
Reverse construction of initial conditions: 
from supernovae to progenitors

Yudai Suwa

Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, 
Kyoto University



Yudai Suwa @ Many Riddles About Core-Collapse Supernovae /1527/6/2016

Key observables characterizing supernovae

Explosion energy: ~1051 erg

Ni mass: ~0.1M⦿

Ejecta mass: ~M⦿

NS mass: ~1 - 2 M⦿

2

measured by fitting 
SN light curves

measured by 
binary systems

final goal of first-principle (ab initio) simulations

related
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Supernova simulation is an initial value problem

3

stellar evolutionary calculations
ρ(r), T(r), Ye(r), vr(r)

supernova explosions
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Figure 18. Effect of various zoning and time step criteria on the final core compactness in two different regions—A:17.1–17.5 M⊙ and B:20.1–20.5 M⊙. 1A,B—different
zoning: default (thick) and 2/3 of default (dot-dashed). 2A,B—time step: default (thick), half (dot-dashed) and double (thick-dashed).

U-series and SH-series stars, albeit at slightly different masses
(Figure 3). It is also present in the compactness plot for the bare
CO cores studied later in Section 5.

This behavior can be traced to the presence of a strong,
extended convective oxygen burning shell during the post-
silicon burning evolution of stars over about 50 M⊙. The lighter
stars lack this shell; the heavier ones have it. Starting at 50 M⊙
for the U-series, this shell is present at silicon depletion with a
base at 1.8 M⊙. Moving to heavier masses, the shell grows larger
and its base moves outward, reaching 2.5 M⊙ at 65 M⊙. There
is a sharp density decline at the base of the shell and because
of this migration outside the fiducial point for measuring ξ2.5,
the compactness parameter rises again as the star mass passes
about 60 M⊙.

Whether this shell is present or not depends upon the timing
of silicon core ignition and oxygen shell burning. Recall the key
role played by the carbon shell and oxygen ignition for stars in
the range 21–30 M⊙ (Section 3.2). When the carbon shell was
situated far enough out, oxygen burning would ignite before
carbon shell burning was done with major consequences for
the compactness. Here, the oxygen shell plays the role of the
former carbon shell. If it burns far enough out, the silicon core
can ignite earlier. In this case, however, igniting silicon does not
blow out the oxygen shell. It persists until the end.

Figure 19 shows the locations of various silicon and oxygen
burning episodes as a function of mass for the SH series models.

Figure 19. Maximum extents of the oxygen and silicon burning convective cores
and 1st shells are plotted against the initial mass of the model for SH stars. The
base of the single remaining carbon convective shell (dashed) is also shown,
but lies well outside 2.5 M⊙ and has little effect on ξ2.5 in this mass range. The
bases of the 1st shells are not plotted for clarity, but they almost always perfectly
match with the extents of the cores. Notice, how the silicon core size responds
as the oxygen core overgrows the silicon shell near 45–50 M⊙.

Though it lacks the time dimension of a full convective history
plot, the figure shows that the size of the oxygen convective core
increases monotonically with mass for these heavy stars. Where
the oxygen convective shell ignites is pegged to the extent of
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NB) all MZAMS=15M⊙

that shock revival will be fizzled if the system evolves rapidly
after the turning point, rolling down the second half of the
trajectory and quickly passing the critical point again. Hence, it
is important that the system stays for a long time around the
turning point.

Since the critical curve is a convex and the monotonically
increasing function of the mass accretion rate, the more to the
upper left the turning point is located, the more likely shock
revival is to obtain. Although the critical curve has been well
studied by several groups,11 we emphasize here the importance
of the trajectory as well. In principle, multidimensional
neutrino-radiation hydrodynamic simulations, or ab initio
computations, with detailed neutrino physics and radiative
transfer being incorporated, are required to obtain reliable
model trajectories. It has been demonstrated, however, that one
observed effect of multidimensionality in supernova dynamics
is to lower the critical curve (Murphy & Burrows 2008;
Nordhaus et al. 2010; Hanke et al. 2012), although the
trajectory is also somewhat modified. Hence, it is expected that
1D simulations will be sufficient to find approximate locations

Figure 12. Same as Figure 2, but for progenitors with the ZAMS mass of 15 Me. Here we use five models from Nomoto & Hashimoto (1988) (NH88), Woosley &
Weaver (1995) (WW95), Woosley et al. (2002) (WHW02), Limongi & Chieffi (2006) (LC06), and Woosley & Heger (2007) (WH07). Owing to the different
treatments of physics and numerics for stellar evolutionary calculations, the structures prior to collapse show diversity even if they have the same ZAMS mass. In
panel (b), free-fall times are given by dashed lines.

Figure 13. Model trajectories in the OM L˙ – plane for the 1D simulations of
15 Me progenitors. This is the same as Figure 6, but for different progenitor
models. The mass accretion rate is evaluated at 300 km from the center.

Figure 14. Time evolutions of the angle-averaged shock radius for 15 Me
progenitors. NH88 and WW95 produce explosion owing to small densities of
the envelopes.

Figure 15. Schematic picture of the critical curve and turning point. If the
turning point is located above the critical curve and the luminosity and mass
accretion rate stay in the vicinity of the tuning point for a long time, such a
model will produce an explosion. The critical curve is expected to be shifted by
macrophysics such as dimensionality, and the turning point may be shifted by
microphysics, as well as the progenitor structure. The critical curve and turning
point are also useful to assess the influence of a particular physics incorporated.

