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Bright side of SN simulations

Success of simulations 
detailed ν interactions and transfer (2000~) 
hydro: 2D (2006~) and 3D (2012~) 
multi-D GR+ν transfer (2010~) 
6D Boltzmann solver (2012~) 

Success of explosion 
driven by neutrino heating (delayed exp.) 
multiple groups have obtained explosions 
multi-D effects amplify neutrino heating efficiency
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Increasing number of codes
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Dimension

Neutrino Treatment

1D  
(spherical-sym.)

2D  
(axial-sym.)

Adiabatic cooling only 
or 

heat by hand

Spectral transport

Yamada & Sato, 94
Buras+,  06

Kotake+, 03

Takiwaki+, 09

Thompson+, 03

Liebendörfer+, 01

Sumiyoshi+, 05

Rampp & Janka, 00

Burrows+, 06

Obergaulinger+, 06

3D

Ohnishi+, 06Blondin & Mezzacappa, 03

Iwakami+, 08Blondin+, 07

Mikami+, 08

Suwa+, 10

Scheidegger+, 08

Only the simulations here can judge 
the neutrino-driven explosion

Murphy+, 08

Nordhaus+, 10

Takiwaki, Kotake, & Suwa, 12

Müller+, 12
Sekiguchi+, 11

Couch, 13
Hanke+, 12

O’Connor+, 13

Hanke+,  13

Bruenn+, 13

Pan+, 16

Müller,  15

Lentz+,  15

Ott+, 08

Handy+, 14

Obergaulinger+,14
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※grid-based codes only, not completed

O’Connor+, 15

Fernandez+, 10
Endeve+, 10
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Explosion, explosion, and explosion
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Dark side
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2D is better than 1D, but 3D is not better than 2D
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[Takiwaki, Kotake, & Suwa, ApJ, 786, 83 (2014)]
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Figure 5. Entropy dispersion (σs ) in spacetime diagrams for the 3D model (see
the text for the definition). The dotted gray line represents the position of the gain
radius, while the dotted black line shows the position of the PNS surface. The
black arrow inserted at around 125 ms represents the epoch when the position
where the entropy production takes place shifts from the gain radius (dotted
gray line) to the PNS surface (dotted black line).

insensitive to the employed progenitor. In fact, Figure 5 in
Marek & Janka (2009) shows the transition timescale to be

around 150 ms for a 15 M⊙ progenitor model. In the bottom
panels of Figure 8, the saturation levels of the even modes of
(ℓ, |m|) = (4,0), (4,2), (4,4) in 3D are shown to become much
larger than those in 2D (pink line), while the odd mode of
(ℓ,m) = (3,0) is much the same.

Based on the pioneering work by Houck & Chevalier (1992),
the linear growth rate of the SASI in the core-collapse case
was presented by Scheck et al. (2008). They pointed out that
the cycle efficiency (:Q) which represents how many times the
average radius expands compared to the original position per a
unit oscillation frequency (:ωosc) of the SASI is an important
quantity to characterize the linear growth rate. From Figure 8,
Q and ω−1

osc in our simulation are approximately estimated to
be 2 and 25 ms, respectively. Note that these values are in
agreement with the ones obtained in 2D simulations by Scheck
et al. (2008, e.g., their Figure 17). From the two quantities,
the linear growth rate can be straightforwardly estimated as
exp(ln(Q) t ωosc), which is shown in the top panels of Figure 8
as black-dotted lines. As can be seen, the growth rates observed
both in our 3D (top left panel in Figure 8) and 2D simulations
(top right) are close to the linear growth rate, which seems to
be a rather generic trend for the low-modes (ℓ = 1, 2) of the
SASI. Note here that the normalized amplitude of the shock (the

