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Supernovae make neutron stars
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Key observables characterizing supernovae

Explosion energy: ~1051 erg 

Ni mass: ~0.1M⦿ 

Ejecta mass: ~M⦿ 

NS mass: ~1 - 2 M⦿
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Explosion energy and Ni amount
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blackbodies, of course. Using the theoretical spectra of
Eastman et al. (1996), I find that the bolometric corrections
derived from Planck functions are !0.2 mag too large for
Teff " 6500 K, about right (#0.1 mag) in the range
5000 $ Teff $ 6500 K, and systematically low for
Teff $ 5000 K. It would be convenient if the LN65 formulae
were rederived with improved corrections.

5. PROPERTIES OF CORE-COLLAPSE SUPERNOVAE

Core-collapse SNe can also be hosted by massive stars
that have lost most or all of their hydrogen-rich envelopes
(SNe Ib), and even most or all of their helium envelopes
(SNe Ic). Therefore, it proves interesting to compare the
physical properties of such objects with those derived from
SNe IIP. A bibliographic search reveals that there are only a
handful of well-studied SNe Ib/c. Table 4 lists such objects

and the corresponding references from which their physical
parameters were obtained.

In general, SNe Ib/c have bell-shaped light curves with a
rise time of !15–20 days, a fast-decline phase of !30 days,
and a slower decline phase at a rate between 0.01 and 0.03
mag day%1. Unlike SNe IIP, the light curves of SNe Ib/c are
promptly powered by 56Ni ! 56Co ! 56Fe. While the peak
is determined by the amount of nickel synthesized in the
explosion, the width depends on the ability of the photons
to diffuse out from the SN interior, which is determined by
the envelope mass and expansion velocity. Therefore, the
early-time light curve provides useful constraints on the
56Ni mass, envelope mass, and kinetic energy (Arnett 1996).
Additional constraints on the kinetic energy come from the
Doppler broadening of the spectral lines. The late-time
decline rate reveals that a fraction of the gamma rays from
the radioactive decay escape from the SN ejecta without
being thermalized and can therefore be used to quantify the
degree of 56Ni mixing in the SN interior. Nomoto et al.
(2000) have modeled SNe Ib as helium stars that lose their
hydrogen envelopes by mass transfer to a binary compan-
ion, and SNe Ic as C/O bare cores that lose their He enve-
lope in a second stage of mass transfer. In both cases they
assume spherically symmetric explosions. Table 4 sum-
marizes the parameters derived from such models for the
seven SNe Ib/c.

Figure 7 shows envelope masses and nickel masses as a
function of explosion energy for the seven SNe Ib/c along
with the 16 SNe II shown in Figure 6. The top panel reveals
that SNe Ib/c appear to follow the same pattern shown by
SNe II, namely, that SNe with greater envelope masses pro-
duce more energetic explosions. The main difference
between both subtypes, of course, is the vertical offset
caused by the strong mass loss suffered by SNe Ib/c prior to
explosion. From the bottom panel it is possible to appreci-
ate that SN 1998bw was quite remarkable in explosion
energy (60 foe) and nickel mass (0.5M&) compared to all of
the other core-collapse SNe. Owing to its extreme energy,
this object has been called a hypernova. SN 1998bw is also
remarkable because it was discovered at nearly the same
place and time as GRB 980425 (Galama et al. 1998). The
Type Ic supernovae SN 1997ef and SN 2002ap are located
far below SN 1998bw in the energy scale (8 and 7 foe,
respectively), yet far above the normal SN 1994I. Despite
their greater than normal energies, neither of these objects
produced unusually higher nickel masses compared to lower
energy SNe Ib/c. Although the statistics are poor, it proves
interesting that both SNe Ib/c and SNe II share the same
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Fig. 6.—Envelope mass and nickel mass of SNe II, as a function of
explosion energy. Filled circles represent the 13 SNe IIP for which I was
able to apply the technique of LN85. The three crosses correspond to SN
1987A, SN 1997D, and SN 1999br, which have been modeled in detail by
Arnett (1996) and Zampieri et al. (2002). The nickel yield for SN 1999br
comes from this paper (Table 2).

TABLE 4

Physical Parameters for Type Ib/c Supernovae

SN Type
Energy

('1051 ergs)
EjectedMass

(M&)
NickelMass

(M&) References

1983I................. Ic 1.0 2.1 0.15 1
1983N ............... Ib 1.0 2.7 0.15 1
1984L................ Ib 1.0 4.4 0.15 1
1994I................. Ic 1.0 0.9 0.07 2
1997ef ............... Ic 8.0 7.6 0.15 2
1998bw ............. Ic 60.0 10.0 0.50 2
2002ap .............. Ic 7.0 3.75 0.07 3

References.—(1) Shigeyama et al. 1990; (2) Nomoto et al. 2000; (3)Mazzali et al. 2002.
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Figure 1. A schematic SNIIP light curve. The open circle marks the middle
of the plateau and the two full circles show the plateau boundaries. The light
curve tail powered by 56Co decay is also shown (τCo = 111.3 d).

The preliminary results of this study were reported to the Work-
shop on the Physics of Supernovae, held at Garching, Germany,
2002 July (Nadyozhin 2003).

2 A C O M PA R I S O N O F H Y D RO DY NA M I C
M O D E L S W I T H O B S E RVAT I O N S

Fig. 1 shows a schematic SNIIP light curve. The plateau is defined
as part of the light curve on which the supernova brightness re-
mains within 1 mag of the mean value. For some supernovae, the
plateau begins almost immediately after the onset of the explosion
(t = 0), whereas for others a short luminosity peak can precede the
plateau. The peak either appears as a result of a shock wave break-
out in the case of pre-supernovae of not very large initial radii (R !
1000 R⊙) or, according to Grassberg et al. (1971), originates from
the emergence of a thermal wave precursor for pre-supernovae of
very large radii (R ≈ 2000–5000 R⊙) and of moderate explosion
energies (E ! 1 × 1051erg), or, finally, it may occur as a result of
interaction between the supernova envelope and a dense stellar wind
(Grassberg & Nadyozhin 1987). For some SNIIP the peak duration
δt lasts only a few days and is difficult to observe (shock wave

Table 1. Observational data for 14 SNIIP.

SN Host galaxy v0 AV V #t uph Ref.a

(km s−1) (mag) (mag) (d) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8)

1968L NGC 5236 516 0.219 12.0 80 4100 1,2,3
1969L NGC 1058 518 0.203 13.4 100 4000 1,2
1986L NGC 1559 1292 0.099 14.7 110 4000 4
1988A NGC 4579 1519 0.136 15.0 110 3000 1,2,4,5,6
1989L NGC 7339 1313 1.00 16.5 140 3000 7,19
1990E NGC 1035 1241 1.083 16.0 120 4000 2,4,8,9
1991al LEDA 140858 4572 0.318 17.0 90 6000 4
1992af ESO 340-G038 6000 0.171 17.3 90 6000 4,7
1992am anon 0122-04 14600 0.464 19.0 110 4800 4,10
1992ba NGC 2082 1104 0.193 15.43 100 2900 4,7
1999cr ESO 576-G034 6069 0.324 18.6 100 3600 4
1999em NGC 1637 717 0.314 14.0 110 3000 4,11,12,13,17
1999gi NGC 3184 592 0.65 15.0 110 2900 14,15,16,18
1987A LMC 278 0.465 3.3 110 2900 4

aReferences: (1) Patat et al. (1993); (2) Schmidt, Kirshner & Eastman (1992); (3) Wood & Andrews (1974); (4) Hamuy (2001);
(5) Ruiz-Lapuente et al. (1990); (6) Turatto et al. (1993); (7) Schmidt et al. (1994a); (8) Schmidt et al. (1993); (9) Benetti
et al. (1994); (10) Schmidt et al. (1994b); (11) Hamuy et al. (2001); (12) Haynes et al. (1998); (13) Baron et al. (2000); (14)
Schlegel (2001); (15) Smartt et al. (2001); (16) Li et al. (2002); (17) Elmhamdi et al. (2003); (18) Leonard et al. (2002b); (19)
Pennypacker & Perlmutter (1989).

breakout); for others it could be as large as 10–20 d (thermal wave
or dense wind). Examples of the latter may be supernovae such as
SNe 1988A, 1991al and 1992af (see below).