11 There are a few attempts to derive the critical curve analytically (Janka
2012; Keshet & Balberg 2012; Pejcha & Thompson 2012). The impact of
properties of the nuclear equation of state on the critical curve is also studied
(Couch 2013a) and is found to be minor compared to the dimensionality.
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Different codes lead to different  structure
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Figure 7. Comparison of models with different CHeB mixing schemes:
standard overshoot, semiconvection, no overshoot, and maximal overshoot
in cyan, orange, black, and magenta, respectively. The models have initial
mass Mi = 0.83 M⊙, metallicity [Fe/H] = −1, and initial helium Y =
0.245. Upper panel: evolution tracks in the HR diagram. Middle panel:
surface luminosity evolution. Lower panel: post-RGB luminosity PDFs.
The shaded area is the observed PDF for all clusters without a blue HB, i.e.
the combination of the two curves in Fig. 6.

The comparison between models and observations in Fig. 3 using
the ‘blueness’ of the HB (L1 + L2/2) shows the same offsets evident
in Fig. 2. The Sarajedini et al. (2007) observations show a slight
decrease of R2 with an increase in L1 + L2/2 whereas the models
and the Piotto et al. (2002) data show no trend. The Sarajedini
et al. (2007) observations also show a dependence of ! log LAGB

HB on
L1 + L2/2 that is consistent with the example semiconvection and
maximal-overshoot models (apart from the offset), especially given
their large scatter (Fig. 3). In models, this slope is mostly due to the
lower luminosity of bluer HB stars (luminosity is a strong function
of envelope mass), rather than any effect on the luminosity of the
AGB clump.

3.5 Effect of the mixing prescription

In Fig. 7 we show the evolution of four models with different mixing
schemes. The resulting predictions of R2 and ! log LAGB

HB for these

Table 2. Summary of observations and model predictions. The mod-
els have initial mass Mi = 0.83 M⊙, metallicity [Fe/H] = −1, and
initial helium Y = 0.245. The observed values are derived from the
14 clusters without blue HBs (see Section 2.8). The uncertainty for
the standard-overshoot models is the standard deviation from the
results of the calculations using different fOS that are discussed in
Section 3.7.1.

R2 ! log LAGB
HB

Observations 0.117 ± 0.005 0.455 ± 0.012
No overshoot 0.783 0.22
Semiconvection 0.068 0.53
Standard overshoot 0.075 ± 0.025 0.46 ± 0.15
Maximal overshoot 0.082 0.60

models are summarized in Table 2. It is evident from panel (a) in
Fig. 7 that each model follows the same path in the Hertzsprung-
Russell (HR) diagram. The luminosity evolution of each sequence is
nearly identical until they are close to exhausting helium in the core
(Fig. 7b). The no-overshoot model is an obvious outlier because
the lack of growth in the mass of the convective core restricts the
fuel available and shortens the CHeB lifetime to less than half that
of the others. This increases the early-AGB lifetime and decreases
! log LAGB

HB compared to the observations, producing a luminosity
PDF (Fig. 7c) that is starkly at odds with the observations shown
in Fig. 6. This result has been found previously (e.g. Buzzoni et al.
1983; Buonanno, Corsi & Fusi Pecci 1985; Bressan et al. 1986;
Chiosi, Bertelli & Bressan 1987; Renzini & Fusi Pecci 1988; Caputo
et al. 1989; Cassisi et al. 2001) and is consistent with the finding
from asteroseismology that larger convective cores are preferred
(Montalbán et al. 2013, Bossini et al. 2015; Paper I). It also has
a strong theoretical basis because of the physical instability of the
convective boundary. We do not discuss the no-overshoot models
further.

Among the other three models, the CHeB lifetime differs by less
than 9 Myr, which is only around 8 per cent. The maximal-overshoot
sequence has a larger R2 and ! log LAGB

HB than the semiconvec-
tion sequence; this is also true throughout this study, regardless
of initial composition or input physics. Of the three sequences in
Fig. 7, the one with standard overshoot has the lowest ! log LAGB

HB .
However, ! log LAGB

HB and CHeB lifetime for the standard-overshoot
sequences strongly depend on the time-step constraints and the over-
shooting parameter fOS. These dependences are explored in Section
3.7.2. Each of these three mixing schemes fails to match the av-
erage R2 observed: the standard-overshoot, semiconvection, and
maximal-overshoot sequences have R2 = 0.096, 0.068, and 0.082,
respectively, compared with the observed average R2 = 0.117 ±
0.005.

In addition to the R2 discrepancy, none of the models in Fig. 7
can match ! log LAGB

HB = 0.455 ± 0.012 from observations. The
standard-overshoot, semiconvection, and maximal-overshoot se-
quences have ! log LAGB

HB = 0.38, 0.53, and 0.60, respectively. Con-
trary to the case for R2, the observed ! log LAGB

HB at least sits within
the spread resulting from the three mixing schemes. Fig. 7(b) shows
that the luminosity during CHeB is independent of the mixing
scheme. The broad range in ! log LAGB

HB is due to the disparity
in the masses of the helium-exhausted cores at the onset of shell
helium burning. In these sequences, shell helium burning begins
with core masses of approximately 0.05, 0.10, and 0.14 M⊙, re-
spectively. The dependence of the AGB clump luminosity on the

MNRAS 456, 3866–3885 (2016)
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Asteroseismology of core helium burning stars 137

Figure 18. Upper left panel: evolution of 1 M⊙ CHeB models with dif-
ferent mixing schemes (no overshoot, standard overshoot, semiconvection,
and maximal overshoot; in black, cyan, orange, and magenta, respectively)
in the !ν − !#1 plane. Markers are at 10 Myr intervals. Determinations
for Kepler field stars (grey dots) are from Mosser et al. (2014), and are
limited to those with reported mass 0.8 < M/M⊙ < 1.25. Upper right
panel: probability density curves (equation 20) for models in the upper left
panel (same colours), standard overshoot with !#1 computed using only
the region outside the partially mixed zone (cyan dots), standard overshoot
with increased MHe (cyan dashes), and observations (grey dashes). Lower
panel: surface luminosity evolution for the models in the upper left panel.

core also increases the mean !P, while modes of the same radial
order have a lower frequency.