Figure 6. Volume rendering of entropy showing the blast morphology in our 3D (left), 2D (middle), and 1D (right) models (at t = 178 ms after bounce), respectively.
The linear scale is indicated in each panel.
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Figure 7. Time evolution of the 3D model, visualized by mass shell trajectories in thin gray lines (left panel). Thick red lines show the position of shock waves, noting
that the maximum (top), average (middle), and the minimum (bottom) shock positions are shown, respectively. The green line represents the shock position of the 1D
model. “1.30” and “1.40” indicates the mass in unit of M⊙ enclosed inside the mass-shell. Right panel shows the evolution of average shock radii for the 2D (green
line) and 3D (red line) models. The “3D low” (pink line) corresponds to the low-resolution 3D model, in which the mesh numbers are taken to be half of the standard
model (see Section 2).
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Figure 7. Time evolution of the 3D model, visualized by mass shell trajectories in thin gray lines (left panel). Thick red lines show the position of shock waves, noting
that the maximum (top), average (middle), and the minimum (bottom) shock positions are shown, respectively. The green line represents the shock position of the 1D
model. “1.30” and “1.40” indicates the mass in unit of M⊙ enclosed inside the mass-shell. Right panel shows the evolution of average shock radii for the 2D (green
line) and 3D (red line) models. The “3D low” (pink line) corresponds to the low-resolution 3D model, in which the mesh numbers are taken to be half of the standard
model (see Section 2).
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Figure 7. Time evolution of the 3D model, visualized by mass shell trajectories in thin gray lines (left panel). Thick red lines show the position of shock waves, noting
that the maximum (top), average (middle), and the minimum (bottom) shock positions are shown, respectively. The green line represents the shock position of the 1D
model. “1.30” and “1.40” indicates the mass in unit of M⊙ enclosed inside the mass-shell. Right panel shows the evolution of average shock radii for the 2D (green
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model (see Section 2).
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Insufficient explosion energy

1 foe=1051 erg is 
necessary from obs. 
~1050erg in simulations 

Can we extrapolate the 
growth of expl. ene. up 
to 1051 erg?
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Figure 10. Time evolution of diagnostic energy (lower limits indicated by
dotted lines, upper limits by solid lines, see text), neutron star radius and
mass, and the radius of the spectrally averaged ⌫e sphere at an optical depth
of h⌧⌫e i = 2/3 (from top to bottom). Neutron star radius and mass are defined
by the density surface at 1011 gcm-3. All quantities are angle-averaged and
the curves are smoothed by running averages of 5 ms.

to follow the energy budget of unbound matter and the con-
tinuous recombination processes behind the expanding shock
front, the simulations would have to be carried on further for
several hundred milliseconds (cf. Scheck et al. 2006, 2008).
This is presently beyond reach due to extremely small trans-
port time steps. Because of ongoing accretion and mass ejec-
tion we expect that the explosion energies can rise consider-
ably even after the onset of the explosion (cf. Marek & Janka
2009; Müller et al. 2012b; Müller 2015).

The time evolution of the baryonic neutron star masses and
radii defined by the density surface at 1011 gcm-3 as well as
the radius of the spectrally averaged electron neutrino sphere
at an (effective) optical depth of h⌧⌫ei = 2/3 is shown in the
three lower panels of Fig. 10. For computing the optical depth

for neutrino equilibration we used the effective opacity

eff =
p
totabs, (20)

where abs is the opacity for neutrino absorption processes
and tot = abs + scatt is the total opacity for absorption and
scattering. The preliminary value of the baryonic neutron star
mass is determined by the amount of matter that can be ac-
creted from the collapsing star and settles to densities above
1011 gcm-3 until the end of our simulations. After the strong
decrease of the mass-accretion rate caused by the arrival of
the Si/Si-O interface in the two more massive models, the in-
crease of the neutron star masses begins to flatten. The higher
growth rate of the neutron star mass in model s15-2007 com-
pared to model s12-2007 directly reflects the differences of
the mass-accretion rates in these two simulations that persist
until the explosions set in at late times (compare Fig. 2).

3.2. Model Set II
In the following, the main results of our simulations (Set II)

concerning 14 pre-supernova models of Woosley et al. (2002)
are presented in the light of the preceding discussion of Set I.
An overview of the characteristic properties of these models
is given in Figs. 11 and 12.

The differences in the position and density gradient of the
Si/Si-O interface (see Fig. 1) are directly mirrored by the tem-
poral evolution of the mean shock radii of the models with
lower and higher ZAMS masses (see Fig. 11, first row). The
most outstanding examples are models s19.6, s20.2, and s26.6
with a very pronounced jump of the density at the interface.
After the arrival of this jump at the shock surface, the shock
almost continuously expands outwards. The time evolution of
these models is comparable to that of models s20-2007 and
s25-2007 extensively discussed in Sect. 3.1. For model s21.6,
the delay between the arrival of the interface and the begin-
ning of the shock expansion is largest, because for this model
the step-like decrease of the mass-accretion rate is less ex-
treme than in the other representatives of the subset of more
massive models (see Fig. 11, second row). The less mas-
sive stars that do not show a sharp discontinuity at the Si/Si-
O interface (especially the 12.4 M�, 13.2 M�, 14.4 M�, and
18.4 M� cases) explode only at relatively late times when the
mass-accretion rates have decreased sufficiently, similar to the
models s12-2007 and s15-2007 of Model Set I.