It is quite clear that the middle of the plateau is to be used as
the main reference point to compare the theoretical models with
observations. Litvinova & Nadyozhin (1983, 1985, hereafter LN83,
LN85) calculated a grid of supernova models for E, M and R within
limits of 0.18–2.91 × 1051 erg, 1–16 M⊙ and 300–5000 R⊙. They
found E, M and R to be strongly correlated with the plateau dura-
tion #t , the mid-plateau value of the absolute V magnitude MV , and
the expansion velocity uph at the level of the photosphere (Fig. 1).
According to LN85, the following approximate relations can be used
to derive E, M and R from observations:

lg E = −0.135MV + 2.34 lg #t + 3.13 lg uph − 4.205, (1)

lg M = −0.234MV + 2.91 lg #t + 1.96 lg uph − 1.829, (2)

lg R = −0.572MV − 1.07 lg #t − 2.74 lg uph − 3.350, (3)

where E is expressed in units of 1051 erg, M and R are in solar
units, #t in days, and uph in 1000 km s−1. Here MV can be expressed
through the apparent V magnitude by the relation

MV = V − AV − 5 lg(D/1 Mpc) − 25, (4)

where D is the distance to a supernova and AV is the total absorption
on the way to the supernova. One can find from equations (1)–(3)
that E, M and R scale with the distance as

E ∼ D−0.675, M ∼ D−1.17, R ∼ D2.86. (5)

Thus, it is very important to know D with as high accuracy as possi-
ble. We have selected 14 SNe, whose observational data are collected
in Table 1. The entries are: the heliocentric recession velocity v0

(from the NASA/IPAC Extragalactic Database, NED) in column 3;
the total absorption AV in column 4; the apparent V magnitude of
the mid-point of the plateau in column 5; the duration #t of the
plateau in column 6; and the photosphere expansion velocity uph in
column 7. References are given in column 8.

C⃝ 2003 RAS, MNRAS 346, 97–104
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Figure 1. A schematic SNIIP light curve. The open circle marks the middle
of the plateau and the two full circles show the plateau boundaries. The light
curve tail powered by 56Co decay is also shown (τCo = 111.3 d).
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δt lasts only a few days and is difficult to observe (shock wave

Table 1. Observational data for 14 SNIIP.

SN Host galaxy v0 AV V #t uph Ref.a

(km s−1) (mag) (mag) (d) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8)

1968L NGC 5236 516 0.219 12.0 80 4100 1,2,3
1969L NGC 1058 518 0.203 13.4 100 4000 1,2
1986L NGC 1559 1292 0.099 14.7 110 4000 4
1988A NGC 4579 1519 0.136 15.0 110 3000 1,2,4,5,6
1989L NGC 7339 1313 1.00 16.5 140 3000 7,19
1990E NGC 1035 1241 1.083 16.0 120 4000 2,4,8,9
1991al LEDA 140858 4572 0.318 17.0 90 6000 4
1992af ESO 340-G038 6000 0.171 17.3 90 6000 4,7
1992am anon 0122-04 14600 0.464 19.0 110 4800 4,10
1992ba NGC 2082 1104 0.193 15.43 100 2900 4,7
1999cr ESO 576-G034 6069 0.324 18.6 100 3600 4
1999em NGC 1637 717 0.314 14.0 110 3000 4,11,12,13,17
1999gi NGC 3184 592 0.65 15.0 110 2900 14,15,16,18
1987A LMC 278 0.465 3.3 110 2900 4

aReferences: (1) Patat et al. (1993); (2) Schmidt, Kirshner & Eastman (1992); (3) Wood & Andrews (1974); (4) Hamuy (2001);
(5) Ruiz-Lapuente et al. (1990); (6) Turatto et al. (1993); (7) Schmidt et al. (1994a); (8) Schmidt et al. (1993); (9) Benetti
et al. (1994); (10) Schmidt et al. (1994b); (11) Hamuy et al. (2001); (12) Haynes et al. (1998); (13) Baron et al. (2000); (14)
Schlegel (2001); (15) Smartt et al. (2001); (16) Li et al. (2002); (17) Elmhamdi et al. (2003); (18) Leonard et al. (2002b); (19)
Pennypacker & Perlmutter (1989).

breakout); for others it could be as large as 10–20 d (thermal wave
or dense wind). Examples of the latter may be supernovae such as
SNe 1988A, 1991al and 1992af (see below).

It is quite clear that the middle of the plateau is to be used as
the main reference point to compare the theoretical models with
observations. Litvinova & Nadyozhin (1983, 1985, hereafter LN83,
LN85) calculated a grid of supernova models for E, M and R within
limits of 0.18–2.91 × 1051 erg, 1–16 M⊙ and 300–5000 R⊙. They
found E, M and R to be strongly correlated with the plateau dura-
tion #t , the mid-plateau value of the absolute V magnitude MV , and
the expansion velocity uph at the level of the photosphere (Fig. 1).
According to LN85, the following approximate relations can be used
to derive E, M and R from observations:

lg E = −0.135MV + 2.34 lg #t + 3.13 lg uph − 4.205, (1)

lg M = −0.234MV + 2.91 lg #t + 1.96 lg uph − 1.829, (2)

lg R = −0.572MV − 1.07 lg #t − 2.74 lg uph − 3.350, (3)

where E is expressed in units of 1051 erg, M and R are in solar
units, #t in days, and uph in 1000 km s−1. Here MV can be expressed
through the apparent V magnitude by the relation

MV = V − AV − 5 lg(D/1 Mpc) − 25, (4)

where D is the distance to a supernova and AV is the total absorption
on the way to the supernova. One can find from equations (1)–(3)
that E, M and R scale with the distance as

E ∼ D−0.675, M ∼ D−1.17, R ∼ D2.86. (5)

Thus, it is very important to know D with as high accuracy as possi-
ble. We have selected 14 SNe, whose observational data are collected
in Table 1. The entries are: the heliocentric recession velocity v0

(from the NASA/IPAC Extragalactic Database, NED) in column 3;
the total absorption AV in column 4; the apparent V magnitude of
the mid-point of the plateau in column 5; the duration #t of the
plateau in column 6; and the photosphere expansion velocity uph in
column 7. References are given in column 8.
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Key observables characterizing supernovae
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NS mass: ~1 - 2 M⦿
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What do simulations solve?
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Numerical Simulations
Hydrodynamics equations Neutrino Boltzmann 

equation
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by a geometric estimate of the flux factor as suggested and
evaluated by Bruenn in Liebendörfer et al. (2004).

In Section 2, we describe in detail how these concepts enter
the framework of the IDSA, which we design for the transport of
massless fermions through a compressible gas. Its connection
to the well known diffusion limit is made in Appendix A. In
Section 3, we evaluate the performance of this approximation
in comparison with Boltzmann neutrino transport in spherical
symmetry. Finally, in Section 4, we discuss the extension to
multidimensional simulations. Details of the finite differencing
and implementation are given in Appendix B.

2. THE ISOTROPIC DIFFUSION SOURCE
APPROXIMATION (IDSA)

In the IDSA, the separation into hydrodynamics and radiative
transfer is not based on particle species, but on the local opacity.
One particle species is allowed to have a component that evolves
in the hydrodynamic limit, while another component of the same
particle species is treated by radiative transfer. The restriction
of a chosen radiative transfer algorithm to the more transparent
regimes enables the use of more efficient techniques that would
not be stable in the full domain. In opaque regimes, on the
other hand, one can take advantage of equilibrium conditions to
reduce the number of primitive variables that need to be evolved.
This algorithmic flexibility can drastically decrease the overall
computational cost with respect to a traditional approach.