3.5 Matching ensemble !"1 observations

In this section we compare the inferred !#1 from the population of
Kepler field stars with predictions from evolution models. We have
chosen two representative masses: 1 M⊙ which experiences typical
evolution for a red clump star (due to the uniformity of H-exhausted
core mass at the flash), and 2.5 M⊙ which is massive enough to
undergo core He-ignition in non-degenerate conditions (i.e. avoid
the core flash) and then move to the so-called secondary clump in
the HR diagram. We compare the models and observations with
probability density functions P(!#1) constructed by the addition
of Gaussian functions according to

P (!#1) = 1
N

N∑

i=1

1

σ
√

2π
exp

[
−

(
!#1 − !#1,i

)2

2σ 2

]
, (20)

where !#1, i represent each value from observations, or in the case
of models, calculations at 1 Myr intervals, and N is the total of
number of observations or calculated values. We use a standard

deviation of σ = 4 s and σ = 8 s for the 1 M⊙ and 2.5 M⊙ cases,
respectively (Figs 18 and 19).

In the 1 M⊙ case the maximal-overshoot models have the high-
est !#1, followed by the standard-overshoot, semiconvection, and
no-overshoot models. The spreads of the !#1 probability density
functions for the semiconvection and overshoot cases are smaller
than is observed, and offset to lower values, as shown in Fig. 18. In
contrast, the spread for the maximal-overshoot 1 M⊙ model appears
too broad, especially considering that we have computed single evo-
lution sequences rather than a population which would widen the
distribution.

Every one of the four low-mass models appears to spend too
much time with a low !#1. Two possible resolutions are (i) an
increased H-exhausted core mass at the flash, which increases !#1

(dashed lines in Figs 8 and 18), or (ii) that there is a difficulty
in observationally determining !#1 for stars that have recently
begun CHeB (discussed in Section 3.3). Both of these affect the
beginning of the CHeB, when !#1 is lowest. The fact that this
discrepancy exists even for the maximal-overshoot run, when the
convective core is the largest possible, suggests that the treatment of
convective boundaries cannot be the sole reason for it. In addition,
Fig. 19 shows that there is no evidence that this problem exists for
any of the higher-mass models. These more massive models do not
experience the core flash, do not ascend the RGB to as high lumi-
nosity, and have more luminous hydrogen burning at the beginning
of the CHeB phase, and thus would be unaffected by the proposed
resolutions. In Fig. 18 the appearance of the discrepancy at low
!#1 is worsened for the semiconvection and standard-overshoot
runs by the slow decrease in !#1 towards the end of CHeB. This
alone cannot explain the discrepancy, however, because it is still
present for sequences that do not undergo this slow drop in !#1

late in CHeB (e.g. the dotted curve in Fig. 18; discussed later in this
section).

The maximal-overshoot model is the only one of the four with
different mixing prescriptions that can reach !#1 values consistent
with the bulk of the low-mass observations. Among the remaining
cases, the standard-overshoot model is closest to the observations.
The shape of its !#1 probability density function also looks rea-
sonable, except that it is offset by at least 25 s. Even a substantial
increase in the H-exhausted core mass !MHe = 0.025 M⊙ (the most
permitted by Catelan et al. 1996) at the start of CHeB is not enough
to match the entire observed !#1 range. In that case it shifts the
!#1 probability density function higher by around 20 s.

The 1 M⊙ semiconvection sequence has a lower !#1 than our
standard-overshoot case, by around 10 s. This is despite the sim-
ilar evolution of Rcc and MHe which strongly influence !#1 (see
Section 3.2). It is also evident from Fig. 2 that the evolution of
the size of the partially mixed region is similar for both sequences.
We therefore attribute the difference in !#1 to the way the com-
position always varies smoothly in the semiconvection case, in-
creasing N over a large interval in radius instead of over sharp
spikes.

We have performed an explicit test of the effect of the steepness of
composition profiles on !#1. The three models in Fig. 16 are iden-
tical except for the composition near the edge of the semiconvection
zone at r ≃ 2.2 × 109 cm. The buoyancy frequency is nearly iden-
tical elsewhere in the structure (Fig. 16b) so any difference in !#1

must be due to the composition smoothing. In this case, smoothing
the discontinuity over !m = 0.01 M⊙ decreases !#1 by 9 s.

This effect is also apparent in Fig. 20, where smoothing the edge
of the fully mixed core increases !#1. It can be seen in panel (a)
that this smoothing increases the width of the peak in N (in the

MNRAS 452, 123–145 (2015)
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that the explosion characteristics strongly depend on
the mass of the progenitor and on its internal structure.
However, it is still unclear which are the most important
quantities among those characterizing the internal structure
of a core-collapse supernova progenitor.

