
1．量るランガムネス：random State e random unitary．
2．量子閮似ラニダムネス：state design と unitary design．
\rightarrow Algorithm．
0．0．Random strategy．
How to board an airplain faster．？．

1．Buck to Front．
2．Window to Aisle．
3．Random．
4．Stefen．
 rare collision．

あまり横起がなく
Good er bad in randomness
－Bestではないが，大体よい
（たまに全然だめ）
－サイズ：大。
×閍超の構造无らまく反映したProtocolにはかなんない。 G上でランダム！！
0.1 Applications of randomness．

$$
4!!\cdot \log ^{0.5}(x) \longmapsto \log ^{2}(x)
$$

－計揌：モニテカルコ法，sorting，prime dock．，etc．．．

$$
\begin{aligned}
& \text { ドーム!! } \quad n_{n 3} \text { horst: } \theta\left(n^{2}\right) \\
& \text { trandewized : } \theta(n \log n) \text {. }
\end{aligned}
$$

喑号。

0．2．ラニダムネスと轾イトトランダムネス。

\rightarrow e．g．）サイコロ etc．．．．
擬似乱数 \Rightarrow ラニダムにみえるが磦定的コルゴリズムで保られる
シシーズ＂を堌临く
\rightarrow es．）\times ハセニヌ・ツイスター，Xorshift etc．

Application

- 言萎：Q．supremacy．query complenity．
- 言十測：Q．device cleck．，Q．sensing． ［randemied bendwiwn lang，Arofle method］
－通信：Q．random encoder．，proof technique． data－hidiry，Q．one－time pad etc．．．
－物 \mp I：Q．chaos．，OTOC，scrambling etc．．．．．
1，Q．randomness．とは？
1－1．Random state．
古典：N random bit $\underbrace{0110 \ldots 0}_{N .} \in\{0,1\}^{N}$ ．
童子
－＂random quiut＂
0）$\in \frac{\text { Not unito }}{\left(\mathbb{C}^{2}\right)^{\infty N}}$ ．
What is uniform b
e．g．）S^{1}

$$
\begin{aligned}
& \text { uniform distridution = 息転不变 } \\
& \text { I/ Q. state } \\
& \text { ユニタ11不変 }=\text { complex unit } \\
& \text { vector. }
\end{aligned}
$$

A Haar rundom state．of N qubits．
$\stackrel{\text { def }}{\Longleftrightarrow} A_{\substack{\text { pistatibitity }}}^{\text {distion }}\left\{\left|\psi_{\mu}\right\rangle\right\}_{\mu}$ s．t．$\forall \cup \in U\left(2^{N}\right),\left\{U\left|\psi_{\mu}\right\rangle\right\}_{\mu}=\left\{\left|\psi_{\mu}\right\rangle\right\}_{\mu}$
eg．） 1 qulunt．．．．Bloch 球．

1－2．Properties．
－Extremely highly entangled．

（A1）$\stackrel{\text { ent？}}{\longrightarrow}$
1．ほとんど maximal．
2．でも，max どはない。
（A2）

－Concentration phenomena．
f ：function on \mathbb{C}^{d}
Levy＇s lemma［Ledo1］
Lipschitz

$$
\text { Prob. }[|f-\mathbb{E}[f]| \geq \delta] \leq \exp \left[-C_{f} \frac{d}{\delta^{2}}\right]
$$

Nqulutsだと small const．dep．on f $d=2^{N} \ldots$ wow！！
＂なので，random stuteは＂大体＂みんな同じ，

直感：State on N qulits $\cong 5^{2 \times 2}-1=: D$
単位，超球の表面。

1－3 Random unitury．
Stateはどうせ Unitary で作る！！\Rightarrow unitaryを考えよう。
－A Haar random unitary（CUE）
$\stackrel{d g f}{\Longleftrightarrow} " \quad\left\{U_{\mu}\right\}_{\mu}$ s．t．$\forall V \in U\left(2^{\nu}\right),\left\{V U_{\mu}\right\}_{\mu}=\left\{U_{\mu} V\right\}_{\mu}$ $=\left\{v_{\mu}\right\} \mu$
＊Random unitary $>$ randem states．

- randen unitary ザあれば random states 己作れる．
- random state を 10$)^{\text {oN }}$ から作れる unitary p＂Haar randem とは阿らない．
\Rightarrow 宋装は inefficient！！

