimes t} \otimes \overline{U}^{\otimes t}$

$$V_{\rho}: \rho(k)v = v, \ \forall k \in \mathbb{K} \big\} = 0, 1$$

A representation-theoretic approach

Uelfand pair and zonal spherical function

 \Box Let \mathbb{G} be a compact group, and $\mathbb{K} \subseteq \mathbb{G}$ be a subgroup.

- \succ (G, K) is a Gelfand pair $\Leftrightarrow \forall \text{irreps } \rho \text{ of } G, \dim \text{span} \{ v \in \mathcal{S} \}$
- \succ Example: $(\mathbb{U}(2^n), \mathbb{W} := \mathbb{U}(2^{n-1}) \times \mathbb{U}(2^{n-1}))$

 $\Box \text{ Interested in } \pi_t : \mathbb{U}(2^t) \to \mathbb{U}(2^{tn}), U \mapsto U^{\otimes t} \otimes \overline{U}^{\otimes t}$

 $\int_{\mathrm{WW}} \pi_t(U) d\mu_{\mathsf{Haar}}(U) =$

Non-trivial irreps of W

...due to the Schur's orthogonality...

$$\pi_t: \mathbb{U}(2^n) \to \mathbb{U}(2^{2tn})$$
$$U \mapsto U^{\bigotimes t} \bigotimes \overline{U}^{\bigotimes t}$$

$$V_{\rho}: \rho(k)v = v, \ \forall k \in \mathbb{K} \big\} = 0, 1$$

A representation-theoretic approach

elfand pair and zonal spherical function

 \square For a Gelfand pair (U(2ⁿ), W), the integral over W resembles the Haar integral.

- \succ All irreps of U that contains a single irrep of W have been already specified!
- \succ A *t*-design is obtained if we can "erase" undesired trivial irreps of W.

$\pi_t: \mathbb{U}(2^n) \to \mathbb{U}(2^{2tn})$ $\overline{U} \mapsto \overline{U}^{\otimes t} \otimes \overline{U}^{\otimes t}$

\rightarrow zeros of zonal spherical functions

A representation-theoretic approach

lelfand pair and zonal spherical function

D Zonal spherical functions $Z_{\rho}^{(\mathbb{G},\mathbb{K})}: \mathbb{G} \to \mathbb{C}$ for a Gelfand pair (G, K) and an irrep ρ of G.

 \succ Let $v \in V_{\rho}$ be a \mathbb{K} -invariant vector. Then, $Z_{\rho}^{(\mathbb{G},\mathbb{K})}(g) := \langle v, \rho(g)v \rangle$

We can write down the explicit form!

$$For \ U \in \mathbb{U}(2^{n}), \ \rho_{1}(U) = \begin{cases} \mathbb{W}, \mathbb{W} \\ \mathbb{W}, \mathbb{W}, \mathbb{W} \\ \mathbb{W}, \mathbb{W},$$

$\pi_t : \overline{\mathbb{U}}(2^n) \to \overline{\mathbb{U}}(2^{2tn})$ $U \mapsto U^{\bigotimes t} \bigotimes \overline{U}^{\bigotimes t}$

A representation-theoretic approach

Gelfand pair and zonal spherical function

D Zonal spherical functions $Z_{\rho}^{(\mathbb{G},\mathbb{K})}: \mathbb{G} \to \mathbb{C}$ for a Gelfand pair (G, K) and an irrep ρ of G.

 \succ Let $v \in V_{\rho}$ be a \mathbb{K} -invariant vector. Then, $Z_{\rho}^{(\mathbb{G},\mathbb{K})}(g) := \langle v, \rho(g)v \rangle$

We can write down the explicit form!

By solving $Z_{\rho_1}^{(\mathbb{U},\mathbb{W})}(U) = 0$, we can find $V_1 \in \mathbb{U}(2^n)$ such that

 $Z^{(\mathbb{U},\mathbb{W})}_{\rho_1}(V_1) = 0$

$\pi_t: \mathbb{U}(2^n) \to \mathbb{U}(2^{2tn})$ $U \mapsto U^{\otimes t} \otimes \overline{U}^{\otimes t}$

A representation-theoretic approach

elfand pair and zonal spherical function

D Zonal spherical functions $Z_{\rho}^{(\mathbb{G},\mathbb{K})}: \mathbb{G} \to \mathbb{C}$ for a Gelfand pair (\mathbb{G},\mathbb{K}) and an irrep ρ of \mathbb{G} .

 \succ Let $v \in V_{\rho}$ be a \mathbb{K} -invariant vector. Then, $Z_{\rho}^{(\mathbb{G},\mathbb{K})}(g) := \langle v, \rho(g)v \rangle$

We can write down the explicit form!

$\pi_t: \mathbb{U}(2^n) \to \mathbb{U}(2^{2tn})$ $U \mapsto U^{\otimes t} \otimes \overline{U}^{\otimes t}$

A representation-theoretic approach

elfand pair and zonal spherical function

D Zonal spherical functions $Z_{\rho}^{(\mathbb{G},\mathbb{K})}: \mathbb{G} \to \mathbb{C}$ for a Gelfand pair (G, K) and an irrep ρ of G.

irrep ρ_2

 \succ Let $v \in V_{\rho}$ be a \mathbb{K} -invariant vector. Then, $Z_{\rho}^{(\mathbb{G},\mathbb{K})}(g) := \langle v, \rho(g)v \rangle$

We can write down the explicit form!

$\pi_t: \mathbb{U}(2^n) \to \mathbb{U}(2^{2tn})$ $U \mapsto U^{\bigotimes t} \bigotimes \overline{U}^{\bigotimes t}$

A representation-theoretic approach

Gelfand pair and zonal spherical function

D Zonal spherical functions $Z_{\rho}^{(\mathbb{G},\mathbb{K})}: \mathbb{G} \to \mathbb{C}$ for a Gelfand pair (G, K) and an irrep ρ of G.