Because stellar evolutionary calculations are subject
to restrictions (see, e.g. Jones et al. 2015, for recent code
comparison), we decided to generate progenitor mod-
els by ourselves in a more systematic and manageable
way. To this end, we used the approach proposed by
Baron & Cooperstein (1990) to construct initial models. In
this approach one prescribes the distributions of entropy
and electron fraction (Ye) in a progenitor model as func-
tions of the mass coordinate, and one assumes hydrostatic
equilibrium to obtain the density structure from these dis-
tributions. The hydrodynamic evolution of the progenitor
models is then simulated employing a microscopic equation
of state.

Contrary to Baron & Cooperstein (1990), we apply
their approach to modern radiation hydrodynamic simula-
tions of neutrino-driven core-collapse supernovae. While a
neutrino-driven explosion is the current standard paradigm
for core-collapse supernovae, Baron & Cooperstein (1990)
were discussing the influence of progenitor properties on
the prompt explosion scenario, in which the prompt shock
resulting from core bounce was thought to cause the ex-
plosion. In particular, we have performed one-dimensional
(1D) general relativistic hydrodynamic simulations includ-
ing a detailed treatment of neutrino transport and a nuclear
equation of state, i.e., our study is more elaborate than that
of Baron & Cooperstein (1990).

Using this approach, we were able to perform a com-
prehensive parameter study which displays the dependen-
cies of the outcome of 1D core-collapse supernova simula-
tions on the properties of the progenitor models. In addi-
tion, our approach has the advantage over other numerical
studies of core-collapse supernovae, which all rely on pro-
genitor models from stellar evolutionary calculations (but
see Yamamoto & Yamada 2016), that initial conditions can
be studied, which extend those currently predicted by stellar
evolutionary calculations.

In section 2 we explain how we constructed the progen-
itor models, and in section 3 we describe our hydrodynamic
method and present the results of our simulations. We dis-
cuss in detail the influence of the progenitor properties on
the core-collapse supernova dynamics in section 4, and con-
clude in section 5 with a summary and discussion of our
results.

2 PROGENITOR MODELS

In this section, we explain the strategies to obtain progenitor
models for core-collapse supernova simulations. First of all,
we construct progenitor models resembling the stellar evo-
lutionary model s11.2 of Woosley et al. (2002), which has
been widely used in hydrodynamic simulations.

M
M1 M2 M3 M4 M5

Sc
S1

S2

S5

Yec

Ye3

Ye4

S,Ye

Figure 1. Schematic behavior of the entropy S (red line) and
electron fraction Ye (blue line) distribution as a function of mass
for our progenitor models.

2.1 Hydrostatic equation

To construct a progenitor model for our hydrodynamic sim-
ulations, we solve the hydrostatic equation

dP
dM

= −
GM
4πr4

, (1)

where P,M,G, and r are the pressure, the mass coordinate,
the gravitational constant, and the radial coordinate, respec-
tively. The density is given by dM/dr = 4πr2ρ. To solve
Eq. (1) one needs to specify a value for the central density,
ρ0, which is one of parameters of this approach, and one
needs to have P given as a function of density ρ, entropy S,
and electron fraction Ye, i.e., an equation of state (EOS).

Following Baron & Cooperstein (1990), we change G →

geffG in Eq. (1), where geff < 1 is a factor mimicking the fact
that the progenitors are no longer in hydrostatic equilibrium,
but already in a dynamic state. We used this procedure to
destabilize the core in a uniform way, because reducing in-
stead the pressure (by reducing the entropy or Ye) may lead
to undesirable effects, like e.g., a strange mass accretion his-
tory (see Baron & Cooperstein 1990).

In the following subsections, we give the distributions
of S and Ye as functions of the mass coordinate M that we
used in our study. Given these functions, we integrate Eq. (1)
and obtain ρ(r) and M(r). Due to limited extent of the tab-
ular equation of state used in our simulations, we integrate
Eq. (1) outward in mass until the density drops below a value
of 103 g cm−3. We note that this Newtonian treatment of the
progenitor model is compatible with the general relativistic
treatment used in our hydrodynamic simulations, because
the central lapse function is 1 − α ≈ O(10−3) for the pro-
genitor models, i.e., the use of the Newtonian approximation
is well justified.

MNRAS 000, 1–10 (2016)

M1: the edge of the final convection in the radiative core
M2: the inner edge of the convection zone in the iron core
M3: the NSE core
M4: the iron core mass
M5: the base of the silicon/oxygen shell

[Suwa & E. Müller, MNRAS, 460, 2664 (2016)]
original idea is given by Baron & Cooperstein (1990)
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Table 1. Parameters of our models resembling the stellar evolutionary model s11.2 of Woosley et al. (2002)

Model M1 M2 M3 M4 M5 Sc S1 S2 S5 Yec Ye3 Ye4 ρc geff
[M⊙] [kB/baryon] [1010g cm−3]

WHW02-s11.2-g0.99 0.82 1.16 1.26 1.30 1.32 0.62 1.1 1.74 5.4 0.425 0.48 0.5 1.6 0.99
WHW02-s11.2-g0.975 — — — — — — 1.0 1.65 — — — — — 0.975
WHW02-s11.2-g0.95 — — — — — — 0.75 1.64 — — — — — 0.95
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Figure 3. Density (top panel) and temperature (bottom panel)
distributions of the stellar evolutionary model s11.2 (red) and
of our three corresponding progenitor models (purple, blue, and
green). The bottom plot in the upper panel shows the density
distributions of our three models normalized by that of the s11.2
model.

approximation (IDSA) (Liebendörfer et al. 2009), which
has been used, e.g., by Suwa et al. (2010); Takiwaki et al.
(2012); Nakamura et al. (2015), and Pan et al. (2016) to
perform multi-dimensional core-collapse simulations. In
IDSA the electron neutrino and electron anti-neutrino dis-
tribution functions are split into two components, which are
solved with different numerical techniques.