［Nielsen a Chang ］．
\rightarrow Haar random＝＂uniform＂なので，
\therefore Haar needs $\geq 2^{N}$ gates．
近仆を考えよう \Longrightarrow design

2．Q．pseudo－randomness．
2－1．State t－design x unitary t－design．
Idea：functions on $\left(\mathbb{1}^{2}\right)^{\otimes N}$ or $U\left(2^{N}\right)$ are important．
\rightarrow polynomials．
note：functions on a group＝Harmonic ancusis． －II rex Design theory．
In the following，only unitary is concerned．
Def）．Monomial of degree $(t, t) \quad(t \in \mathbb{N})$ of $u=\left(u_{\alpha \beta}\right)_{\alpha, \beta}$ ．
\Leftrightarrow monomial of degree t in $\left\{U_{\alpha p}\right\}_{\alpha, \beta}$
en＂＂t in $\left\{U_{\alpha \beta i s, \beta}^{*} \leftarrow\right.$ ．complex conjugate
e．g．）$U_{13} U_{42} U_{54}^{*} U_{23}^{*} \ldots(2,2)$－monomial．

$$
\mathrm{K}_{\text {Q.I. ごは }} \cup \rho u^{t} \text { なので, }(t, t) \text { ど+分. }
$$

Def）Unitary t－design．is $\left\{U_{i}\right\}_{i=1}^{K}$［Low 10 ］

$$
\stackrel{\text { def }}{\Leftrightarrow} \forall f: \text { monomial }, \frac{1}{K} \sum_{i=1}^{K} f\left(U_{i}\right)=\mathbb{E}_{\text {Haar }}\left[f\left(u_{i}\right)\right] \text {.(monomial) }
$$

N• Haar random の＂た次＂までる再芫。
－＂壮＂はちょっとイヤ

$$
\Leftrightarrow \frac{1}{k} \sum_{i=1}^{k} u_{i}^{\otimes t} U_{i}^{* \otimes t}=\mathbb{E}_{\text {Haar }}\left[u_{i}^{\otimes t} \otimes u_{i}^{* \otimes t}\right] \text {. (PE) }
$$ ヘ 物理昍意味る

$$
\begin{aligned}
& \Leftrightarrow g_{i u_{i 3}}^{(t)}(\rho):=\mathbb{E}_{\left\{u_{i}\right\}}\left[U_{i}^{\otimes t} \rho U_{i}^{+\infty t}\right] K\left(\rho \in \mathcal{L}\left(\alpha^{(\infty \lambda}\right)\right) \text {. } \\
& g_{i u i\}}^{(t)}=g_{\text {Hoar }}^{(t)} \\
& \text { (Diamond) } \\
& \text { へ さ-copyあっても貝分けがっかないよ (相関をみている) } \\
& \text { て ぶーフーリー。 }
\end{aligned}
$$

$$
\begin{aligned}
\Leftrightarrow & P_{t}\left(\left\{U_{i}\right\}\right):=\frac{1}{K^{2}} \sum_{i \cdot j=1}^{k}\left|\operatorname{Tr}\left[U_{i} U_{j}^{+}\right]\right|^{2 t} \text {. frame potential } \\
& P_{t}\left(H_{\text {oar }}\right)=t!(d \geq t \& d>2) \quad \text { orde } \\
& \text { [GAEOП] }
\end{aligned}
$$

亿．$F_{o r}$ any $\left\{u_{i}\right\}, F_{t}\left(\left\{u_{i}\right\}\right) \geq F_{t}$（Hoar）potential！！

- 内積玉最少に！！\Leftrightarrow uniform．
- OTOCの＂平均＂［RY17］

$\left|\psi_{i}\right\rangle$ ．

$$
\begin{aligned}
& \frac{1}{K} \sum_{i=1}^{K}\left|\psi_{i} \times \psi_{2}\right|^{\infty t}=\mathbb{E}_{\text {Hacor }}\left[14 \times\left. 4\right|^{\otimes t}\right] \\
&=\frac{P_{\text {ssm }}}{d_{s m m}} \longleftarrow \text { symmertic subapace. } \\
& \lambda
\end{aligned}
$$

Schur＇s lemma
2－2．Examples．
－State t－derign（1 qulit） $t=1 \quad \mathbb{E}_{H}\left[|4 \times 4|^{11}\right]=I / 2$

$$
t=2 \mathbb{E}_{H}\left[14 \times\left. 4\right|^{2 \alpha}\right]=\frac{\pi_{\text {triplet }}}{3}
$$