In the IDSA, we decompose the distribution function of one
particle species, f, into an isotropic distribution function of
trapped particles, f t, and a distribution function of streaming
particles, f s. In terms of a linear operator D() describing
particle propagation, the transport equation is written as D(f =
f t + f s) = C, where C = C t + Cs is a suitable decomposition
of the collision integral according to the coupling to the trapped
(C t) or streaming (Cs) particle components. The ansatz

D(f t) = C t − Σ, (1)

D(f s) = Cs + Σ (2)

requires that we specify an additional source term Σ, which
converts trapped particles into streaming particles and vice
versa. We determine it approximately from the requirement that
the temporal change of f t in Equation (1) has to reproduce the
diffusion limit in the limit of small mean free paths. Hence, we
call Σ the “diffusion source.” In regions of large mean free paths,
we limit the diffusion source by the local particle emissivity.
Once Σ is determined by the solution of Equation (1) for the
trapped particle component, we calculate the streaming particle
flux according to Equation (2) by integrating its source, Cs + Σ,
over space. Finally, the streaming particle distribution function
f s is determined from the quotient of the net particle flux and a
geometric estimate of the flux factor. The diffusion source will
turn out to have an additional weak dependence on f s. Thus,
iterations or information from past time steps will be used in the
above sequence to reach a consistent solution.

2.1. Application to Radiative Transfer of Massless Particles

As our target application is neutrino transport in core-collapse
supernovae, we develop and test the IDSA using the example
of the O(v/c) Boltzmann equation in spherical symmetry

(Lindquist 1966; Castor 1972; Mezzacappa & Bruenn 1993),

df

cdt
+ µ
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[
µ

(
d ln ρ
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3v

cr

)
+

1
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] (
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+
[
µ2

(
d ln ρ
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3v
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)
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]
E
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E2

c (hc)3

×
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(1 − f )
∫
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∫
R

(
1 − f ′) dµ′

]
. (3)

This transport equation describes the propagation of massless
fermions at the speed of light, c, with respect to a compressible
background matter having a rest mass density ρ. The particle
distribution function f (t, r, µ,E) depends on the time, t, radius,
r, and the momentum phase space spanned by the angle cosine,
µ, of the particle propagation direction with respect to the radius
and the particle energy, E. The momentum phase space variables
are measured in the frame comoving with the background mat-
ter, which moves with velocity v with respect to the laboratory
frame. We denote the Lagrangian time derivative in the comov-
ing frame by df/dt . Note that the derivatives ∂f/∂µ and ∂f/∂E
in Equation (3) are also understood to be taken comoving with
a fluid element. The particle density is given by an integration
of the distribution function over the momentum phase space,
n(t, r) = 4π/ (hc)3 ∫

f (t, r, µ,E) E2dEdµ, where h denotes
Plancks constant. On the right-hand side, we include a particle
emissivity, j, and a particle absorptivity, χ , as well as an isoen-
ergetic scattering kernel, R. We write out all blocking factors
(1−f ) in Equation (3) to ease the identification of in-scattering
and out-scattering terms. The shorthand notation f ′ refers to
f (t, r, µ′, E), where µ′ is the angle cosine over which the inte-
gration is performed. For the present state of our approximation,
we neglect inelastic scattering.

2.2. Trapped Particles

We separate the particles described by the distribution func-
tion f = f t + f s in Equation (3) into a “trapped particle” com-
ponent, described by a distribution function f t, and a “streaming
particle” component, described by a distribution function f s. We
assume that the two components evolve separately according to
Equation (3), coupled only by an as yet unspecified source func-
tion Σ which converts trapped particles into streaming ones and
vice versa. In this subsection, we discuss the evolution equation
of the trapped particle component,
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+
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c (hc)3
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Rf t′dµ′ − f t

∫
Rdµ′

]
. (4)

We assume that the distribution of the trapped particle
component, f t = f t(t, r, E), and the source function, Σ, is
isotropic. The angular integration of Equation (4) then reduces
to

df t

cdt
+

1
3

d ln ρ

cdt
E

∂f t

∂E
= j − (j + χ ) f t − Σ. (5)

Solve 
simultaneously
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by taking into account new concepts, such as exotic physics in
the core of the protoneutron star (Sagert et al. 2009), viscous
heating by the magnetorotational instability (Thompson et al.
2005; Masada et al. 2011), or energy dissipation via Alfvén
waves (Suzuki et al. 2008).

Joining in these efforts, we explore in this study the possible
impacts of collective neutrino oscillations on energizing the
neutrino-driven explosions. Collective neutrino oscillations, i.e.,
neutrinos of all energies that oscillate almost in phase, are
attracting great attention, because they can induce dramatic
observable effects such as a spectral split or swap (e.g., Raffelt &
Smirnov 2007; Duan et al. 2008; Dasgupta et al. 2008; and
references therein). These effects are predicted to emerge as
distinct features in the energy spectra (see Duan et al. 2010;
Dasgupta 2010; and references therein, for reviews of the rapidly
growing research field). Among a number of important effects
possibly created by self-interaction, we choose to consider the
effect of spectral splits between electron- (νe) anti-electron
neutrinos (ν̄e), and heavy-lepton neutrinos (νx , i.e., νµ, ντ ,
and their anti-particles) above a threshold energy (e.g., Fogli
et al. 2007). Since νx have higher average energies than the
other species in the postbounce phase, the neutrino flavor
mixing would increase the effective energies of νe and ν̄e, and
hence increase the neutrino heating rates in the gain region. A
formalism to treat the neutrino oscillation using the Boltzmann
neutrino transport is given in Yamada (2000) and Strack &
Burrows (2005), but it is difficult to implement. To mimic
the effects in this study, we perform the spectral swap by
hand as a first step. By changing the average neutrino energy,
⟨ϵνx

⟩, as well as the position of the neutrino spheres (Rνx
)

in a parametric manner, we hope to constrain the parameter
regions spanned by ⟨ϵνx

⟩ and Rνx
wherein the additional heating

from collective neutrino oscillations could have impact on the
explosion dynamics. Our strategy is as follows. We will first
constrain the parameter regions to some extent by performing
a number of 1D simulations. Here we also investigate the
progenitor dependence using a suite of progenitor models (13,
15, 20, and 25 M⊙). After squeezing the condition in the
1D computations, we include the flavor conversions in 2D
simulations to see their impact on the dynamics and also discuss
how the critical condition for the collective effects in 1D can be
subject to change in 2D.

The paper opens with descriptions of the initial models
and the numerical methods, focusing on how to model the
collective neutrino oscillations (Section 2). The main results
are shown in Section 3. We summarize our results and discuss
their implications in Section 4.

2. NUMERICAL METHODS

2.1. Hydrodynamics

The employed numerical methods are essentially the same as
those in our previous paper (Suwa et al. 2010). For convenience,
we briefly summarize them in the following. The basic evolution
equations are written as

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇P − ρ∇Φ, (2)

de∗

dt
+ ∇ ·

[(
e∗ + P

)
v
]

= −ρv · ∇Φ + QE, (3)

dYe

dt
= QN, (4)

△ Φ = 4πGρ, (5)

where ρ, v, P , v, e∗, and Φ are density, fluid velocity, gas pres-
sure including the radiation pressure of neutrinos, total en-
ergy density, and gravitational potential, respectively. The time
derivatives are Lagrangian. As for the hydro solver, we employ
the ZEUS-2D code (Stone & Norman 1992) which has been
modified for core-collapse simulations (e.g., Suwa et al. 2007a,
2007b, 2009; Takiwaki et al. 2009). QE and QN (in Equations (3)
and (4)) represent the change of energy and electron fraction
(Ye) due to interactions with neutrinos. To estimate these quan-
tities, we implement spectral neutrino transport using the IDSA
scheme (Liebendörfer et al. 2009). The IDSA scheme splits the
neutrino distribution into two components, both of which are
solved using separate numerical techniques. We apply the so-
called ray-by-ray approach in which the neutrino transport is
solved along a given radial direction assuming that the hydro-
dynamic medium for the direction is spherically symmetric. Al-
though the current IDSA scheme does not yet include νx and the
inelastic neutrino scattering with electrons, these simplifications
save a significant amount of computational time compared to the
canonical Boltzmann solvers (see Liebendörfer et al. 2009 for
more details). Following the prescription in Müller et al. (2010),
we improve the accuracy of the total energy conservation by us-
ing a conservation form in Equation (3), instead of solving the
evolution of internal energy as originally designed in the ZEUS
code. Numerical tests are presented in the Appendix.

