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Abstract components
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quantum mechanics.

5/40



The ABC’s of quantum computer
A possible new paradigm of information technology

Quantum computers in a nutshell

Quantum computer

Upgrade

Physics theory behind the components is
quantum mechanics.

Anything that obeys quantum mechanics.
e.g.) superconductors, atoms, ions, photons, etc…

Physical components

Abstract components

• A qubit ⇔2-dimensional unit vector 𝛼
𝛽

∈ ℂ2 ( 𝛼 2 + 𝛽 2 = 1).

• 𝑛 qubits ⇔2𝑛-dimensional unit vector 𝑣 ∈ (ℂ2)⊗𝑛.

• Computation = unitary transformation 𝑈 ∈ 𝕌 2𝑛 : 𝑣 ↦ 𝑈𝑣

Usual computer
• A bit (0 or 1) 

• 𝑛 bits = 0,1 𝑛.

• Computation = Boolean function 

Cartesian product

Tensor product
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The ABC’s of quantum computer
A possible new paradigm of information technology

Quantum computers in a nutshell

Usual (super-)computer
Quantum computer

Upgrade

Information is expressed by 𝑛 bits {0,1}𝑛.

Computation by a Boolean function. 

Information is expressed by 𝑛 qubits.

⇔2𝑛-dim unit vector 𝑣 ∈ (ℂ2)⊗𝑛

Computation is by a unitary transformation.

A big speed-up is expected.
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The ABC’s of quantum computer
A possible new paradigm of information technology

Not all unitaries are efficient

 In a quantum computer, computation is done by a unitary transformation.

➢ For a practical reason, a unitary 𝑈 ∈ 𝕌(2𝑛) cannot be directly implemented in a quantum computer. 

➢ Need a quantum circuit for 𝑈 ∈ 𝕌(2𝑛) = a decomposition of 𝑈 ∈ 𝕌(2𝑛) to a  series of unitary gates 𝑢 ∈ 𝕌(4). 

Each line denotes one qubit

𝒏 qubits

Unitary gates 𝑢𝑗 ∈ 𝕌(4) are applied  from left to right.

1.

2.

3.

1. 2. 3. Each box denotes a unitary gate

“step”

Quantum circuit

8/40
How can we find a quantum circuit for a given 𝑈 ∈ 𝕌 2𝑛 ?



The ABC’s of quantum computer
A possible new paradigm of information technology

Not all unitaries are efficient

Brute-force method is known, ending up with 𝐞𝐱𝐩 𝒏 unitary gates.

• If # of unitary gates = exp 𝑛 , it is INEFFICIENT and not practical.

• If # of unitary gates = poly 𝑛 , the Q circuit is EFFICIENT. 

Quantum circuit Each line denotes one qubit

𝒏 qubits

Each box denotes a unitary gate

A challenge in quantum information
For a given 𝑈 ∈ 𝕌(2𝑛), cleverly construct a quantum circuit 

with minimal number of unitary gates.

How can we find a quantum circuit for a given  𝑈 ∈ 𝕌 2𝑛 ?

“step”

 In a quantum computer, computation is done by a unitary transformation.

➢ For a practical reason, a unitary 𝑈 ∈ 𝕌(2𝑛) cannot be directly implemented in a quantum computer. 

➢ Need a quantum circuit for 𝑈 ∈ 𝕌(2𝑛) = a decomposition of 𝑈 ∈ 𝕌(2𝑛) to a  series of unitary gates 𝑢 ∈ 𝕌(4). 
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All we need to remember

The ABC’s of quantum computer
A possible new paradigm of information technology

 A quantum computer is an upgrade of a usual computer based on quantum mechanics, in which 
computation is done by a unitary transformation 𝑈𝑛 ∈ 𝕌(2

𝑛).

➢ Quantum circuit: decompose 𝑈𝑛 into a series of unitary gates 𝑢 ∈ 𝕌(4). 

➢ Efficiency: # of unitary gates =  poly(𝑛)⇔ efficient. Otherwise, inefficient and not practical.