The weak interaction rates implemented in our code
are based on Mezzacappa & Bruenn (1993), and the cool-
ing by muon and tau neutrinos is modeled with a leakage
scheme. Neutrino-electron scattering is also implemented
in this code according to Liebendörfer (2005) by express-
ing the electron fraction Ye as a function of ρ. However,
since this function is calibrated for specific progenitor mod-
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Figure 4. Central density as a function of time after bounce for
the stellar evolutionary model s11.2 (red) and our three corre-
sponding progenitor models (purple, blue, and green). The time
of bounce differs, being later for models with a larger geff because
these models are closer to a hydrostatic configuration.

els and it is not always adequate, we did not employ it in
this work. The equation of state (EOS) used in our simu-
lations is that of Lattimer & Swesty (1991) with an incom-
pressibility K = 220MeV for ρ ! 108 g cm−3 and that of
Timmes & Arnett (1999) for ρ < 108 g cm−3. In the lat-
ter density range the average nuclear mass number A and
atomic number Z are assumed to be the same as in the EOS
of Lattimer & Swesty (1991) at ρ = 108 g cm−3. We follow
O’Connor & Ott (2010) to match the thermodynamic quan-
tities of both EOS tables at the transition density. The min-
imum density of of our combined EOS table is 103 g cm−3.

Accordingly, the results of our study are based on the
use of a modern numerical tool that is well suited for sim-
ulations of neutrino-driven supernova explosions, because it
is able to handle general relativistic gravity, neutrino radi-
ation transport, and a nuclear equation of state. Nowadays
we know that all of these ingredients are of considerable im-
portance for a proper simulation of the supernova explosion
mechanism, but none of them were taken into account in the
work of Baron & Cooperstein (1990).

3.2 Results

Fig. 4 shows the central density as a function of time after
bounce for all investigated models based on s11.2. Because
our models were computed with different values of geff , they
bounce at different times, which range from ∼ 390 to 170ms.
The density evolution of the stellar evolutionary model s11.2
is very similar to that of model WHW02-s11.2-g0.975 (al-
though the central density of the model slightly decreases
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Figure 5. Comparison of the density, temperature, radial ve-
locity, and electron fraction distributions (from top to bottom).
Dashed and dotted lines give the profiles at the time when the
central density reaches a value of about 1011 and 1014 g cm−3,
respectively.

because the grid resolutions of the hydrodynamical simu-
lations and those of the initial models differ). The figure
implies that the collapse of our initially hydrostatic models
with geff

∼
< 0.975 proceeds similarly to that of the already

dynamically collapsing core of the stellar evolutionary pro-
genitor model s11.2, even though the former models do not
have any initial radial velocity.

Fig. 5 shows the evolution of the density, temperature,
radial velocity, and electron fraction distributions before
core bounce. The snapshots are taken at the time when
the central density has a value of ≈ 1011 (dashed lines)
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Figure 6. Evolution of the mass accretion rate (top) and of the
electron neutrino (solid) and electron antineutrino (dashed) lu-
minosities (bottom) of the stellar evolutionary model s11.2 (red)
and our three corresponding progenitor models (purple, blue, and
green).

and ≈ 1014 g cm−3 (dotted lines), respectively. At the earlier
snapshot (ρc = 1011 g cm−3), the temperature distribution
of model WHW02-s11.2-g0.95 is quite different, because its
initial temperature profile differed significantly from those
of all other models. At later times all models evolved quite
similarly. The early electron fraction distributions exhibit
larger difference than those of the other quantities, because
the electron capture rate strongly depends on temperature
(∝ T 6), i.e., a small difference in temperature can result
in a large difference in Ye. However, once β−equilibrium is
achieved, the Ye distributions of the models become quite
similar (see dotted lines in bottom panel).

In Fig. 6 we display the evolution of the mass accre-
tion rate measured at a radius of 300 km (top panel) and of
the electron neutrino (solid lines) and electron antineutrino
(dashed lines) luminosities of the stellar evolutionary model
s11.2 and of our three corresponding progenitor models. Be-
cause of small differences in the density structures of the
models, both the mass accretion rates and the neutrino lu-
minosities differ slightly between the models. About 50ms
post bounce, model s11.2 has the smallest mass accretion
rate because the density gradient at M ≈ 1.3M⊙ is steepest
for this model. At later times (∼ 100ms post bounce) the
mass accretion rate is largest in this model, because its den-
sity is the largest of all models in the relevant mass range
1.3

∼
< M/M⊙

∼
< 1.5 (see Fig. 3).
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Fig. 7 illustrates the shock evolution after core bounce.
We define the shock position as the radius where the spe-
cific entropy reaches a value of 6 kB baryon−1. Model s11.2
has the largest peak shock radius among all the investigated
models, because it possesses the steepest density gradient
(see Fig. 3). This fact leads to a rapid decrease of the mass
accretion rate with radius and hence of the ram pressure
on the shock. Since the shock radius is determined by the
force balance between the thermal post-shock pressure and
the pre-shock ram pressure, a lower ram pressure gives rise
to a larger shock radius. Our three other corresponding pro-
genitor models also show slightly different shock evolutions
because their mass accretion rates differ from each other and
from that of model s11.2 (see Fig. 6).