The simulations are performed on a grid of 300 logarithmi-
cally spaced radial zones from the center up to 5000 km and
128 equidistant angular zones covering 0 ! θ ! π for 2D sim-
ulations. For the spectral transport, we use 20 logarithmically
spaced energy bins ranging from 3 to 300 MeV.

2.2. Spectral Swapping

As mentioned in Section 1, we introduce a spectral inter-
change from heavy-lepton neutrinos (νµ, ντ , and their antineu-
trinos, collectively referred as νx hereafter) to electron-type
neutrinos and antineutrinos, namely νx → νe and ν̄x → ν̄e.
Instead of solving the transport equations for νx , we employ the
so-called light-bulb approximation and focus on the optically
thin region outside the neutrinosphere (e.g., Janka & Mueller
1996; Ohnishi et al. 2006).

According to Duan et al. (2010), the threshold energy, ϵth, is
set to be 9 MeV, above which spectral swap takes place. Below
the threshold, neutrino heating is estimated from the spectral
transport via the IDSA scheme. Above the threshold, the heating
rate is replaced by

QE ∝
∫ ∞

ϵth

dϵνϵ
3 [j (ϵν) + χ (ϵν)] fν(r, ϵν), (6)

where j and χ are the neutrino emissivity and absorptivity, re-
spectively, and fν(r, ϵν) corresponds to the neutrino distribution
function for νx with ϵν being the energies of the electron neutri-
nos and antineutrinos. In the light-bulb approach, this is often
approximated by the Fermi–Dirac distribution with a vanishing
chemical potential (e.g., Ohnishi et al. 2006) as

fν(r, ϵν) = 1
eϵν/kTνx + 1

g(r), (7)

2

The Astrophysical Journal, 738:165 (13pp), 2011 September 10 Suwa et al.

by taking into account new concepts, such as exotic physics in
the core of the protoneutron star (Sagert et al. 2009), viscous
heating by the magnetorotational instability (Thompson et al.
2005; Masada et al. 2011), or energy dissipation via Alfvén
waves (Suzuki et al. 2008).

Joining in these efforts, we explore in this study the possible
impacts of collective neutrino oscillations on energizing the
neutrino-driven explosions. Collective neutrino oscillations, i.e.,
neutrinos of all energies that oscillate almost in phase, are
attracting great attention, because they can induce dramatic
observable effects such as a spectral split or swap (e.g., Raffelt &
Smirnov 2007; Duan et al. 2008; Dasgupta et al. 2008; and
references therein). These effects are predicted to emerge as
distinct features in the energy spectra (see Duan et al. 2010;
Dasgupta 2010; and references therein, for reviews of the rapidly
growing research field). Among a number of important effects
possibly created by self-interaction, we choose to consider the
effect of spectral splits between electron- (νe) anti-electron
neutrinos (ν̄e), and heavy-lepton neutrinos (νx , i.e., νµ, ντ ,
and their anti-particles) above a threshold energy (e.g., Fogli
et al. 2007). Since νx have higher average energies than the
other species in the postbounce phase, the neutrino flavor
mixing would increase the effective energies of νe and ν̄e, and
hence increase the neutrino heating rates in the gain region. A
formalism to treat the neutrino oscillation using the Boltzmann
neutrino transport is given in Yamada (2000) and Strack &
Burrows (2005), but it is difficult to implement. To mimic
the effects in this study, we perform the spectral swap by
hand as a first step. By changing the average neutrino energy,
⟨ϵνx

⟩, as well as the position of the neutrino spheres (Rνx
)

in a parametric manner, we hope to constrain the parameter
regions spanned by ⟨ϵνx

⟩ and Rνx
wherein the additional heating

from collective neutrino oscillations could have impact on the
explosion dynamics. Our strategy is as follows. We will first
constrain the parameter regions to some extent by performing
a number of 1D simulations. Here we also investigate the
progenitor dependence using a suite of progenitor models (13,
15, 20, and 25 M⊙). After squeezing the condition in the
1D computations, we include the flavor conversions in 2D
simulations to see their impact on the dynamics and also discuss
how the critical condition for the collective effects in 1D can be
subject to change in 2D.

The paper opens with descriptions of the initial models
and the numerical methods, focusing on how to model the
collective neutrino oscillations (Section 2). The main results
are shown in Section 3. We summarize our results and discuss
their implications in Section 4.

2. NUMERICAL METHODS

2.1. Hydrodynamics

The employed numerical methods are essentially the same as
those in our previous paper (Suwa et al. 2010). For convenience,
we briefly summarize them in the following. The basic evolution
equations are written as

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇P − ρ∇Φ, (2)

de∗

dt
+ ∇ ·

[(
e∗ + P

)
v
]

= −ρv · ∇Φ + QE, (3)

dYe

dt
= QN, (4)

△ Φ = 4πGρ, (5)

where ρ, v, P , v, e∗, and Φ are density, fluid velocity, gas pres-
sure including the radiation pressure of neutrinos, total en-
ergy density, and gravitational potential, respectively. The time
derivatives are Lagrangian. As for the hydro solver, we employ
the ZEUS-2D code (Stone & Norman 1992) which has been
modified for core-collapse simulations (e.g., Suwa et al. 2007a,
2007b, 2009; Takiwaki et al. 2009). QE and QN (in Equations (3)
and (4)) represent the change of energy and electron fraction
(Ye) due to interactions with neutrinos. To estimate these quan-
tities, we implement spectral neutrino transport using the IDSA
scheme (Liebendörfer et al. 2009). The IDSA scheme splits the
neutrino distribution into two components, both of which are
solved using separate numerical techniques. We apply the so-
called ray-by-ray approach in which the neutrino transport is
solved along a given radial direction assuming that the hydro-
dynamic medium for the direction is spherically symmetric. Al-
though the current IDSA scheme does not yet include νx and the
inelastic neutrino scattering with electrons, these simplifications
save a significant amount of computational time compared to the
canonical Boltzmann solvers (see Liebendörfer et al. 2009 for
more details). Following the prescription in Müller et al. (2010),
we improve the accuracy of the total energy conservation by us-
ing a conservation form in Equation (3), instead of solving the
evolution of internal energy as originally designed in the ZEUS
code. Numerical tests are presented in the Appendix.

The simulations are performed on a grid of 300 logarithmi-
cally spaced radial zones from the center up to 5000 km and
128 equidistant angular zones covering 0 ! θ ! π for 2D sim-
ulations. For the spectral transport, we use 20 logarithmically
spaced energy bins ranging from 3 to 300 MeV.

2.2. Spectral Swapping

As mentioned in Section 1, we introduce a spectral inter-
change from heavy-lepton neutrinos (νµ, ντ , and their antineu-
trinos, collectively referred as νx hereafter) to electron-type
neutrinos and antineutrinos, namely νx → νe and ν̄x → ν̄e.
Instead of solving the transport equations for νx , we employ the
so-called light-bulb approximation and focus on the optically
thin region outside the neutrinosphere (e.g., Janka & Mueller
1996; Ohnishi et al. 2006).