➢ CHALLENGE: how can we find a quantum circuit for a given 𝑈 ∈ 𝕌(2𝑛) with minimal number of unitary gates?

Upgrade

Quantum circuit

𝒏 qubits

10/40

Any algorithm to check if 𝑈 ∈ 𝕌(2𝑛) can be implemented by a quantum circuit with poly(𝑛) unitary gates?

etc…



Advertisement
A self-contained textbook 

about quantum information 
is now available!
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 A unitary 𝑡-design is extremely useful in quantum information (many applications).

 Quantum circuit implementations for a unitary 𝑡-design?

➢ Many implementations are known for APPROXIMATE unitary 𝑡-designs.

Definition of a unitary 𝑡-design

An approximation of a Haar random unitary 

Unitary designs

Definition [a unitary 𝒕-design on 𝕌(𝟐𝒏)]

Let 𝑡 be a positive integer. A (finite) set {𝑈𝑗}𝑗=1
𝐾 (𝑈𝑗 ∈ 𝕌(2

𝑛)) is a unitary t-design if 

̅: complex conjugate in a fixed basis

(normalzed) Haar measure
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Definition [a unitary 𝒕-design on 𝕌(𝟐𝒏)]
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 A unitary 𝑡-design is extremely useful in quantum information (many applications).

 Quantum circuit implementations for a unitary 𝑡-design?

➢ Many implementations are known for APPROXIMATE unitary 𝑡-designs.

Definition of a unitary 𝑡-design

An approximation of a Haar random unitary 

Unitary designs

̅: complex conjugate in a fixed basis

≈
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Definition [a unitary 𝒕-design on 𝕌(𝟐𝒏)]

Let 𝑡 be a positive integer. A (finite) set {𝑈𝑗}𝑗=1
𝐾 (𝑈𝑗 ∈ 𝕌(2

𝑛)) is a unitary t-design if 

≈

 A unitary 𝑡-design is extremely useful in quantum information (many applications).

 Quantum circuit implementations for a unitary 𝑡-design?

➢ Many implementations are known for APPROXIMATE unitary 𝑡-designs.

➢ In applications, approximate ones are sufficient.

Definition of a unitary 𝑡-design

An approximation of a Haar random unitary 

Unitary designs

̅: complex conjugate in a fixed basis

 How can we implement an EXACT unitary 𝑡-design by quantum circuit?

[E. Bannai, YN, T. Okuda, and D. Zhao, Advances in Mathematics Vol. 405, 108457 (2022).]

[YN, D. Zhao, T. Okuda, E. Bannai, and et. al., PRX Quantum 2, 030339 (2021).] 15/40
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Exact construction of a 𝑡-design
A representation-theoretic approach

Group representation ̅: complex conjugate in a fixed basis

Definition [a unitary 𝒕-design on 𝕌(𝟐𝒏)]

Let 𝑡 be a positive integer. A (finite) set {𝑈𝑗}𝑗=1
𝐾 (𝑈𝑗 ∈ 𝕌(2

𝑛)) is a unitary t-design if 
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Exact construction of a 𝑡-design
A representation-theoretic approach

Group representation

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 How does                                                          look?

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

➢ As 𝑈 ∈ 𝕌(2𝑛), 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡 is a 22𝑡𝑛 × 22𝑡𝑛 matrix and may look like complicated one…

More “natural” way of thinking:

𝜋𝑡: 𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡 as representation of 𝕌 2𝑛 .
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Exact construction of a 𝑡-design
A representation-theoretic approach

Group representation

➢ The irreducible decomposition of 𝜋𝑡 looks like…

1

0

0

∗∗∗∗
Non-trivial irreps.

1

1

∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Trivial irreps.

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡
 How does                                                          look?
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Exact construction of a 𝑡-design
A representation-theoretic approach

Group representation

1

0

0

Non-trivial irreps.

1

1

Trivial irreps.