4 PARAMETER DEPENDENCIES AND

EXPLOSION PROPERTIES

In the last section, we demonstrated the reliability of the new
method for constructing initial conditions for core-collapse
supernova simulations by comparing models constructed by
this method with a particular widely used presupernova
model (WHW02-s11.2). The hydrodynamic features of these
models agree with each other quite well. In Appendix A,
we provide fitting parameters (see TableA1) which closely
approximate the density structures of other presupernova
models used in the literature (see Fig. A1).

Next we consider a second set of initial conditions dif-
fering from those reproducing progenitor models based on
stellar evolutionary calculations. In particular, we present
our numerical results for parameterized initial models based
on model 109 of Baron & Cooperstein (1990), which has a
relatively small central entropy and a small core mass, i.e.
its structure differs significantly from that of initial models
obtained with stellar evolutionary calculations. Thus, this
second set of parametrized initial models allows us to study
the dependence of the outcome of core-collapse supernova
simulations for quite different initial conditions. The corre-
sponding model parameters are given in Table 2.

We first changed the value of one parameter from model
to model (BC01 to BC15 in Table 2), and then we fixed the
value of the central entropy to Sc = 0.4 and again changed

109
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Figure 8. Model structure in a temperature-density plane. Black
and grey lines give the profiles of our parameterized models and
of models obtained from stellar evolutionary calculations (see Ap-
pendix A), respectively.

one of the other parameters from model to model(BC16 to
BC22 in Table 2). As we will show below, the reason for this
approach was that model BC02 gives rise to a successful ex-
plosion, i.e., the parameter space around this model is worth
investigating. We note that we restricted the parameters we
chose in our study by the condition that the density at M5

is larger than 103 g cm−3, which implies a lower limit for
the entropy or the electron fraction, because a low entropy
or electron fraction leads to a faster decrease of the density
with increasing mass coordinate.

In Table 3 we give the values of some quantities char-
acterizing the density structures of our second set of
parametrized models. Columns 2 to 4 give the radius (in
units of 108 cm), the density (in units of 106 g cm−3), and
the temperature (in units of 109 K) at the mass coordinate
M = M5, respectively. In the fifth column we list the com-
pactness parameter ξM (O’Connor & Ott 2011), which is
defined as

ξM =
M/M⊙

R(M)/1000 km
, (10)

where R(M) is the radius of the sphere containing a mass
M . Note that we use here the compactness parameter ξM5

,
whereas O’Connor & Ott (2011) considered ξM=2.5M⊙

in-
stead. According to O’Connor & Ott (2011) smaller values
of ξM are better for explosions. Column 6 gives the param-
eter µM , defined by Ertl et al. (2016) as

µM =
dM
dr

∣

∣

∣

∣

r=R(M)

= 4πρR2(M). (11)

Whereas Ertl et al. (2016) obtained the value of dM/dr
by computing the numerical derivative of dM/dr at the
mass shell where S = 4kB baryon−1 with a mass interval of
0.3M⊙, we used for simplicity the second equality in Eq. (11)
to compute dM/dr analytically. Ertl et al. (2016) showed
that for a given value of MS=4 (the mass coordinate where
S = 4kB baryon−1), a smaller value of µM is better for an
explosion. Finally, the last column gives the total binding
energy of the initial model, which includes the contribution
of the internal energy.

Fig. 8 shows the structure of our second set of parame-
terized models (solid lines) in a density-temperature plane.
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Table 1. Parameters of our models resembling the stellar evolutionary model s11.2 of Woosley et al. (2002)

Model M1 M2 M3 M4 M5 Sc S1 S2 S5 Yec Ye3 Ye4 ρc geff
[M⊙] [kB/baryon] [1010g cm−3]

WHW02-s11.2-g0.99 0.82 1.16 1.26 1.30 1.32 0.62 1.1 1.74 5.4 0.425 0.48 0.5 1.6 0.99
WHW02-s11.2-g0.975 — — — — — — 1.0 1.65 — — — — — 0.975
WHW02-s11.2-g0.95 — — — — — — 0.75 1.64 — — — — — 0.95
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Figure 3. Density (top panel) and temperature (bottom panel)
distributions of the stellar evolutionary model s11.2 (red) and
of our three corresponding progenitor models (purple, blue, and
green). The bottom plot in the upper panel shows the density
distributions of our three models normalized by that of the s11.2
model.

approximation (IDSA) (Liebendörfer et al. 2009), which
has been used, e.g., by Suwa et al. (2010); Takiwaki et al.
(2012); Nakamura et al. (2015), and Pan et al. (2016) to
perform multi-dimensional core-collapse simulations. In
IDSA the electron neutrino and electron anti-neutrino dis-
tribution functions are split into two components, which are
solved with different numerical techniques.

The weak interaction rates implemented in our code
are based on Mezzacappa & Bruenn (1993), and the cool-
ing by muon and tau neutrinos is modeled with a leakage
scheme. Neutrino-electron scattering is also implemented
in this code according to Liebendörfer (2005) by express-
ing the electron fraction Ye as a function of ρ. However,
since this function is calibrated for specific progenitor mod-
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Figure 4. Central density as a function of time after bounce for
the stellar evolutionary model s11.2 (red) and our three corre-
sponding progenitor models (purple, blue, and green). The time
of bounce differs, being later for models with a larger geff because
these models are closer to a hydrostatic configuration.

els and it is not always adequate, we did not employ it in
this work. The equation of state (EOS) used in our simu-
lations is that of Lattimer & Swesty (1991) with an incom-
pressibility K = 220MeV for ρ ! 108 g cm−3 and that of
Timmes & Arnett (1999) for ρ < 108 g cm−3. In the lat-
ter density range the average nuclear mass number A and
atomic number Z are assumed to be the same as in the EOS
of Lattimer & Swesty (1991) at ρ = 108 g cm−3. We follow
O’Connor & Ott (2010) to match the thermodynamic quan-
tities of both EOS tables at the transition density. The min-
imum density of of our combined EOS table is 103 g cm−3.