Model s11.2 which has already been intensively studied in
previous works (Buras et al. 2006a; Marek & Janka 2009;
Müller et al. 2012b; Suwa et al. 2013) can be considered as
special case. In this model, the Si/Si-O composition shell
interface arrives already at ⇠ 80ms after bounce and at this
time, the mass-accretion rate decreases to a much lower value
(⇠ 0.2M� s-1) than in the other less massive models. This is
why the shock front can expand to large radii at early times. In
spite of a transient overshoot of ⌧adv/⌧heat = 1 at ⇠ 100ms post
bounce, however, the 11.2 M� model explodes only when
this critical value of the time-scale ratio is exceeded for a
long-lasting period later than ⇠ 300ms after bounce (see also
Marek & Janka 2009).

In general, the trends already discussed in the previous sec-
tion for the four explosion models of Woosley & Heger (2007)
also hold for the 14 models of Woosley et al. (2002). The ma-
jor prerequisites for a relatively immediate onset of the explo-
sion can be summarized as follows. High mass-accretion rates
and proto-neutron star masses at the time before the Si/Si-O
interface reaches the shock surface cause high neutrino lu-
minosities and mean energies. This leads to strong neutrino
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ZAMS. In addition to model s15 just studied, we use four more
models from Nomoto & Hashimoto (1988) (NH88), Woosley
& Weaver (1995) (WW95), Woosley et al. (2002) (WHW02),
and Limongi & Chieffi (2006) (LC06). The first three of them
were also employed in Suwa et al. (2011), in which neutrino
oscillation effects on a supernova explosion were investigated.
The precollapse density structures are given in Figure 12 (see
also Figure8 of Suwa et al. 2011 for comparison of the density
structures at 100 ms after the bounce; in this paper it was
argued that the structures are similar among the different
models for M<0.8Me whereas they are different for
M>0.8Me). It can be observed that even though the initial
mass at ZAMS is the same, the density structures prior to
collapse become different, depending on both the physics and
the numerics implemented in stellar evolutionary calculations.
It should be noted in particular that the difference between
WW95 and WH07 is substantial for M1.1Me before
collapse (compare red and orange lines in Figure 12).

Figure 13 presents these models in the nM L˙ – plane
evaluated for 1D simulations (cf. Figure 6). NH88, WW95,
and LC06 have clear turning points, and the former two are

located more to the left than the last and are more likely to
achieve shock revival. This is a consequence of the density
jumps more remarkable for these models as observed in
Figure 12. It is noted that all 1D simulations failed to produce
an explosion.
The shock evolutions for 2D simulations are given in

Figure 14. The two progenitors, NH88 and WW95, indeed
succeeded in producing shock revival, whereas the others
failed. This is a clear demonstration that not the ZAMS mass
but the density structure of the progenitor matters for the
dynamics of shock revival. Again, the successful models have
turning points that are located more to the left than the
unsuccessful models, as seen in Figure 13. This is the same
conclusion as in the previous subsection.

3. TURNING POINT

In this section, we propose a novel idea to diagnose a
possibility of shock revival using the trajectory in the nM L˙ – or

nMM L2˙ – plane (see Figure 15). This plane is often used to
discuss the critical curve, which divides this plane into two
regions: the region below this line, in which there are steady
accretion flows, and the other region above the curve, in which
there is no such flow (Burrows & Goshy 1993). The latter is
therefore interpreted as the regionwhere shock revival occurs.
The question arises, where on the actual trajectory is the critical
line crossed from below?
In Figure 15, we present the typical situation we found in the

majority of our models in the previous sections as a schematic
picture of the trajectory and the critical curve in the nM L˙ –
plane. The red solid line represents the critical curve, and the
black dotted line gives a typical trajectory. As mentioned
already in the preceding sections, there is a point on the
trajectoryat which the slope of the trajectory steepens suddenly
as a consequence of the rapid change in the mass accretion rate
there. This point is referred to as the turning point in this paper.
It is worth noting that the trajectory is shallower than the
critical curve before the turning is reached and the order is
changed thereafter. Consequently, it is obvious that the
trajectory can cross the critical curve if and only if the turning
point is located above the critical curve. It should also be clear