0

0

0 …due to the Schur’s orthogonality…

➢ The irreducible decomposition of 𝜋𝑡 looks like…

 How does                                                          look?
𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡
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Definition [a unitary 𝒕-design on 𝕌(𝟐𝒏)]

Let 𝑡 be a positive integer. A (finite) set {𝑈𝑗}𝑗=1
𝐾 (𝑈𝑗 ∈ 𝕌(2

𝑛)) is a unitary t-design if 

Exact construction of a 𝑡-design
A representation-theoretic approach

Group representation

➢ The LHS is a projection onto the trivial irreps of 𝜋𝑡.

➢ How can we find a finite set of unitaries that ends up with 
the same projection after taking the average?

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡

Our strategy is to use a specific subgroup of 𝕌(2𝑛).

Gelfand pairs and zonal spherical functions

21/40
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Exact construction of a 𝑡-design
A representation-theoretic approach

Gelfand pair and zonal spherical function
 Let 𝔾 be a compact group, and 𝕂 ⊆ 𝔾 be a subgroup.

➢ (𝔾,𝕂) is a Gelfand pair

➢ Example: 

Trivial irreps of 𝕍.
1 0

0

1

1

1

∗ ∗∗∗ ∗∗∗ ∗∗

∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗∗∗∗

∗ ∗∗∗ ∗∗∗ ∗∗
∗∗
∗∗

∗∗
∗∗

1

∗∗
∗∗

If (𝕌, 𝕍) is not a Gelfand pair, 
some irreps of 𝕌(2𝑛) contains multiple trivial irreps of 𝕍.

Non-trivial irreps of 𝕍.

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡

 Interested in 𝜋𝑡: 𝕌 2𝑡 → 𝕌 2𝑡𝑛 , 𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡
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Exact construction of a 𝑡-design
A representation-theoretic approach

Gelfand pair and zonal spherical function
 Let 𝔾 be a compact group, and 𝕂 ⊆ 𝔾 be a subgroup.

➢ (𝔾,𝕂) is a Gelfand pair

➢ Example: 

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡

 Interested in 𝜋𝑡: 𝕌 2𝑡 → 𝕌 2𝑡𝑛 , 𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡 Trivial irreps of 𝕎.
1 0

0

1

1

1

∗ ∗∗∗ ∗∗∗ ∗∗

∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗∗∗∗

∗ ∗∗∗ ∗∗∗ ∗∗
∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗

Non-trivial irreps of 𝕎.

…because 𝕌 2𝑛 ,𝕎 is a Gelfand pair…
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Exact construction of a 𝑡-design
A representation-theoretic approach

Gelfand pair and zonal spherical function
 Let 𝔾 be a compact group, and 𝕂 ⊆ 𝔾 be a subgroup.

➢ (𝔾,𝕂) is a Gelfand pair

➢ Example: 

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡

 Interested in 𝜋𝑡: 𝕌 2𝑡 → 𝕌 2𝑡𝑛 , 𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡 Trivial irreps of 𝕎.
1 0

0

1

1

1

∗ ∗∗∗ ∗∗∗ ∗∗

∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗∗∗∗

∗ ∗∗∗ ∗∗∗ ∗∗
∗∗
∗∗

∗∗
∗∗

∗∗
∗∗

∗

Non-trivial irreps of 𝕎.
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Exact construction of a 𝑡-design
A representation-theoretic approach

Gelfand pair and zonal spherical function
 Let 𝔾 be a compact group, and 𝕂 ⊆ 𝔾 be a subgroup.

➢ (𝔾,𝕂) is a Gelfand pair

➢ Example: 

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡

 Interested in 𝜋𝑡: 𝕌 2𝑡 → 𝕌 2𝑡𝑛 , 𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡
1 0

0

1

Trivial irreps of 𝕎.

1

1

0
0

0

0

0
0

0

Non-trivial irreps of 𝕎.

…due to the Schur’s orthogonality…



Exact construction of a 𝑡-design
A representation-theoretic approach

Integral over 𝕌(2𝑛) Integral over 𝕎 = 𝕌 2𝑛−1 × 𝕌(2𝑛−1)

 For a Gelfand pair 𝕌 2𝑛 ,𝕎 , the integral over 𝕎 resembles the Haar integral.

Gelfand pair and zonal spherical function

➢ All irreps of 𝕌 that contains a single irrep of 𝕎 have been already specified!