正四届体
－$(0,0,1)$
－$(\sin \theta, 0, \cos \theta)$
－$\left(\sin \theta \cos \frac{2 \pi}{3}, \sin \frac{2 \pi}{3}, \operatorname{ses} \theta\right)$
－$\left(\sin \theta \cos \frac{4 \pi}{3}, \sin \frac{4 \pi}{3}, \cos \theta\right)$ wher $\cos \theta=\frac{1}{3}$

$t=2$ Clifford grp
$t=3 . ひ\left(2^{N}\right)$ a 場合。 Clifford grp．
笑2が重要。

$$
\begin{aligned}
& \text { (かった) } \\
& L^{L}(d) \quad[O N K, \text { befre prep.] }
\end{aligned}
$$

－If $d \geq 5$ \＆$t \geq 4$ ，\＃t－design that is a group．
［BNRT18］
－Existence follows from Caratheodory＇s thim

$$
\begin{aligned}
& \text { [} \mathbb{R}^{d} \text { 相の convex hull に属する点xは } \\
& d t 1 \text { 点の硣率混合でかける」 } \\
& \rightarrow \text { TPE defに使えばよい。 }
\end{aligned}
$$

2－3．Simple facts．
－t－design $\Rightarrow(t-1)$－design．
－$\left\{u_{i}\right\}_{i=1}^{k}: t$－design on $U(d) \Rightarrow K \geq d^{2 t}-\theta\left(d^{2 t}\right)$ ．
－In moet applications in Q．I．T．，2－designs are enough．
G t－des．ヤ゙必要かう南用なapplication？。
$\{$ ：Compressed sensing，query complexity．
－＂Exact＂implimentations of t－designs are still hand．．．．
G Approximate t－des．㚈重要．

$$
\begin{aligned}
& \| \text { DefaL.HS. - R.H.S. } \| \leq \varepsilon . \\
& \Rightarrow \text { 各defで少し異なる (が, 两くの場合はムシできる) }
\end{aligned}
$$

2．4 Quantum circuits for unitary t－designs．on N qulits．
How many gates？
\checkmark Lower bound ：

$$
\left\{U_{i}\right\}_{i=1}^{k}: t-d e s \Rightarrow K \geq d^{2 t}=2^{2 N t}
$$

$$
\begin{aligned}
& \text { 䍔ぶ } \\
& \therefore S^{l} \geq 2^{2 \times t} \\
& \Leftrightarrow l \geq \frac{2}{\log S} \times N t \\
& \text { G少なくともNtコは必要, }
\end{aligned}
$$

t＝2 の場 合 \Rightarrow Clifford grpを使える。（exact！！）
Best known：$\theta(N \log N)$ gates． ［CLLW16］．
$t \geq 3$ の場合：基本は E－approximate

$D=2 \quad(N$ qulints）

$$
\begin{aligned}
& \underbrace{0,0,00}_{\sqrt{N}} \\
& \Rightarrow \text { 全体で t-desgn !! } \\
& \text { \# of gates }=\text { polg }(t) \times X^{3 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 士依存性はる } \\
& \text { 一省なくとも } t^{11} \log t . \\
& \frac{\theta(N \log N)}{\text { までは到達可 }} \\
& \text { - } \boldsymbol{t}^{\text {D }} \text { になる? のがる (論文のかき方が…..) } \\
& \text { [HM18] }
\end{aligned}
$$

3．まとめ
情報の $\begin{gathered}\text { scrambling．} \\ \text { recevery }\end{gathered}$ recovery．
－Thermalization（ETH）
－Q．choos（OTOC）
－Black hole（scranbing）
\qquad t－design 巨defしたけど， 2－des．で十分なことが多い と と の間を知りたい！！

I. VARIOUS DEFINITIONS OF DESIGNS

It is summarized very well in [Low10. For the frame potential, see [GAE07, Zhu15, RY17].

II. PROPERTIES OF HAAR AND DESIGNS

- Extremely highly entangled Lub78, Pag93, FK94, HLW06.
- Anti-concentration property HBVSE18
- Concentration of measure phenomena Led01, Mec14]. In the context of quantum information, it is also well-summarized in [PSW06, HLW06] State and unitary designs also have a "concentration" properties Low09.
- No existence of exact unitary designs, which form a group, when $d \geq 5$ and $t \geq 4$ BNRT18.

