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Neutrinos

& Supernovae, collapsars, mergers
» High temperature (~10 MeV), high density (>10/°g cm-3)

» Copious amount of neutrinos generated (~/0°’ erg)

» Even neutrinos become optically thick
+ neutrinospheres”

+» Thermal distribution (0-th approx.) /\

8 Cross section (o,x¢,”)
» Small change of distribution function can lead to
significant difference of interaction rates
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heating layer

cooling layer

see talks by Fischer, Takiwaki, Kuroda, Messer, Sumiyoshi, O’'Connor, Pan



Neutrino-driven jet

McFadyen & Woosley 99
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Problems?

% For supernovae, explosion energy in simulation
(Eexp=10%-Y erg) is much smaller than
observation (E..,~10°! erg)

% For collapsars, neutrino annihilation might not
produce enough strong jet for GRBs

% Is there something missing?

% Let’s reconsider about neutrino spectrum in more
detail, beyond thermal spectrum
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Neutrino-matter interactions
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Analogy

% Number and energy spheres can be called
in different way

» chemical equilibrium:
=> thermal equilibrium
=> inside number sphere

» kinetic equilibrium:
=> does not change particle number
=> between number and energy spheres
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Neutrino-matter interactions Bruenn (1985)

Raffelt (2001)

Description: Number Sphere Energy Sphere Transport Sphere

Emission & Inelastic Isoenergetic
Absorption Scattering Scattering
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Non-thermal neutrinos

Energy Sphere Transport Sphere

What distribution?

©

Gain energy by scattering bodies’ kinetic energy

(AE) ~ v 2 £ | "Fermi acceleration” of v
Y

Non-thermal neutrinos




Fermi acceleration

MHD waves
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c)M. Scholer

e.g.,Axford+ (1977), Blandford & Ostriker (1978), Bell (1977)



Bulk Comptonization

% The application of Fermi acceleration to
photons

% Compressional flow (V.1V<0) leads to
acceleration of photons

% Compression is naturally realized for

accretion flows onto black holes /
neutron stars (WITHOUT shock!)

% Non-thermal components are generated
from thermal components

Blandford & Payne (1981), Payne & Blandford (1981)



Let’s go to neutrinos



Boltzmann eq. w/ diffusion approx.

Blandford & Payne 1981, Titarchuk+ 1997, Psaltis 1997
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Transfer equation

Boltzmann equation with diffusion approx., up to O((u/c)?)

bulk term il recoil term source term
thermal & turbulent terms

n:v's number density
&,.V energy

V: velocity of matter
K. opacity
T: temperature of matter




First order term

By neglecting O((u/c)?) terms and recoil term, we get

This is exactly the same equation we are solving with MGFLD or IDSA
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Original v-Boltzmann eq. (Lindquist 1966, Castor 1972)
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Order of approx.
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diffusion approx.
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Transfer equation

Boltzmann equation with diffusion approx., up to O((u/c)?)

diffusion term Jiibulk term [ recoil term source term

n:v's number density
&,.V energy

V: velocity of matter
K. opacity
T: temperature of matter

thermal & turbulent terms

Solve this equation with adequate
boundary condition. The
background matter is assumed to
be free fall and stationary solution

(0/0t=0) is obtained.




Analytic solutions

Nondimensional equation

*f, (27 .\ 3) of, _ 1 0f,

2

" 072 or 53: ox

fi(t,.x)=R(r)T’x

(separation of variables)
Boundary conditions
1. flux«<z? (z—0)
2. remain finite for t>>1

o
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spectral energy flux
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YS, MNRAS (2013)



Numerical solution

% Solved the transfer equation using relaxation method
* At =19 (@energy sphere), thermal distribution is imposed

Spectrum w/ bulk term ———
Spectrum w/o bulk term — — - ]
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Neutrino annihilation

Energy injection rate by neutrino pair annihilation

Goodman+ 87, Setiawan+06 <3V>/<8V>fhermal <<9v2>/<3v2>thermal Amplification

<e ] : : 1.01 1.02 1.03
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Annihilation rate can be amplified by a factor of ~10 for the case
of 7p=10



Does it work for supernova?

% Unfortunately, no

% To accelerate radiations V.V need to be

large at optically thick regime, but V.Vis
small in the vicinity of PNS

% For a black-hole forming collapse, this
mechanism naively works (competition
of acceleration and advection times)



Higher order effects?

% Bulk Comptonization is O(u/c) effect
WITH compressional flow

% Is there any effects from higher order?
Let’s learn from photon case again

» Thermal Comptonization

» Turbulent Comptonization



Turbulent Comptonization

% When there are turbulent flows,
stochastic scattering can accelerate
particles, like second order Fermi
acceleration

% Compressional flow is unnecessary, i.e.,

even when V. V=(), particle acceleration
is possible

e.g., Zel'dovich, lllarinov, Sunyaev (1972), Thompson (1994), Socrates (2004)



Neutrino transfer

Boltzmann solver

spherical

symmetry
(1D)

multi

dimension
(2D/3D)

O(u/c) O((u/c)?)

max(v/c) in
PNS




Turbulent velocity
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r [km] r [km]

from neutrino-radiation hydro. simulation by Suwa+ (2014)



bulk term [ recoil term I source term
thermal & turbulent terms

% Based on analogy of photons, neutrino acceleration is
investigated

* O(u/c): bulk Comptonization fory
=> non-thermal v from collapsars

* O((u/c)’): thermal/turbulent Comptonization fory
=> non-thermal v from supernovae

% Non-thermal v can amplify neutrino interaction rate due to
its high-energqy tail