According to Duan et al. (2010), the threshold energy, ϵth, is
set to be 9 MeV, above which spectral swap takes place. Below
the threshold, neutrino heating is estimated from the spectral
transport via the IDSA scheme. Above the threshold, the heating
rate is replaced by

QE ∝
∫ ∞

ϵth

dϵνϵ
3 [j (ϵν) + χ (ϵν)] fν(r, ϵν), (6)

where j and χ are the neutrino emissivity and absorptivity, re-
spectively, and fν(r, ϵν) corresponds to the neutrino distribution
function for νx with ϵν being the energies of the electron neutri-
nos and antineutrinos. In the light-bulb approach, this is often
approximated by the Fermi–Dirac distribution with a vanishing
chemical potential (e.g., Ohnishi et al. 2006) as

fν(r, ϵν) = 1
eϵν/kTνx + 1

g(r), (7)
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ρ: density, v: velocity, P: pressure, Φ: 
grav. potential, e*: total energy, Ye: 
elect. frac., Q: neutrino terms

f: neut. dist. func, µ: cosθ, E: neut. 
energy, j: emissivity, χ: absorptivity, 
R: scatt. kernel
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What the community has done

Multi-D (2D/3D) hydro. simulations in cooperation with 
multi-energy neutrino transfer (since 2006) 
Explosions obtained! 

phase transition from qualitative research (explode or not) to 
quantitative research (comparison w/ observations) 

Many systematics are under investigation 
EOS 
MHD 
GR 
6D properties of neutrino transfer 
initial condition 
etc.
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What the community has’t done yet

Not enough explosion energy (E~1050 erg) 
Not enough 56Ni 
No full GR (magneto-)hydro. simulations with spectral 
neutrino transfer 
No 7D-neutrino transfer with hydrodynamics 
No consistent treatment of neutrino oscillation in transfer 
equation 
etc…
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56Ni production 

M(56Ni)=O(0.01)M⊙ 

T>5x109 K is necessary for 56Ni production 
E=(4π/3)r3 aT4  ➡ T(rsh)=1.33x1010(E/1051erg)1/4(rsh/1000km)-3/4 K 
With E=1051erg, rsh<3700km for T>5x109K 

56Ni amount is more difficult to explain than explosion 
energy 

Explosion energy can be topped up late after the onset of 
explosion (~O(1)s) 
56Ni should be synthesized just after the onset of the explosion 
(before shock passes O(1000)km, i.e. O(0.1) s) 

It would be a benchmark test for explosion simulations
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Analytic model for 56Ni
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that the explosion characteristics strongly depend on
the mass of the progenitor and on its internal structure.
However, it is still unclear which are the most important
quantities among those characterizing the internal structure
of a core-collapse supernova progenitor.

Because stellar evolutionary calculations are subject
to restrictions (see, e.g. Jones et al. 2015, for recent code
comparison), we decided to generate progenitor mod-
els by ourselves in a more systematic and manageable
way. To this end, we used the approach proposed by
Baron & Cooperstein (1990) to construct initial models. In
this approach one prescribes the distributions of entropy
and electron fraction (Ye) in a progenitor model as func-
tions of the mass coordinate, and one assumes hydrostatic
equilibrium to obtain the density structure from these dis-
tributions. The hydrodynamic evolution of the progenitor
models is then simulated employing a microscopic equation
of state.

Contrary to Baron & Cooperstein (1990), we apply
their approach to modern radiation hydrodynamic simula-
tions of neutrino-driven core-collapse supernovae. While a
neutrino-driven explosion is the current standard paradigm
for core-collapse supernovae, Baron & Cooperstein (1990)
were discussing the influence of progenitor properties on
the prompt explosion scenario, in which the prompt shock
resulting from core bounce was thought to cause the ex-
plosion. In particular, we have performed one-dimensional
(1D) general relativistic hydrodynamic simulations includ-
ing a detailed treatment of neutrino transport and a nuclear
equation of state, i.e., our study is more elaborate than that
of Baron & Cooperstein (1990).

Using this approach, we were able to perform a com-
prehensive parameter study which displays the dependen-
cies of the outcome of 1D core-collapse supernova simula-
tions on the properties of the progenitor models. In addi-
tion, our approach has the advantage over other numerical
studies of core-collapse supernovae, which all rely on pro-
genitor models from stellar evolutionary calculations (but
see Yamamoto & Yamada 2016), that initial conditions can
be studied, which extend those currently predicted by stellar
evolutionary calculations.

In section 2 we explain how we constructed the progen-
itor models, and in section 3 we describe our hydrodynamic
method and present the results of our simulations. We dis-
cuss in detail the influence of the progenitor properties on
the core-collapse supernova dynamics in section 4, and con-
clude in section 5 with a summary and discussion of our
results.

2 PROGENITOR MODELS

In this section, we explain the strategies to obtain progenitor
models for core-collapse supernova simulations. First of all,
we construct progenitor models resembling the stellar evo-
lutionary model s11.2 of Woosley et al. (2002), which has
been widely used in hydrodynamic simulations.

M
M1 M2 M3 M4 M5

Sc
S1

S2

S5

Yec

Ye3

Ye4

S,Ye

Figure 1. Schematic behavior of the entropy S (red line) and
electron fraction Ye (blue line) distribution as a function of mass
for our progenitor models.

2.1 Hydrostatic equation

To construct a progenitor model for our hydrodynamic sim-
ulations, we solve the hydrostatic equation

dP
dM

= −
GM
4πr4

, (1)

where P,M,G, and r are the pressure, the mass coordinate,
the gravitational constant, and the radial coordinate, respec-
tively. The density is given by dM/dr = 4πr2ρ. To solve
Eq. (1) one needs to specify a value for the central density,
ρ0, which is one of parameters of this approach, and one
needs to have P given as a function of density ρ, entropy S,
and electron fraction Ye, i.e., an equation of state (EOS).

Following Baron & Cooperstein (1990), we change G →

geffG in Eq. (1), where geff < 1 is a factor mimicking the fact
that the progenitors are no longer in hydrostatic equilibrium,
but already in a dynamic state. We used this procedure to
destabilize the core in a uniform way, because reducing in-
stead the pressure (by reducing the entropy or Ye) may lead
to undesirable effects, like e.g., a strange mass accretion his-
tory (see Baron & Cooperstein 1990).

In the following subsections, we give the distributions
of S and Ye as functions of the mass coordinate M that we
used in our study. Given these functions, we integrate Eq. (1)
and obtain ρ(r) and M(r). Due to limited extent of the tab-
ular equation of state used in our simulations, we integrate
Eq. (1) outward in mass until the density drops below a value
of 103 g cm−3. We note that this Newtonian treatment of the
progenitor model is compatible with the general relativistic
treatment used in our hydrodynamic simulations, because
the central lapse function is 1 − α ≈ O(10−3) for the pro-
genitor models, i.e., the use of the Newtonian approximation
is well justified.

MNRAS 000, 1–10 (2016)

M1: the edge of the final convection in the 
radiative core 
M2: the inner edge of the convection zone 
in the iron core 
M3: the NSE core 
M4: the iron core mass 
M5: the base of the silicon/oxygen shell
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Figure 9. Evolution of the diagnostic explosion energy for model
BC18.

The additional grey lines give the structures of the models
listed in Appendix A, which are obtained by stellar evolu-
tion calculations. Obviously, our parametrized models show
a similar trend as the evolutionary ones, except for their
non-monotonic behavior at densities ρ ∼ 107 g cm−3 and
at densities of a few times 109 g cm−3, i.e. near the center.
In other words, these models allow us to investigate ther-
modynamic regimes beyond those encountered in canonical
models.