Figure 10. (a) Initial profiles of density and composition for model s80. The abundances of 28Si (red line) and 16O (green line)and the density (blue line) are given as
a function of the mass coordinate. There are two jumps in density, representing the transition of layers. (b) Trajectories of the mass shells with the mass coordinates of
1–1.85 Me with an interval of 0.01 Me are plotted as gray curves for the same model. Thin black lines represent 1.66, 1.7, and 1.75 Me from left to right, respectively.
A thick black curve indicates the average shock position. When the mass shell of 1.66 Me runs across the shock, several oscillations ensue in the shock radius. The
shock is eventually expanded at ∼400 ms after the bounce.

Figure 11. Time evolutions of the diagnostic energy for 2D models. It is
defined by the integral of the sum of the specific internal, kinetic, and
gravitational energies, over the zones, in which it is positive. The horizontal
axis is the postbounce time.
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blackbodies, of course. Using the theoretical spectra of
Eastman et al. (1996), I find that the bolometric corrections
derived from Planck functions are !0.2 mag too large for
Teff " 6500 K, about right (#0.1 mag) in the range
5000 $ Teff $ 6500 K, and systematically low for
Teff $ 5000 K. It would be convenient if the LN65 formulae
were rederived with improved corrections.

5. PROPERTIES OF CORE-COLLAPSE SUPERNOVAE

Core-collapse SNe can also be hosted by massive stars
that have lost most or all of their hydrogen-rich envelopes
(SNe Ib), and even most or all of their helium envelopes
(SNe Ic). Therefore, it proves interesting to compare the
physical properties of such objects with those derived from
SNe IIP. A bibliographic search reveals that there are only a
handful of well-studied SNe Ib/c. Table 4 lists such objects

and the corresponding references from which their physical
parameters were obtained.

In general, SNe Ib/c have bell-shaped light curves with a
rise time of !15–20 days, a fast-decline phase of !30 days,
and a slower decline phase at a rate between 0.01 and 0.03
mag day%1. Unlike SNe IIP, the light curves of SNe Ib/c are
promptly powered by 56Ni ! 56Co ! 56Fe. While the peak
is determined by the amount of nickel synthesized in the
explosion, the width depends on the ability of the photons
to diffuse out from the SN interior, which is determined by
the envelope mass and expansion velocity. Therefore, the
early-time light curve provides useful constraints on the
56Ni mass, envelope mass, and kinetic energy (Arnett 1996).
Additional constraints on the kinetic energy come from the
Doppler broadening of the spectral lines. The late-time
decline rate reveals that a fraction of the gamma rays from
the radioactive decay escape from the SN ejecta without
being thermalized and can therefore be used to quantify the
degree of 56Ni mixing in the SN interior. Nomoto et al.
(2000) have modeled SNe Ib as helium stars that lose their
hydrogen envelopes by mass transfer to a binary compan-
ion, and SNe Ic as C/O bare cores that lose their He enve-
lope in a second stage of mass transfer. In both cases they
assume spherically symmetric explosions. Table 4 sum-
marizes the parameters derived from such models for the
seven SNe Ib/c.

Figure 7 shows envelope masses and nickel masses as a
function of explosion energy for the seven SNe Ib/c along
with the 16 SNe II shown in Figure 6. The top panel reveals
that SNe Ib/c appear to follow the same pattern shown by
SNe II, namely, that SNe with greater envelope masses pro-
duce more energetic explosions. The main difference
between both subtypes, of course, is the vertical offset
caused by the strong mass loss suffered by SNe Ib/c prior to
explosion. From the bottom panel it is possible to appreci-
ate that SN 1998bw was quite remarkable in explosion
energy (60 foe) and nickel mass (0.5M&) compared to all of
the other core-collapse SNe. Owing to its extreme energy,
this object has been called a hypernova. SN 1998bw is also
remarkable because it was discovered at nearly the same
place and time as GRB 980425 (Galama et al. 1998). The
Type Ic supernovae SN 1997ef and SN 2002ap are located
far below SN 1998bw in the energy scale (8 and 7 foe,
respectively), yet far above the normal SN 1994I. Despite
their greater than normal energies, neither of these objects
produced unusually higher nickel masses compared to lower
energy SNe Ib/c. Although the statistics are poor, it proves
interesting that both SNe Ib/c and SNe II share the same
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Fig. 6.—Envelope mass and nickel mass of SNe II, as a function of
explosion energy. Filled circles represent the 13 SNe IIP for which I was
able to apply the technique of LN85. The three crosses correspond to SN
1987A, SN 1997D, and SN 1999br, which have been modeled in detail by
Arnett (1996) and Zampieri et al. (2002). The nickel yield for SN 1999br
comes from this paper (Table 2).