- $\succ \text{ Let } v \in V_{\rho} \text{ be a } \mathbb{K} \text{-invariant vector. Then, } Z^{(\mathbb{G},\mathbb{K})}_{\rho}(g) := \langle v, \rho(g)v \rangle$
- From the zeros of zonal spherical functions, we obtain $\{V_1, V_2, \ldots, V_m\}$ $(V_j \in \mathbb{U}(2^n))$

$$\pi_t: \mathbb{U}(2^n) \to \mathbb{U}(2^{2tn})$$
$$U \mapsto U^{\bigotimes t} \bigotimes \overline{U}^{\bigotimes t}$$

Gelfand pair $(\mathbb{U}(2^n), \mathbb{W})$ Frivial irreps of W 31/40 Integral over $\mathbb{W} = \mathbb{U}(2^{n-1}) \times \mathbb{U}(2^{n-1})$

A representation-theoretic approach

esign from Gelfand pair and zonal spherical function

Inductive construction of a unitary *t*-design on $\mathbb{U}(2^n)$

> Suppose the Haar measure (or t-design) on $\mathbb{U}(2^{n-1})$ is available.

$$\succ \text{ Consider } \left(\int_{\mathbb{W}} \pi_t(U) d\mu_{\text{Haar}}(U) \right) \pi_t(V_1) \left(\int_{\mathbb{W}} \pi_t(U) d\mu_{\text{Haar}}(U) \right)$$

 $\int_{\mathrm{WW}} \pi_t(U) d\mu_{\mathsf{Haar}}(U)$

lable. \longrightarrow A unitary *t*-design on $\mathbb{W} := \mathbb{U}(2^{n-1}) \times \mathbb{U}(2^{n-1})$

A representation-theoretic approach

esign from Gelfand pair and zonal spherical function

A representation-theoretic approach

esign from Gelfand pair and zonal spherical function

 \Box Inductive construction of a unitary t-design on $\mathbb{U}(2^n)$

A representation-theoretic approach

esign from Gelfand pair and zonal spherical function

 \Box Inductive construction of a unitary *t*-design on $\mathbb{U}(2^n)$

 \triangleright By repeating this for all $\{V_1, V_2, \dots, V_m\}$, all (undesired) trivial irreps. of W vanish, and we obtain

A representation-theoretic approach

esign from Gelfand pair and zonal spherical function

Inductive construction of a unitary *t*-design on $\mathbb{U}(2^n)$

> A unitary *t*-design on $\mathbb{U}(2^n)$ from a *t*-design on $\mathbb{U}(2^{n-1})$

 $\left\{ W_1 V_1 W_2 V_2 \dots W_m V_m W_{m+1} \right\}_{W_j \in \mathbb{W}} \text{ is a unitary } t \text{-design.}$ • W_j are from a t-design. • V_i are zeros of zon

• W_j are from a *t*-design on $\mathbb{W} = \mathbb{U}(2^{n-1}) \times \mathbb{U}(2^{n-1})$.

V_j are **zeros of zonal spherical functions**.

A representation-theoretic approach

esign from Gelfand pair and zonal spherical function

Inductive construction of a unitary *t*-design on $\mathbb{U}(2^n)$

- > A unitary *t*-design on $\mathbb{U}(2^n)$ from a *t*-design on $\mathbb{U}(2^{n-1})$.
- > A unitary *t*-design on $\mathbb{U}(2^n)$ can be explicitly constructed from that on $\mathbb{U}(1)$.
- > This construction can be easily translated to a quantum circuit.

Induction down to a t-design on $\mathbb{U}(1)$, which is easy to construct by hand.

37/40

om that on $\mathbb{U}(1)$. uit.

A representation-theoretic approach

esign from Gelfand pair and zonal spherical function

 \square Inductive construction of a unitary t-design on $\mathbb{U}(2^n)$ > The **first-ever EXPLICIT construction** of an exact unitary *t*-design! \succ However, the # of unitary gates = $O(2^{n\sqrt{t}})$, due to the induction.

Open: can we improve this? I.e., quantum circuit for a unitary t-design with poly(n, t) unitary gates?

- Inefficient and unpractical...

2

3

4

Outline of this talk

A journey of a thousand miles begins with a single step

The ABC's of quantum computer

Unitary t-designs

Exact construction of a unitary t-design

Conclusion and outlook

Outlook

What's next?

Conclusion and outlook

Quantum computation is by a **unitary transformation** $U \in \mathbb{U}(2^n)$.

- **Quantum circuit**: decomposition of a unitary $U \in \mathbb{U}(2^n)$ into a series of **unitary gates**.
- **Challenge**: Given $U \in U(2^n)$, find a quantum circuit with minimal number of unitary gates!

D A unitary *t*-design

- Unitary *t*-designs are extremely useful in quantum information.
- > We constructed a quantum circuit for an exact unitary t-design.
 - Group representation approach (Gelfand pair and zonal spherical functions).
- Due to the inductive construction, it requires $O(2^{n\sqrt{t}})$ unitary gates, which is inefficient.
- **Challenge**: quantum circuits with poly(n, t) unitary gates? or prove that this is impossible!

□ Final remark

Group representation is everywhere in quantum information! Welcome to join!!

Thank you for your attention

[E. Bannai, YN, T. Okuda, and D. Zhao, Advances in Mathematics Vol. 405, 108457 (2022).] [YN, D. Zhao, T. Okuda, E. Bannai, and et. al., PRX Quantum 2, 030339 (2021).]

