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Supernovae are stellar deaths

Remarks on Super-Novae and Cosmic Rays

5. The super-nova process

We have tentatively suggested that the super-nova
process represents the transition of an ordinary star into
a neutron star. If neutrons are produced on the surface of
an ordinary star they will “rain’’ down towards the center
if we assume that the light pressure on neutrons is prac-
tically zero. This view explains the speed of the star’s
transformation into a neutron star. We are fully aware
that our suggestion carries with it grave implications
regarding the ordinary views about the constitution of
stars and therefore will require further careful studies.
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A supernova

*

ASASSN-16np 2016-11-26 Confirmation

(c)ASAS-SN project



Key observables characterizing supernovae

s 105'erg = 10%4J) = 6.2x1053GeV
: Mo (solar mass) = 2.0x103%g = 1.1x1057GeV/c2:

* Explosion energy: ~10°1 erg measured by fitting
. SN light curves
* Ejecta mass: ~Mq (i.e. time evolution of
brightness)

* Ni mass: ~0.1M¢

measured by

* Neutron star mass: ~1 - 2 Mo binary systems

final goal of first-principle (ab initio) simulations
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Standard scenario of core-collapse supernovae

Final phase f)f stellar Neutrinosphere formation Neutron star formation
evolution (neutrino trapping) (core bounce)

Neutrinosphere »

Supernoval!
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| Current paradigm: neutrino-heating mechanism

shock front
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* A CCSN emits O(10°8) of neutrinos with O(10) MeV.

* Neutrinos transfer energy
= Most of them are just escaping from the system (cooling)

= Part of them are absorbed in outer layer (heating)

* Heating overwhelms cooling in heating (gain) region
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IBI cali lient

ALL known interactions are involving and playing important roles
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What do simulations solve?

Numerical Simulations

Hydrodynamic Neutrino Boltzmann
equations . equation
dp
d? B simulstz::/eeously % i Mg_]; i [M (dclcrfltp ’ i_:) ’ %] (1=49 %
p=r=—VP —pVO, S + [,ﬁ (dcl;ltp ; i—f) _ C%} Eg—g
‘Z* +V - [(¢"+ P)V] = —pv- VD + Qp, =j(1_f)_Xf+c(ii)3
ddie — On. x [(1 —f)/Rf/d,u/—ffR(l —f/)d,u/].
A® =47Gp,

p: density, v: velocity, P: pressure, @:grav. £ neut. dist. func, u: cosf, E: neut. energy,
potential, e:: total energy, Y.: elect. frac.,,  j: emissivity, y: absorptivity, R: scatt.
(O: neutrino terms kernel
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1D SN simulations fail to explode

(There are a few exceptlons 8 8Mo, o. 6M@)
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By including aII available physics to simulations, we

concluded that the explosion cannot be obtained in 1D!

Thompson+ 03 "

radius [km]

0 0.1

Rammp & Janka 00 p————————— liebendorfer+ 01
T0°F 2.0M, =———————p=
s — .| = Relativistic
(ST (1.77 W) — e \

02 03
Time After Bounce [sl

0.4

0.5

Sumiyoshi+ 05

time [s]




Neutrino-driven explosion in multi-D simulation

We now have exploding models driven by neutrino heating with 2D/3D simulations
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0 * The neutrino heating rate is greatly
amplified by multi-D hydrodynamic
effects

convection

standing-accretion shock
instability
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3D simulation with spectral neutrino transfer

[Takiwaki, Kotake, & Suwa, ApJ, 749, 98 (2012); ApJ, 786, 83 (2014); MNRAS, 461, L112 (2016)]
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Note: there are problems

* Explosion energy of simulations (O(7049-59) erg) is much
smaller than observational values (O(10°7) erg)

* Results from different groups are contradictory

* We need still more efforts to understand supernova
mechanism

Key observables characterizing supernovae

I* Explosion energy: ~10°" erg I measured by fitting
- SN light curves
* Ejecta mass: ~Me (i.e. time evolution of

. brightness)
* Nimass: ~0.1Me

measured by

* Neutron star mass: ~1 -2 Mo binary systems

final goal of first-principle (ab initio) simulations
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Possible solution: extension of neutrino transfer eq.

LI/ IFCLf]

Liouville operator Collision operator

(number conservation in phase space) (particle interactions)

* Relativistic correction
Collision operator used in simulations is truncated up to O(v/c) and
higher order terms are not taken into account, which may change
neutrino spectrum and heating rate.

* Quantum correction
Liouville operator is based on classical particle picture. Quantum
effects would introduce additional terms. Related to neutrino
oscillation and chiral anomaly.
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Summary

* Neutrinos play essential roles in supernova explosions

* None of modern simulations have obtained realistic
explosions so far

* We might be missing something important
* Two possibilities in neutrino transfer equation

relativistic correction

quantum correction
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