➢ A 𝑡-design is obtained if we can “erase” undesired trivial irreps of 𝕎.

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡

→ zeros of zonal spherical functions
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Exact construction of a 𝑡-design
A representation-theoretic approach

 Zonal spherical functions                          for a Gelfand pair (𝔾,𝕂) and an irrep 𝜌 of 𝔾.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗

Gelfand pair and zonal spherical function

➢ Let 𝑣 ∈ 𝑉𝜌 be a 𝕂-invariant vector. Then,

We can write down the explicit form!

Integral over 𝕎 = 𝕌 2𝑛−1 × 𝕌(2𝑛−1)Irrep 𝜌1

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡

∗

Gelfand pair (𝕌 2𝑛 ,𝕎)
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Exact construction of a 𝑡-design
A representation-theoretic approach

 Zonal spherical functions                          for a Gelfand pair (𝔾,𝕂) and an irrep 𝜌 of 𝔾.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗

Gelfand pair and zonal spherical function

➢ Let 𝑣 ∈ 𝑉𝜌 be a 𝕂-invariant vector. Then,

We can write down the explicit form!

Integral over 𝕎 = 𝕌 2𝑛−1 × 𝕌(2𝑛−1)Irrep 𝜌1

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡

∗

By solving                                 , 
we can find 𝑉1 ∈ 𝕌(2

𝑛) such that

Gelfand pair (𝕌 2𝑛 ,𝕎)
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Exact construction of a 𝑡-design
A representation-theoretic approach

 Zonal spherical functions                          for a Gelfand pair (𝔾,𝕂) and an irrep 𝜌 of 𝔾.

Gelfand pair and zonal spherical function

➢ Let 𝑣 ∈ 𝑉𝜌 be a 𝕂-invariant vector. Then,

We can write down the explicit form!

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗

Integral over 𝕎 = 𝕌 2𝑛−1 × 𝕌(2𝑛−1)Irrep 𝜌2

∗

Gelfand pair (𝕌 2𝑛 ,𝕎)
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Exact construction of a 𝑡-design
A representation-theoretic approach

 Zonal spherical functions                          for a Gelfand pair (𝔾,𝕂) and an irrep 𝜌 of 𝔾.

Gelfand pair and zonal spherical function

➢ Let 𝑣 ∈ 𝑉𝜌 be a 𝕂-invariant vector. Then,

We can write down the explicit form!

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗

Integral over 𝕎 = 𝕌 2𝑛−1 × 𝕌(2𝑛−1)Irrep 𝜌2

∗By solving                                 , 
we can find 𝑉2 ∈ 𝕌(2

𝑛) such that

Gelfand pair (𝕌 2𝑛 ,𝕎)
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Exact construction of a 𝑡-design
A representation-theoretic approach

 Zonal spherical functions                          for a Gelfand pair (𝔾,𝕂) and an irrep 𝜌 of 𝔾.

Gelfand pair and zonal spherical function

➢ Let 𝑣 ∈ 𝑉𝜌 be a 𝕂-invariant vector. Then,

➢ From the zeros of zonal spherical functions, we obtain 

𝑈 ↦ 𝑈⊗𝑡 ⊗ ഥ𝑈⊗𝑡

Gelfand pair (𝕌 2𝑛 ,𝕎)

Integral over 𝕎 = 𝕌 2𝑛−1 × 𝕌(2𝑛−1)etc… 31/40



Exact construction of a 𝑡-design
A representation-theoretic approach

 Inductive construction of a unitary 𝑡-design on 𝕌(2𝑛)

Design from Gelfand pair and zonal spherical function

➢ Suppose the Haar measure (or 𝑡-design) on 𝕌(2𝑛−1) is available.

➢ Consider 

A unitary 𝑡-design on 

32/40



Exact construction of a 𝑡-design
A representation-theoretic approach

Design from Gelfand pair and zonal spherical function
 Inductive construction of a unitary 𝑡-design on 𝕌(2𝑛)

➢ Suppose the Haar measure (or 𝑡-design) on 𝕌(2𝑛−1) is available.