III. EFFICIENT IMPLEMENTATIONS OF UNITARY DESIGNS

- Up to unitary 2-designs DLT02, BWV08, WBV08, GAE07, TGR07, DCEL09, HL09b, DJ11, BWV08, WBV08, CLLW16, NHMW17. The best method based on the Clifford circuits is CLLW16. Clifford group on qubits was also shown to be a unitary 3-design but not to be a 4-design Zhu15, Web16, ZKGG16]. However, as far as I know, no efficient implementations of 3-designs based on Clifford circuits are known (but perhaps straightforward to construct).
- Quantum tensor product expander HL09a.
- Local random circuits BHH16, HM18.
- Random diagonal-unitaries in two complementary bases [NHKW17].

IV. APPLICATIONS OF QUANTUM RANDOMNESS

- Quantum computation
- Any element of an approximate unitary 3-design is useful [BH13]
- Quantum supremacy by local random circuits BFNV18] (see also BHH16] about the proof that the local random circuits form a unitary design)
- Checking the devices that are experimentally implemented
- Randomised benchmarking [DCEL09, EA亡்05, KLR ${ }^{+} 08$, MGE11, MGE12, Fla17]
- Quantum sensing
- SIC-POVM [RBKSC04] (a good basis for quantum tomography with a special property)
- Random bosonic states are useful in quantum metrology $\mathrm{OAG}^{+} 16$
- Compressed sensing KRT14, KL15, KZG16]
- Quantum information theory
- Decoupling approach Dev05, DW04, GPW05, ADHW09, Hay12, DBWR14, SDTR13, HM14. See especially [DBWR14] and Dup10.
- A proof technique to construct a counterexample to the additivity conjecture Has09 (one of the most "shocking" results in quantum information science).
- Data-hiding TDL01, DLT02
- Quantum one-time pad BaO12
- Fundamental problems in physics
- Quantum thermodynamics PSW06, GLTZ06, Rei08, dRAR ${ }^{+}$11, dRHRW14
- Black hole information science HP07, SS08, Sus11, LSH ${ }^{+}$13, Sus14, HQRY16, RY17,
- Strongly correlated many-body physics BaH13]
[ADHW09] A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, The mother of all protocols : Restructuring quantum information's family tree, Proc. R. Soc. A 465 (2009), 2537.
[BaH13] F. G. S. L. Brandão and M. Horodecki, An area law for entanglement from exponential decay of correlations, Nat. Phys. 9 (2013), no. 11, 721-726.
[BaO12] F. G. S. L. Brandão and J. Oppenheim, Quantum One-Time Pad in the Presence of an Eavesdropper, Phys. Rev. Lett. 108 (2012), no. 4, 040504.
[BFNV18] A. Bouland, B. Fefferman, C. Nirkhe, and U. Vazirani, Quantum Supremacy and the Complexity of Random Circuit Sampling, 2018, arXiv: 1803.04402.
[BH13] F. G. S. L. Brandão and M. Horodecki, Exponential Quantum Speed-ups are Generic, Q. Inf. Comp. (2013), no. 13, 0901.
[BHH16] F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, Local Random Quantum Circuits are Approximate Polynomial-Designs, Commun. Math. Phys. 346 (2016), no. 2, 397-434.
[BNRT18] E. Bannai, G. Navarro, N. Rizo, and P. H. Tiep, Unitary t-groups, 2018, arXiv: 1810.02507.
[BWV08] W. G. Brown, Y. S. Weinstein, and L. Viola, Quantum pseudorandomness from cluster-state quantum computation, Phys. Rev. A 77 (2008), no. 4, 040303(R).
[CLLW16] R. Cleve, D. Leung, L. Liu, and C. Wang, Near-linear constructions of exact unitary 2-designs, Quant. Info. \& Comp. 16 (2016), no. 9 \& 10, 0721-0756.
[DBWR14] F. Dupuis, M. Berta, J. Wullschleger, and R. Renner, One-shot decoupling, Commun. Math. Phys. 328 (2014), 251.
[DCEL09] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact and approximate unitary 2-designs and their application to fidelity estimation, Phys. Rev. A 80 (2009), 012304.
[Dev05] I. Devetak, The private classical capacity and quantum capacity of a quantum channel, IEEE Trans. Inf. Theory 51 (2005), no. 1, 44-55.