TABLE 4

Physical Parameters for Type Ib/c Supernovae

SN Type
Energy

('1051 ergs)
EjectedMass

(M&)
NickelMass

(M&) References

1983I................. Ic 1.0 2.1 0.15 1
1983N ............... Ib 1.0 2.7 0.15 1
1984L................ Ib 1.0 4.4 0.15 1
1994I................. Ic 1.0 0.9 0.07 2
1997ef ............... Ic 8.0 7.6 0.15 2
1998bw ............. Ic 60.0 10.0 0.50 2
2002ap .............. Ic 7.0 3.75 0.07 3

References.—(1) Shigeyama et al. 1990; (2) Nomoto et al. 2000; (3)Mazzali et al. 2002.
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Insufficient 56Ni

M(56Ni)~0.1M⊙ 

 T>5x109 K is necessary for 56Ni production 
E=(4π/3)r3 aT4  ➡ T(rsh)=1.33x1010(E/1051erg)1/4(rsh/1000km)-3/4 K 
With E=1051erg, rsh<3700km for T>5x109K 

56Ni amount is more difficult to explain than explosion 
energy
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blackbodies, of course. Using the theoretical spectra of
Eastman et al. (1996), I find that the bolometric corrections
derived from Planck functions are !0.2 mag too large for
Teff " 6500 K, about right (#0.1 mag) in the range
5000 $ Teff $ 6500 K, and systematically low for
Teff $ 5000 K. It would be convenient if the LN65 formulae
were rederived with improved corrections.

5. PROPERTIES OF CORE-COLLAPSE SUPERNOVAE

Core-collapse SNe can also be hosted by massive stars
that have lost most or all of their hydrogen-rich envelopes
(SNe Ib), and even most or all of their helium envelopes
(SNe Ic). Therefore, it proves interesting to compare the
physical properties of such objects with those derived from
SNe IIP. A bibliographic search reveals that there are only a
handful of well-studied SNe Ib/c. Table 4 lists such objects

and the corresponding references from which their physical
parameters were obtained.
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mag day%1. Unlike SNe IIP, the light curves of SNe Ib/c are
promptly powered by 56Ni ! 56Co ! 56Fe. While the peak
is determined by the amount of nickel synthesized in the
explosion, the width depends on the ability of the photons
to diffuse out from the SN interior, which is determined by
the envelope mass and expansion velocity. Therefore, the
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56Ni mass, envelope mass, and kinetic energy (Arnett 1996).
Additional constraints on the kinetic energy come from the
Doppler broadening of the spectral lines. The late-time
decline rate reveals that a fraction of the gamma rays from
the radioactive decay escape from the SN ejecta without
being thermalized and can therefore be used to quantify the
degree of 56Ni mixing in the SN interior. Nomoto et al.
(2000) have modeled SNe Ib as helium stars that lose their
hydrogen envelopes by mass transfer to a binary compan-
ion, and SNe Ic as C/O bare cores that lose their He enve-
lope in a second stage of mass transfer. In both cases they
assume spherically symmetric explosions. Table 4 sum-
marizes the parameters derived from such models for the
seven SNe Ib/c.