➢ Consider 

Trivial irrep of 𝕎 in 𝜌1 disappears! 

A unitary 𝑡-design on 
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Exact construction of a 𝑡-design
A representation-theoretic approach

Design from Gelfand pair and zonal spherical function
 Inductive construction of a unitary 𝑡-design on 𝕌(2𝑛)

➢ Suppose the Haar measure (or 𝑡-design) on 𝕌(2𝑛−1) is available.

➢ Consider 

Trivial irrep of 𝕎 in 𝜌2 disappears! 
34/40



Exact construction of a 𝑡-design
A representation-theoretic approach

Design from Gelfand pair and zonal spherical function

➢ By repeating this for all                                , all (undesired) trivial irreps. of 𝕎 vanish, and we obtain

of 𝕌(2𝑛)

of 𝕌(2𝑛)

 Inductive construction of a unitary 𝑡-design on 𝕌(2𝑛)

➢ Suppose the Haar measure (or 𝑡-design) on 𝕌(2𝑛−1) is available.
A unitary 𝑡-design on 
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Exact construction of a 𝑡-design
A representation-theoretic approach

 Inductive construction of a unitary 𝑡-design on 𝕌(2𝑛)

Design from Gelfand pair and zonal spherical function

➢ A unitary 𝑡-design on 𝕌 2𝑛 from a 𝑡-design on 𝕌 2𝑛−1 . 
Induction down to a 𝑡-design on 𝕌 1 , 

which is easy to construct by hand.

is a unitary 𝑡-design.

• 𝑊𝑗 are from a 𝑡-design on 𝕎 = 𝕌 2𝑛−1 × 𝕌 2𝑛−1 .

• 𝑉𝑗 are zeros of zonal spherical functions.
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Exact construction of a 𝑡-design
A representation-theoretic approach

 Inductive construction of a unitary 𝑡-design on 𝕌(2𝑛)

Design from Gelfand pair and zonal spherical function

➢ A unitary 𝑡-design on 𝕌 2𝑛 from a 𝑡-design on 𝕌 2𝑛−1 . 

➢ A unitary 𝑡-design on 𝕌 2𝑛 can be explicitly constructed from that on 𝕌 1 .

➢ This construction can be easily translated to a quantum circuit.

“Tree-like” structure 
due to the induction

Induction down to a 𝑡-design on 𝕌 1 , 
which is easy to construct by hand.
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Exact construction of a 𝑡-design
A representation-theoretic approach

 Inductive construction of a unitary 𝑡-design on 𝕌(2𝑛)

Design from Gelfand pair and zonal spherical function

➢ The first-ever EXPLICIT construction of an exact unitary 𝑡-design!

➢ However, the # of unitary gates = 𝑶(𝟐𝒏 𝒕) due to the induction.

Inefficient and unpractical…

Open: can we improve this? I.e., quantum circuit for a unitary 𝑡-design with poly(𝑛, 𝑡) unitary gates?

“Tree-like” structure 
due to the induction
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Outline of this talk
A journey of a thousand miles begins with a single step

Conclusion and outlook
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 Quantum computation is by a unitary transformation𝑈 ∈ 𝕌 2𝑛 .

➢ Quantum circuit: decomposition of a unitary 𝑈 ∈ 𝕌(2𝑛) into a series of unitary gates.

➢ Challenge: Given 𝑈 ∈ 𝕌(2𝑛), find a quantum circuit with minimal number of unitary gates!

Outlook

Conclusion and outlook

 A unitary 𝑡-design
➢ Unitary 𝑡-designs are extremely useful in quantum information.

➢ We constructed a quantum circuit for an exact unitary 𝑡-design.

➢ Group representation approach (Gelfand pair and zonal spherical functions).

➢ Due to the inductive construction, it requires 𝑶(𝟐𝒏 𝒕) unitary gates, which is inefficient.

➢ Challenge: quantum circuits with poly(𝑛, 𝑡) unitary gates? or prove that this is impossible!

What’s next?

Q. Circuit for unitary 𝑡-design

 Final remark
➢ Group representation is everywhere in quantum information! Welcome to join!! 40/40
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