The Chandrasekhar mass is often used as a rough esti-
mate of the iron core mass. Since the former mass depends
on the electron fraction as

Mch ≈ 5.87Y 2
e M⊙ (12)

= 1.01

(

Ye

0.415

)2

M⊙, (13)

our small iron core (M4 = 1.15M⊙) can be unstable.
In Table 4 we provide an overview of the hydrody-

namic simulations with our second set of models. The table
columns give the time until bounce, the postbounce time
when the shock reaches a radius of 400 km, the final time of
the simulation, the maximum shock radius, the final bary-
onic mass of the PNS, and the diagnostic explosion energy
at the times when the shock reaches a radius of 1000km and
at tfin, respectively. The remaining columns give the mini-
mum inner core mass, the value of Ye in the center at tbounce,
and the initial kinetic energy. The PNS mass is defined as
the mass with ρ > 1011 g cm−3, and the diagnostic explo-
sion energy as the integral of the local energy, i.e. the sum
of the specific internal, kinetic and gravitational energies,
of all zones where this quantity and the radial velocity are
positive. Here we used the general relativistic expression for
the local energy of Müller et al. (2012), which is given as

elocal = α
[(

ρc2 + ϵc2 + P
)

W 2
− P

]

− ρWc2, (14)

where α is the lapse function, c the speed of light, ϵ the
specific internal energy, and W the Lorentz factor. This ex-
pression reduces to the well-known Newtonian expression
(elocal = ρφ + ρv2/2 + ρϵ with φ and v being the gravi-
tational potential and the velocity, respectively) when one
omits higher-order terms like (v/c)2.

For model BC18, which produces the most energetic
explosion of our second set of models, Sc = 0.4 and

S5 = 6 kB baryon−1. The diagnostic explosion energy of this
model already reaches 0.39 B (= 3.9 × 1050 erg) at the end
of the simulation, and it is still increasing (see Fig. 9) at a
rate of 5B s−1, i.e., it will reach a value of 1B about 310ms
after core bounce.

Concerning the explosion energy one should note that
the envelope located above the Si/O layer has a large binding
energy of O(1049) to O(1051), the actual value depending on
the ZAMS mass of the progenitor (e.g. Pejcha & Thompson
2015). Therefore, the values given in Table 4 are not the
observable explosion energies. To determine the latter ener-
gies, one needs to perform long-term simulations including
the stellar envelopes, which will be left for future work.

For our second set of models, the electron fraction at
bounce is larger than in the simulations with our first set
of models based on the stellar evolutionary model s11.2
(see previous section and Fig. 5), in which Yc,bounce ≈ 0.3.
Because of their smaller initial central entropy, the latter
models have a lower temperature, which implies a smaller
electron capture rate during collapse. The resulting larger
electron fractions explain the larger kinetic energies at the
bounce (see, e.g. Müller 1998), which are given by the ki-
netic energy of the inner core at the “last good homology”
(Brown et al. 1982). Of the models listed in the upper part
of Table 4, model BC02 has the largest initial kinetic energy.
Among these models, model BC02 is also the only explod-
ing model. Although a higher value of Yec also leads to a
larger value of Yc,bounce and a larger initial kinetic energy
(see model BC19 in the lower part of Table 4), model BC19
does not explode because of its larger gravitational binding
energy (see Table 3). However, we note that in comparison to
the other non-exploding models (BC16-BC18, BC20-BC22),
the shock propagates out to an exceptionally large maximum
shock radius of 873 km in model BC19, i.e, it is a marginal
model marking the boundary between exploding and non-
exploding models.

In all exploding models the explosion sets in early (∼
20ms after core bounce), which seems to suggest a prompt
explosion. However, these explosions are still aided by neu-
trino heating, i.e., they differ from prompt explosion models,
in which initial kinetic energy is large enough to eject the
envelope. To validate this statement, we performed a simu-
lation without neutrino heating by setting the distribution
function of streaming particles, which is essential for neu-
trino heating in IDSA (see Liebendörfer et al. 2009), to zero.
Then, the exploding model does no longer explode, i.e., it
was no prompt explosion.

From these result, we conclude that the iron core struc-
ture is crucial for obtaining an explosion. Especially, a low
entropy at the center helps to make an explosion. To reach
a more general conclusion, we need a large number of sim-
ulations covering a wider range of parameter space, which
will be reported in a forthcoming publication.

5 SUMMARY AND DISCUSSION

In this paper, we investigated a method to construct
parametrized initial progenitor models for core-collapse su-
pernova simulations. So far, initial conditions of these simu-
lations have been taken from the final phase of stellar evolu-
tionary calculations, which depend on several uncertainties,
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Progenitor: 11.2 M⊙ (Woosley+ 2002)

Successful explosion! (but still weak with Eexp~1050 erg) 

The mass of NS is ~1.3 M⊙

The simulation was continued in 1D to follow the PNS cooling phase up to ~70 s p.b.

ejecta

NS
NS mass 
~1.3 M�

[Suwa, Takiwaki, Kotake, Fischer, Liebendörfer, Sato, ApJ, 764, 99 (2013); Suwa, PASJ, 66, L1 (2014)]
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(C)NASA

L1-4 Publications of the Astronomical Society of Japan, (2014), Vol. 66, No. 2

Fig. 2. Time evolution of the density (left top), the temperature (left bottom), the entropy (right top), and the electron fraction (right bottom). The
density and the temperature are given as functions of the radius and the entropy and the electron fraction are functions of the mass coordinate. The
corresponding times measured from the bounce are 10 ms (red solid line), 1 s (green dashed line), 10 s (blue dotted line), 30 s (brown dot-dashed
line), and 67 s (grey dot-dot-dashed line), respectively. (Color online)

Fig. 3. The time evolution in the ρ–T plane. The color and type of lines
are as in figure 2. Three thin solid black lines indicate the critical lines
for crust formation. See text for details. (Color online)

where Z is the typical proton number of the compo-
nent of the lattice, e is the elementary charge, " is
a dimensionless factor describing the ratio between the
thermal and Coulomb energies of the lattice at the melting
point, kB is the Boltzmann constant, xa is the mass fraction
of heavy nuclei, and mu is the atomic mass unit, respectively.
The critical lines are drawn using parameters of " = 175
(see, e.g., Chamel & Haensel 2008), Ye = 0.1, and xa = 0.3.
As for the proton number, we employ Z = 26, 50, and 70
from bottom to top. Although the output for the typical
proton number by the equation of state is between ∼ 30 and
35, there is an objection that the average proton number
varies if we use the NSE composition. Furusawa et al.
(2011) represented the mass fraction distribution in the
neutron number and proton number plane and implied that
even larger (higher proton number) nuclei can be formed

in the thermodynamic quantities considered here. There-
fore, we here parametrize the proton number and show the
different critical lines depending on the typical species of
nuclei. In addition, there are several improved studies con-
cerning " that suggest the larger value (e.g., Horowitz et al.
2007), which leads to a lower critical temperature corre-
sponding to later crust formation, although the value is still
under debate.

The critical lines imply that the lattice structure is formed
at the point with the density of ∼ 1013−14 g cm−3 and at the
post-bounce time of ∼ 70 s. Of course these values (espe-
cially the formation time) strongly depend on the parame-
ters employed, but the general trend would not change very
much even if we included more sophisticated parameters.

4 Summary and discussion
In this letter, we performed a very long-term simulation of
the supernova explosion for an 11.2 M⊙ star. This is the
first simulation of an iron core starting from core collapse
and finishing in the PNS cooling phase. We focused on the
PNS cooling phase by continuing the neutrino-radiation-
hydrodynamic simulation up to ∼ 70 s from the onset of
core collapse. By comparing the thermal energy and the
Coulomb energy of the lattice, we finally found that the
temperature decreases to ∼ 3 × 1010 K with the density
ρ ∼ 1014 g cm−3, which almost satisfies the critical condi-
tion for the formation of the lattice structure. Even though
there are still several uncertainties for this criterion, this
study could give us useful information about the crust for-
mation of a NS. We found that the crust formation would
start from the point with ρ ≈ 1013−14 g cm−3 and that it pre-
cedes from inside to outside, because the Coulomb energy
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How to make binary NSs?

new class of SNe 
rapidly evolving light curve -> 
very small ejecta mass 
possible generation sites of 
binary neutron stars 
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SN 2005ek

Tauris & van den Heuvel 2006

Tauris+ 2013

(synergy w/ gravitational wave!)
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Ejecta mass~O(0.1)M⊙, NS mass~1.4 M⊙, explosion energy~O(1050) erg, Ni 
mass~O(10-2) M⊙; everything consistent w/ Tauris+ 2013

Time after bounce (ms)

[Suwa, Yoshida, Shibata, Umeda, Takahashi, MNRAS, 454, 3073 (2015)]
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Magnetar

Subclass of neutron stars 

Soft Gamma Repeater (SGR) 

Anomalous X-ray Pulsar (AXP) 

Surface magnetic field from P&Ṗ 
~1014-15 G (>BQ=4.4x1013G) 

rotation period ~2-12s 

29 magnetars: 15 SGRs 
(including 4 candidates), 14 
AXPs (including 2 candidates) as 
of 24/3/2016. 
http://www.physics.mcgill.ca/~pulsar/magnetar/main.html  
(first report was in 1979)
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Figure 1. Known galactic SGRs and AXPs on the Galactic coordinate, where transient sources (circle) and persistently bright objects
(triangle) are classified as in Table 1. The red filled symbols are sources observed with Suzaku. Spiral arms of our Galaxy are also indicated.