[DJ11] I. T. Diniz and D. Jonathan, Comment on "Random quantum circuits are approximate 2-designs", Commun. Math. Phys. 304 (2011), 281.
[DLT02] D. P. DiVincenzo, D. W. Leung, and B. M. Terhal, Quantum data hiding, IEEE Trans. Inf. Theory 48 (2002), 580.
[dRAR $\left.{ }^{+} 11\right]$ L. del Rio, J. Aberg, R. Renner, O. Dahlsten, and V. Vedral, The thermodynamic meaning of negative entropy, Nature 474 (2011), no. 7349, 61-63.
[dRHRW14] L. del Rio, A. Hutter, R. Renner, and S. Wehner, Relative thermalization, 2014, arXiv:1401.7997.
[Dup10] F. Dupuis, The decoupling approach to quantum information theory, Ph.D. thesis, Université de Montréal, 2010, arXiv:1004.1641.
[DW04] I. Devetak and A. Winter, Relating Quantum Privacy and Quantum Coherence: An Operational Approach, Phys. Rev. Lett. 93 (2004), no. 8, 080501.
[EAŻ05] J. Emerson, R. Alicki, and K. Życzkowski, Scalable noise estimation with random unitary operators, J. Opt. B: Quantum semiclass. opt. 7 (2005), S347-S352.
[FK94] S. K. Foong and S. Kanno, Proof of Page's conjecture on the average entropy of a subsystem, Phys. Rev. Lett. 72 (1994), no. 8, 1148-1151.
[Fla17] S. Flammia, Characterization of quantum devices, https://www.microsoft.com/en-us/research/ wp-content/uploads/2017/09/2017-01-14-Morning-Tutorial-Steve-Flammia-2.pdf, 2017, Accessed: 2019-3-17.
[GAE07] D. Gross, K. Audenaert, and J. Eisert, Evenly distributed unitaries: On the structure of unitary designs, J. of Math. Phys. 48 (2007), no. 5, 052104.
[GLTZ06] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghí, Canonical Typicality, Phys. Rev. Lett. 96 (2006), no. 5, 050403.
[GPW05] B. Groisman, S. Popescu, and A. Winter, Quantum, classical, and total amount of correlations in a quantum state, Phys. Rev. A 72 (2005), no. 3, 032317.
[Has09] M. B. Hastings, Superadditivity of communication capacity using entangled inputs, Nature Physics 5 (2009), no. 4, 255-257.
[Hay12] P. Hayden, Decoupling: A building block for quantum information theory, http://qip2011. quantumlah.org/images/QIPtutorial1.pdf, 2012, Accessed: 2017-3-30.
[HBVSE18] D. Hangleiter, J. Bermejo-Vega, M. Schwarz, and J. Eisert, Anticoncentration theorems for schemes showing a quantum speedup, Quantum 2 (2018), 65.
[HL09a] A. W. Harrow and R. A. Low, Efficient Quantum Tensor Product Expanders and k-Designs, Proc. RANDOM'09, Lecture Notes in Computer Science, no. 5687, Springer Berlin Heidelberg, 2009, pp. 548561.
[HL09b] A. W. Harrow and R. A. Low, Random quantum circuits are approximate 2-designs, Commun. Math. Phys. 291 (2009), 257.
[HLW06] P. Hayden, D. W. Leung, and A. Winter, Aspects of Generic Entanglement, Commun. Math. Phys. 265 (2006), no. 1, 95-117.
[HM14] C. Hirche and C. Morgan, Efficient achievability for quantum protocols using decoupling theorems, Proc. 2014 IEEE Int. Symp. Info. Theory, 2014, p. 536.
[HM18] A. Harrow and S. Mehraban, Approximate unitary $\$$ t $\$$-designs by short random quantum circuits using nearest-neighbor and long-range gates, 2018, arXiv: 1809.06957.
[HP07] P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, J. High Energy Phys. 2007 (2007), no. 09, 120.
[HQRY16] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, Chaos in quantum channels, J. High Energy Phys. 2016 (2016), no. 2, 4.
[KL15] S. Kimmel and Y.-K. Liu, Quantum compressed sensing using 2-designs, 2015, arXiv:1510.08887.
$\left[\mathrm{KLR}^{+} 08\right]$ E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, Randomized benchmarking of quantum gates, Phys. Rev. A 77 (2008), no. 1, 012307.
[KRT14] R. Kueng, H. Rauhut, and U. Terstiege, Low rank matrix recovery from rank one measurements, 2014, arXiv:1410.6913.