Accordingly, the results of our study are based on the
use of a modern numerical tool that is well suited for sim-
ulations of neutrino-driven supernova explosions, because it
is able to handle general relativistic gravity, neutrino radi-
ation transport, and a nuclear equation of state. Nowadays
we know that all of these ingredients are of considerable im-
portance for a proper simulation of the supernova explosion
mechanism, but none of them were taken into account in the
work of Baron & Cooperstein (1990).

3.2 Results

Fig. 4 shows the central density as a function of time after
bounce for all investigated models based on s11.2. Because
our models were computed with different values of geff , they
bounce at different times, which range from ∼ 390 to 170ms.
The density evolution of the stellar evolutionary model s11.2
is very similar to that of model WHW02-s11.2-g0.975 (al-
though the central density of the model slightly decreases

MNRAS 000, 1–10 (2016)
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Table 2. Parameters characterizing the entropy, electron fraction, and density distributions of our initial models, which all had M1 =
0.72M⊙, M2 = 1.0M⊙, M3 = 1.1M⊙, M4 = 1.15M⊙, M5 = 1.17M⊙, Ye4 = 0.5, and geff = 0.975. The parameter values which differ
from those of model BC01 are given in boldface.

Model Sc S1 S2 S5 Yec Ye3 ρc
[kB/baryon] [1010 g cm−3]

BC01 0.5 0.63 1.6 4.0 0.415 0.46 2.0
BC02 0.4 0.63 1.6 4.0 0.415 0.46 2.0
BC03 0.6 0.63 1.6 4.0 0.415 0.46 2.0
BC04 0.5 0.53 1.6 4.0 0.415 0.46 2.0
BC05 0.5 0.73 1.6 4.0 0.415 0.46 2.0
BC06 0.5 0.63 1.5 4.0 0.415 0.46 2.0
BC07 0.5 0.63 1.7 4.0 0.415 0.46 2.0
BC08 0.5 0.63 1.6 3.0 0.415 0.46 2.0
BC09 0.5 0.63 1.6 6.0 0.415 0.46 2.0
BC10 0.5 0.63 1.6 4.0 0.411 0.46 2.0
BC11 0.5 0.63 1.6 4.0 0.425 0.46 2.0
BC12 0.5 0.63 1.6 4.0 0.415 0.452 2.0
BC13 0.5 0.63 1.6 4.0 0.415 0.47 2.0
BC14 0.5 0.63 1.6 4.0 0.415 0.46 1.0

BC15 0.5 0.63 1.6 4.0 0.415 0.46 3.0

BC16 0.4 0.73 1.6 4.0 0.415 0.46 2.0
BC17 0.4 0.63 1.7 4.0 0.415 0.46 2.0
BC18 0.4 0.63 1.6 6.0 0.415 0.46 2.0
BC19 0.4 0.63 1.6 4.0 0.425 0.46 2.0
BC20 0.4 0.63 1.6 4.0 0.415 0.47 2.0
BC21 0.4 0.63 1.6 4.0 0.415 0.46 1.0

BC22 0.4 0.63 1.6 4.0 0.415 0.46 3.0

Table 3. Some properties characterizing our parametrized initial models

Model R(M5)a ρ(M5)b T (M5)c ξM5

d µM5

e Eb
f

[108 cm] [106 g cm−3] [109 K] [B]

BC01 1.25 5.77 3.76 0.93 0.057 2.59
BC02 1.50 1.98 2.73 0.78 0.028 2.50
BC03 1.10 11.7 4.58 1.06 0.090 2.78
BC04 1.81 0.53 1.78 0.65 0.011 2.47
BC05 1.08 13.8 4.79 1.08 0.103 2.91
BC06 1.44 2.13 2.80 0.81 0.028 2.50
BC07 1.17 10.0 4.39 1.00 0.086 2.80
BC08 1.22 7.29 3.44 0.96 0.069 2.52
BC09 1.31 4.07 4.06 0.89 0.044 4.96
BC10 1.72 0.81 2.05 0.68 0.015 2.47
BC11 0.96 26.2 5.68 1.22 0.151 3.47
BC12 1.98 0.27 1.41 0.59 0.007 2.47
BC13 1.07 14.8 4.88 1.09 0.107 2.95
BC14 1.56 3.14 3.15 0.75 0.048 2.61
BC15 1.14 6.30 3.86 1.02 0.052 2.54

BC16 1.19 8.17 4.15 0.98 0.073 2.68
BC17 1.29 5.68 3.75 0.90 0.060 2.62
BC18 1.58 1.56 3.06 0.74 0.025 5.60
BC19 1.01 19.2 5.24 1.16 0.125 3.14
BC20 1.16 9.44 4.32 1.01 0.081 2.72
BC21 1.90 0.91 2.13 0.61 0.021 2.49
BC22 1.43 1.60 2.56 0.82 0.021 2.48

a Radius of M = M5
b Density of M = M5
c Temperature of M = M5
d Compactness parameter, ξM ≡ (M/M⊙)/[R(M)/1000 km]
e µM ≡ dM/dR = 4πR(M)2ρ(M) in units of M⊙/1000 km
f Total binding energy

MNRAS 000, 1–10 (2016)
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Figure 9. Evolution of the diagnostic explosion energy for model
BC18.