Nearly 23 confirmed SGRs and AXPs are now known
on the Galactic plane as displayed in Figure 1 with their
timing properties in Figure 2 (see the detailed catalog,
Olausen & Kaspi 2014). Some are persistently bright
with stable Lx, intensively studied since the early days
of X-ray astronomy: e.g., 4U 0142+61 (e.g., White et al.
1996; Enoto et al. 2011; Dib & Kaspi 2014). The soft
X-ray spectrum is approximately an optically-thick ra-
diation with its blackbody temperature at kT∼0.5 keV
which is thought to originate as a quasi-thermal emission
from the stellar surface or vicinity (Zane et al. 2009). In
this paper, we call this soft radiation below 10 keV “Soft
X-ray Component (SXC)”.
Recent observations have revealed a new distinctive

“Hard X-ray Component (HXC)” dominating above 10
keV. First detected with INTEGRAL from persistently
bright sources (Kuiper et al. 2006; den Hartog et al.
2008a,b), the HXC was later reconfirmed by Suzaku
and NuSTAR (Morii et al. 2010; Enoto et al. 2011;
An et al. 2013a). This HXC extends up to 100 keV or
more with a hard photon index Γh ∼ 1, but must cuts
off at some energies because of an upper limit by the
CGRO/COMPTEL at !1MeV. This power-law HXC is
now believed to be an optically thin emission presumably
from a pulsar magnetosphere in the magnetar scheme
(e.g., Beloborodov 2013a).
There are also subsequent discoveries of transient

objects, mainly discovered by burst activities: e.g.,
SGR 0501+4516 (e.g., Enoto et al. 2009; Rea et al. 2009).
Such transient sources occasionally cause surges in per-
sistent X-rays by a few orders of magnitude, followed by
a gradual decay (Rea & Esposito 2011). During these
“outburst” states, sporadic short bursts with short time-
scale durations (∼1 s) have been detected (Nakagawa
et al. 2007; Israel et al. 2008). Although a complete pic-
ture has yet to come, bursts are thought to be originate
from magnetic reconnection (Lyutikov 2003) or cracking
of the crust with starquakes (Thompson et al. 2002).
The SXC and HXC match ideally with the simulta-

neous 0.2–600 keV broadband coverage of the Suzaku
satellite (Mitsuda et al. 2007). Our previous study of
9 SGRs and AXPs utilizing Suzaku (Enoto et al. 2010a,
hereafter Paper I) suggested that 1) phase-averaged X-
ray radiation of SGRs/AXPs commonly consists of the
SXC below 10 keV and the HXC above 10 keV in both
quiescent states and transient outbursts, 2) Γh depends
on Bd and τch, and 3) their wide-band spectral properties
are tightly correlated with Bd and τch.
As the detailed description following Paper I, this pa-

per provides a summary of Suzaku observations of SGRs
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Figure 2. SGRs and AXPs on the P -Ṗ diagram, together with
the grids of Bd, τc, and Lsd. The ATNF pulsar catalog is used for
other pulsars (Manchester et al. 2005). Star and square symbols
are objects showing X-ray outbursts and association with super-
nova remnants, respectively. The pulsar death death line (Chen &
Ruderman 1993; Zhang et al. 2000), BQED, and photon splitting
line (Baring & Harding 1998) are also indicated.

and AXPs, combining the systematic spectral study of
all the Suzaku sources and the X-ray decaying behavior
of transient sources.

2. OBSERVATION AND DATA REDUCTION

2.1. Suzaku Observations

2.1.1. Persistently bright or transient sources

Table 1 summarizes all SGRs and AXPs which Suzaku
has observed as of 2013 December. In this table, the
“transient sources” exhibit prominent soft X-ray in-
creases by 2–3 orders of magnitudes and subsequent de-
cays on timescales of months to years, while the “persis-
tently bright ones” are relatively stable with their X-ray
luminosities around 1035 erg s−1. This is illustrated in

Enoto, Shibata, Kitaguchi, Suwa+, submitted

Bs �
�

PṖ

BQ =
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Olausen & Kaspi 14

Magnetar birth rate
Nmag~30 (SGRs & AXPs) found in 
our Galaxy so far 
typical age: τc~104 years 
(estimated by characteristic age; 
P/2Ṗ) 
typical birth rate:  
Nmag/τc~10-3 year-1~0.1 SN rate 

~10% of SNe generate 
magnetars? 
observationally, Nmag is 
increasing by ~1/year 
100% of SNe generated 
magnetars at 100 years from 
now?
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Table A1. Observational properties of SGRs and AXPs.

SGR/AXP namea P (s) Ṗ (10−11 s s−1) Bp (1014 G)b τ c (kyr)c SNR age (kyr)

SGR 0418+5729 9.078 388 27(4) <0.0006 <0.16 2.4 × 104 < –
SGR 0501+4516 5.762 096 53(3) 0.582(3) 3.9 16 –
SGR 0526−66 8.0544(2) 3.8(1) 12 3.4 4.8d

SGR 1627−41 2.594 578(6) 1.9(4) 4.7 2.2 –
SGR 1806−20 7.6022(7) 75(4) 51 0.16 –
Swift J1822.3−1606 8.437 719 77(4) 0.0254(22) 0.99 530 –
SGR 1833−0832 7.565 4084(4) 0.35(3) 3.5 34 –
Swift J1834.9−0846 2.482 3018(1) 0.796(12) 3.0 4.9 60–200e

SGR 1900+14 5.199 87(7) 9.2(4) 15 0.90 –

CXOU J010043.1−721134 8.020 392(9) 1.88(8) 8.3 6.8 –
4U 0142+61 8.688 328 77(2) 0.203 32(7) 2.8 68 –
1E 1048.1−5937 6.457 875(3) ∼2.25 8.1 4.5 –
1E 1547.0−5408 2.072 1255(1) ∼4.7 6.7 0.70 N/A
PSR J1622−4950 4.3261(1) 1.7(1) 5.8 4.0 –
CXO J164710.2−455216 10.610 6563(1) ∼0.073 1.9 230 –
1RXS J170849.0−400910 11.003 027(1) 1.91(4) 9.8 9.1 –
CXOU J171405.7−381031 3.825 35(5) 6.40(14) 11 0.95 4.9f

XTE J1810−197 5.540 3537(2) 0.777(3) 4.4 11 –
1E 1841−045 11.782 8977(10) 3.93(1) 15 4.8 0.5–2.6g

1E 2259+586 6.978 948 4460(39) 0.048 430(8) 1.2 230 14h

Note: aData taken from McGill SGR/AXP Online Catalog (Olausen & Kaspi 2014, see also Viganò et al. 2013). bThe
estimation is based on equation (A4). cCharacteristic ages estimated as P/2Ṗ . dPark et al. (2012). eTian et al. (2007).
fAharonian et al. (2008). gTian & Leahy (2008). hSasaki et al. (2013).

used (τc ≡ P/2Ṗ ), whilst the blue points correspond to magnetars
that can be associated with SNRs, so that the SNR age is used. For
Bp = 1015 G, we plot the evolution for two different initial periods
(Pi=1 s for the top line and 1 ms for the bottom line). One finds that
the evolutions coincide after !1000 yr, from which we conclude
that Pi does not affect the late time evolution.