[KZG16] R. Kueng, H. Zhu, and D. Gross, Distinguishing quantum states using Clifford orbits, 2016, arXiv:1609.08595.
[Led01] M. Ledoux, The Concentration of Measure Phenomenon, American Mathematical Society Providence, RI, USA, 2001.
[Low09] R. A. Low, Large deviation bounds for k-designs, Proc. R. Soc. A 465 (2009), no. 2111, 3289.
[Low10] R. A. Low, Pseudo-randomness and learning in quantum computation, Ph.D. thesis, University of Bristol, 2010, arXiv:1006.5227.
$\left[\mathrm{LSH}^{+} 13\right]$ N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P. Hayden, Towards the fast scrambling conjecture, J. High Energy Phys. 2013 (2013), no. 4, 22.
[Lub78] Elihu Lubkin, Entropy of an n-system from its correlation with a k-reservoir, J. of Math. Phys. 19 (1978), no. 5, 1028-1031.
[Mec14] E. Meckes, Concentration of measure and the compact classical matrix groups, https://www.math. ias.edu/files/wam/Haar_notes-revised.pdf, 2014, Accessed: 2017-01-10.
[MGE11] E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and Robust Randomized Benchmarking of Quantum Processes, Phys. Rev. Lett. 106 (2011), no. 18, 180504.
[MGE12] E. Magesan, J. M. Gambetta, and J. Emerson, Characterizing quantum gates via randomized benchmarking, Phys. Rev. A 85 (2012), no. 4, 042311.
[NHKW17] Y. Nakata, C. Hirche, M. Koashi, and A. Winter, Efficient Quantum Pseudorandomness with Nearly Time-Independent Hamiltonian Dynamics, Phys. Rev. X 7 (2017), no. 2, 021006.
[NHMW17] Y. Nakata, C. Hirche, C. Morgan, and A. Winter, Unitary 2-designs from random X-and Z-diagonal unitaries, Journal of Mathematical Physics 58 (2017), no. 5, 052203.
$\left[\mathrm{OAG}^{+} 16\right]$ M. Oszmaniec, R. Augusiak, C. Gogolin, J. Kołodyński, A. Acín, and M. Lewenstein, Random Bosonic States for Robust Quantum Metrology, Phys. Rev. X 6 (2016), no. 4, 041044.
[Pag93] D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993), no. 9, 1291-1294.
[PSW06] S. Popescu, A. J. Short, and A. Winter, Entanglement and the foundations of statistical mechanics, Nat. Phys. 2 (2006), no. 11, 754-758.
[RBKSC04] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, Symmetric informationally complete quantum measurements, J. Math. Phys. 45 (2004), 6.
[Rei08] P. Reimann, Foundation of Statistical Mechanics under Experimentally Realistic Conditions, Phys. Rev. Lett. 101 (2008), no. 19, 190403.
[RY17] D. A. Roberts and B. Yoshida, Chaos and complexity by design, J. High Energ. Phys. 2017 (2017), no. 4,121 .
[SDTR13] O. Szehr, F. Dupuis, M. Tomamichel, and R. Renner, Decoupling with unitary approximate twodesigns, New J. Phys. 15 (2013), 053022.
[SS08] Y. Sekino and L. Susskind, Fast scramblers, J. High Energy Phys. 2008 (2008), no. 10, 065.
[Sus11] L. Susskind, Addendum to Fast Scramblers, 2011, arXiv: 1101.6048.
[Sus14] L. Susskind, Computational Complexity and Black Hole Horizons, 2014.
[TDL01] B. M. Terhal, D. P. DiVincenzo, and D. W. Leung, Locking classical correlations in quantum states, Phys. Rev. Lett. 86 (2001), 5807.
[TGR07] G. Tóth and J. J. García-Ripoll, Efficient algorithm for multiqudit twirling for ensemble quantum computation, Phys. Rev. A 75 (2007), no. 4, 042311.
[WBV08] Y. S. Weinstein, W. G. Brown, and L. Viola, Parameters of pseudorandom quantum circuits, Phys. Rev. A 78 (2008), no. 5, 052332.
[Web16] Z. Webb, The Clifford group forms a unitary 3-design, Quant. Info. \& Comp. 16 (2016), no. 15 \& 16, 1379-1400.
[Zhu15] H. Zhu, Multiqubit Clifford groups are unitary 3-designs, 2015, arXiv:1510.02619.
[ZKGG16] H. Zhu, R. Kueng, M. Grassl, and D. Gross, The Clifford group fails gracefully to be a unitary 4-design, 2016, arXiv:1609.08172.