The additional grey lines give the structures of the models
listed in Appendix A, which are obtained by stellar evolu-
tion calculations. Obviously, our parametrized models show
a similar trend as the evolutionary ones, except for their
non-monotonic behavior at densities ρ ∼ 107 g cm−3 and
at densities of a few times 109 g cm−3, i.e. near the center.
In other words, these models allow us to investigate ther-
modynamic regimes beyond those encountered in canonical
models.

The Chandrasekhar mass is often used as a rough esti-
mate of the iron core mass. Since the former mass depends
on the electron fraction as

Mch ≈ 5.87Y 2
e M⊙ (12)

= 1.01

(

Ye

0.415

)2

M⊙, (13)

our small iron core (M4 = 1.15M⊙) can be unstable.
In Table 4 we provide an overview of the hydrody-

namic simulations with our second set of models. The table
columns give the time until bounce, the postbounce time
when the shock reaches a radius of 400 km, the final time of
the simulation, the maximum shock radius, the final bary-
onic mass of the PNS, and the diagnostic explosion energy
at the times when the shock reaches a radius of 1000km and
at tfin, respectively. The remaining columns give the mini-
mum inner core mass, the value of Ye in the center at tbounce,
and the initial kinetic energy. The PNS mass is defined as
the mass with ρ > 1011 g cm−3, and the diagnostic explo-
sion energy as the integral of the local energy, i.e. the sum
of the specific internal, kinetic and gravitational energies,
of all zones where this quantity and the radial velocity are
positive. Here we used the general relativistic expression for
the local energy of Müller et al. (2012), which is given as

elocal = α
[(

ρc2 + ϵc2 + P
)

W 2
− P

]

− ρWc2, (14)

where α is the lapse function, c the speed of light, ϵ the
specific internal energy, and W the Lorentz factor. This ex-
pression reduces to the well-known Newtonian expression
(elocal = ρφ + ρv2/2 + ρϵ with φ and v being the gravi-
tational potential and the velocity, respectively) when one
omits higher-order terms like (v/c)2.

For model BC18, which produces the most energetic
explosion of our second set of models, Sc = 0.4 and

S5 = 6 kB baryon−1. The diagnostic explosion energy of this
model already reaches 0.39 B (= 3.9 × 1050 erg) at the end
of the simulation, and it is still increasing (see Fig. 9) at a
rate of 5B s−1, i.e., it will reach a value of 1B about 310ms
after core bounce.

Concerning the explosion energy one should note that
the envelope located above the Si/O layer has a large binding
energy of O(1049) to O(1051), the actual value depending on
the ZAMS mass of the progenitor (e.g. Pejcha & Thompson
2015). Therefore, the values given in Table 4 are not the
observable explosion energies. To determine the latter ener-
gies, one needs to perform long-term simulations including
the stellar envelopes, which will be left for future work.

For our second set of models, the electron fraction at
bounce is larger than in the simulations with our first set
of models based on the stellar evolutionary model s11.2
(see previous section and Fig. 5), in which Yc,bounce ≈ 0.3.
Because of their smaller initial central entropy, the latter
models have a lower temperature, which implies a smaller
electron capture rate during collapse. The resulting larger
electron fractions explain the larger kinetic energies at the
bounce (see, e.g. Müller 1998), which are given by the ki-
netic energy of the inner core at the “last good homology”
(Brown et al. 1982). Of the models listed in the upper part
of Table 4, model BC02 has the largest initial kinetic energy.
Among these models, model BC02 is also the only explod-
ing model. Although a higher value of Yec also leads to a
larger value of Yc,bounce and a larger initial kinetic energy
(see model BC19 in the lower part of Table 4), model BC19
does not explode because of its larger gravitational binding
energy (see Table 3). However, we note that in comparison to
the other non-exploding models (BC16-BC18, BC20-BC22),
the shock propagates out to an exceptionally large maximum
shock radius of 873 km in model BC19, i.e, it is a marginal
model marking the boundary between exploding and non-
exploding models.

In all exploding models the explosion sets in early (∼
20ms after core bounce), which seems to suggest a prompt
explosion. However, these explosions are still aided by neu-
trino heating, i.e., they differ from prompt explosion models,
in which initial kinetic energy is large enough to eject the
envelope. To validate this statement, we performed a simu-
lation without neutrino heating by setting the distribution
function of streaming particles, which is essential for neu-
trino heating in IDSA (see Liebendörfer et al. 2009), to zero.
Then, the exploding model does no longer explode, i.e., it
was no prompt explosion.

From these result, we conclude that the iron core struc-
ture is crucial for obtaining an explosion. Especially, a low
entropy at the center helps to make an explosion. To reach
a more general conclusion, we need a large number of sim-
ulations covering a wider range of parameter space, which
will be reported in a forthcoming publication.

5 SUMMARY AND DISCUSSION

In this paper, we investigated a method to construct
parametrized initial progenitor models for core-collapse su-
pernova simulations. So far, initial conditions of these simu-
lations have been taken from the final phase of stellar evolu-
tionary calculations, which depend on several uncertainties,
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Question: 
How can we produce strong (Eexp~1051 erg) explosion?

Possible Answer:
Change initial conditions. By starting from specific initial 
conditions, strong explosions are obtained without any 
change of simulation codes.

Next Question: 
Which kind of stellar evolutionary calculations can produce 
these perforable presupernova structure?