As can be seen in Table A1, there are two magnetars for which
the SNR age is younger than the characteristic age. For example, 1E
2259+586 and associated SNR CTB 109 exhibit a large discrepancy
between the two ages.11 Here, we treat the SNR age as the true age
and use this to estimate the spin periods of the magnetars at birth.
In Fig. A2, we show the time evolution of the spin period for values
of P and Ṗ equal to those of 1E 1841−045. We find that Pi should
be ≈8–11 s in order to explain the current observation with the
age of ∼1 kyr. The same analysis also gives the initial period of
1E 2259+586 as Pi ≈ 7 s, which is almost the same as the current
period. Note that these values would be smaller if decay of the
poloidal magnetic field were included, which will be discussed in
the next subsection.

A2 Case with magnetic field decay

In this subsection, we study spin evolution including phenomeno-
logically the effect of magnetic field decay. It is important to con-
sider the effect of the decaying magnetic field because there is no
isolated NS with P ! 12 s, meaning that the dipole radiation can be
assumed to become small enough so as to not affect the spin period
for slowly rotating NSs. There are several studies that investigate
the long-term evolution of magnetic fields including their decay

11 In Nakano et al. (2012), an attempt has been made to reconcile this dis-
crepancy by including magnetic field decay. Also note that, despite the
discrepancy, it has been suggested that in the context of broad-band spec-
troscopy the characteristic age may be a suitable parameter to label Magnetar
classes (Enoto et al. 2010).

Figure A2. Period evolution with time for NSs with values of P and Ṗ equal
to those of 1E 1841−045. The black contour lines correspond to trajectories
with different initial spin periods, Pi. The value of Pi can be read off from
the colour map. The thick horizontal black line represents the SNR age
including systematic errors as given in Tian & Leahy (2008), with the two
crosses marking the lower and upper limits of 0.5 and 2.6 kyr, respectively.
In order to explain observational data, Pi ≈ 8–11 s is necessary. The triangle
corresponds to the characteristic age (≈4.8 kyr), and lies on a trajectory with
infinitely small Pi.

(e.g. Colpi, Geppert & Page 2000; Dall’Osso et al. 2012; Nakano
et al. 2012; Pons, Viganò & Rea 2013).

Using the model of Colpi et al. (2000) and Dall’Osso et al. (2012),
after several algebraic steps we get the following expressions for
the time evolution of the spin period and the dipole magnetic field
strength:

P 2(t) = P 2
∞ −

(
P 2

∞ − P 2
i

) (
1 + t

τd

)(αB−2)/αB

, (A6)

Bp(t) = Bi

(1 + t/τd)1/αB
, (A7)

where P∞ is the final spin period, τd is the decay time-scale of
the magnetic fields, αB is a parameter describing the magnetic field

MNRAS 443, 3586–3593 (2014)
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[Suwa & Enoto, MNRAS, 443, 3586 (2014)]
Canonical dipole radiation predicts

Spin-down timescale

P

P0

τc=(P/2Ṗ)0 tPi(<<P0)

w/o decay of B 
1E1841-045

SNR age

τc
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Figure A3. The same as Fig. A2 but for the decaying magnetic field model (see equations A6 and A7) with the initial magnetic field Bi = 1016 G. The top axis
corresponds to the strength of poloidal dipole magnetic field (see equation A7). The left-hand panel is for P∞ = 12 s and the right-hand panel for P∞ = 15 s.
The blank square marks the current observed Bp and P, and is almost coincident with the left-hand cross that marks the lower limit on the SNR age.

decay and Bi is the initial magnetic field strength. In Dall’Osso
et al. (2012), it was found that models with 1.5 ! αB ! 1.8 can
explain most of the observational evidence for isolated NSs with
strong magnetic fields (not only magnetars but also X-ray dim iso-
lated NSs). Although P∞ is unknown, Dall’Osso et al. (2012) and
Pons et al. (2013) suggested that P∞ ≈ 12 s, because there is no
observed NS with P " 12 s. Thus, we employ P∞ = 12 s as a
fiducial value here. In addition, Dall’Osso et al. (2012) showed
that taking 1015 G ! Bi ! 1016 G gives good agreement with the
distribution of observed NSs with strong magnetic fields in the
τ c–Bp plane. We thus use Bi = 1016 G in the following. In order
to explain observed features, Dall’Osso et al. (2012) suggested that
τd =1 kyr/(Bi/1015 G)αB .

In Fig. A3, we show the period evolution of magnetars as deter-
mined using the decaying magnetic field model. In this figure, the
top axis gives the strength of poloidal field (decreasing from the
initial value of 1016 G). The blank square shows the current posi-
tion of 1E1841−045 in the P–Bp plane, as estimated from P and

Ṗ . We see that the square overlaps with the left-hand cross, which
corresponds to the lower limit on the SNR age. As such, this model
can be used to consistently explain all three observed quantities P,
Bp and the SNR age. One can see that Pi " 11 s is still required
in order to explain observations using the decaying magnetic field
model with fiducial model parameters (case a). As such, the discus-
sion in the previous subsection is still valid in this case. We do note,
however, that with a fine tuning of the parameters it is possible to
explain observational data with P∞ > 12 s and Pi ≪ 1 s (see case
b). On the other hand, 1E 2259+586 has P = 6.978 948 4460 s. We
find that Pi ∼ 5 s by the same discussion with fiducial parameters,
which is similar value as 1E 1841−045. Therefore, even with the
decaying magnetic field model, we find that Pi should be O(1) s.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 443, 3586–3593 (2014)
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w decay of B

Colpi+ 00 
Dall’Osso+ 12

Recently favored model 
Dall’Osso+ 12 
Pons+ 13
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Kasen+ 2010

SLSNe and GRB afterglows can be 
fitted by strongly magnetize NS 
(magnetar) model 

ALL models based on dipole radiation 
formula (L~B2P-4, Δt~B-2P2) 

B~O(1014)G, P~O(1)ms

Dall’Osso+ 2011

B=2×1014 G 
P=2 ms

B=5×1014 G 
P=1 ms

※ GRB afterglow
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GRB -SN association
GRB 980425 / SN 1998bw (z=0.0085) 
GRB 030329 / SN 2003dh (0.1685) 
GRB 031203 / SN 2003lw (0.1006) 
GRB 060218 / SN 2006aj (0.0335) 
GRB 091127 / SN 2009nz (0.490) 
GRB 100316D/ SN 2010bh (0.0591) 
GRB 101219B / SN 2010ma (0.55) 
GRB 120422A / SN 2012bz (0.2825) 
GRB 130427A / SN 2013cq (0.3399) 
GRB 130702A / SN 2013dx (0.1450) 
GRB 130215A / SN 2013ez (>0.597) M
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Nomoto+ (2006)

GRBs are associated with SNe, 
which are more energetic, 
Eexp~1052 ergs, than canonical SNe 
(~1051 erg), called SN Ic-bl (broad 
line) or “hypernovae” (HNe) 
To explain the brightness of SN Ic-
bl/HNe, we need O(0.1)M⊙ of 56Ni
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To make consistent model for GRB & SN Ic-bl/HN, we need O(0.1)M⊙ of 
56Ni to explain optical components 

Postshock temperature of shock driven by magnetar dipole radiation 
should be >5×109 K 

For MNi>0.2 M⊙, (B/1016G)1/2(P/1 ms)-1>1 is necessary, which is 
inconsistent with model parameters fitting GRB afterglow

P=0.6 ms

P=6 ms

[Suwa & Tominaga, MNRAS, 451, 4806 (2015)]
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