Figure 7 shows envelope masses and nickel masses as a
function of explosion energy for the seven SNe Ib/c along
with the 16 SNe II shown in Figure 6. The top panel reveals
that SNe Ib/c appear to follow the same pattern shown by
SNe II, namely, that SNe with greater envelope masses pro-
duce more energetic explosions. The main difference
between both subtypes, of course, is the vertical offset
caused by the strong mass loss suffered by SNe Ib/c prior to
explosion. From the bottom panel it is possible to appreci-
ate that SN 1998bw was quite remarkable in explosion
energy (60 foe) and nickel mass (0.5M&) compared to all of
the other core-collapse SNe. Owing to its extreme energy,
this object has been called a hypernova. SN 1998bw is also
remarkable because it was discovered at nearly the same
place and time as GRB 980425 (Galama et al. 1998). The
Type Ic supernovae SN 1997ef and SN 2002ap are located
far below SN 1998bw in the energy scale (8 and 7 foe,
respectively), yet far above the normal SN 1994I. Despite
their greater than normal energies, neither of these objects
produced unusually higher nickel masses compared to lower
energy SNe Ib/c. Although the statistics are poor, it proves
interesting that both SNe Ib/c and SNe II share the same
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Fig. 6.—Envelope mass and nickel mass of SNe II, as a function of
explosion energy. Filled circles represent the 13 SNe IIP for which I was
able to apply the technique of LN85. The three crosses correspond to SN
1987A, SN 1997D, and SN 1999br, which have been modeled in detail by
Arnett (1996) and Zampieri et al. (2002). The nickel yield for SN 1999br
comes from this paper (Table 2).

TABLE 4

Physical Parameters for Type Ib/c Supernovae

SN Type
Energy

('1051 ergs)
EjectedMass

(M&)
NickelMass

(M&) References

1983I................. Ic 1.0 2.1 0.15 1
1983N ............... Ib 1.0 2.7 0.15 1
1984L................ Ib 1.0 4.4 0.15 1
1994I................. Ic 1.0 0.9 0.07 2
1997ef ............... Ic 8.0 7.6 0.15 2
1998bw ............. Ic 60.0 10.0 0.50 2
2002ap .............. Ic 7.0 3.75 0.07 3

References.—(1) Shigeyama et al. 1990; (2) Nomoto et al. 2000; (3)Mazzali et al. 2002.
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Figure 2. Maximum temperature distributions of a numerical
simulation (red solid line) and analytic expression (blue dashed
line). For analytic model, we employ L51 = 2, ρR,7 = 0.18, R8 =
2, Rmc,7 = 3, and n = 1.8, respectively. Numerical model employs
s20 model of Woosley & Heger (2007) and neutrino luminosity
Lν = 4 × 1052 erg s−1 and the consequent growth rate of the
explosion energy is ≈ 2 × 1051 erg s−1, which is consistent with
the analytic model.

Then, Eint can be estimated as

Eint =
4πr3s
3

× 3Prad (25)

=
16
3
GMsρ0r

3/2
0 r1/2s (26)

= 3.13× 1049
(

Ms

1.4M⊙

)(
ρ0

107 g cm−3

)

×
( rs
100 km

)1/2 ( r0
1000 km

)3/2
erg. (27)

The modern neutrino-radiation hydrodynamics simulations
suggest that the shock launch occurs when the mass coor-
dinate at the base of the silicon/oxygen shell which has a
much larger entropy than the iron core accretes onto the
shock, since there is a large density jump which reduces
the ram pressure significantly (e.g. Marek & Janka 2009;
Suwa et al. 2016; Ertl et al. 2016). In Table 2, we give char-
acteristic mass, radius, and density for two conditions, that
is, Ye = 0.49 and s = 4 kB baryon−1, respectively. The for-
mer gives a criterion for 56Ni production and the latter is
supposed to be a shook launch point suggested by modern
numerical simulations.

In Figure 2, we show a comparison between numerical
result and analytic solution for the maximum temperature
distribution as a function of mass coordinate. The analytic
model gives a reasonable temperature evolution. A param-
eter n used in the analytic solution is slightly larger than
Shu’s solution (n ∼ 1.5), since the ambient density struc-
ture evolves as the rarefaction wave propagates outwards.

Next, let us introduce a multidimensional effect in the
analytic model. It turns out from recent neutrino-radiation
hydrodynamics simulations that postshock pressure is not
determined by thermal pressure alone, but turbulent pres-
sure (i.e. Reynolds stress) is also contributing. Roughly
speaking, the turbulent pressure becomes comparable to the
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Figure 3. The same figure as 2, but only analytic solutions are
shown. Thin red lines represent one-dimensional (1D) evolution
and thick blue lines are for three-dimensional (3D) ones. Solid and
dashed lines show different growth rates of the explosion energy,
L, respectively. A critical temperature for 56Ni production (T =
5 × 109 K) is also presented by thin black solid line. The other
parameters are the same as Figure 2.
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Figure 4. 56Ni amount as a function of the goeth rate of the ex-
plosion energy L. All parameters are the same as Figure 2 except
for L. Dashed line indicates a canonical value of 56Ni, 0.07M⊙.

thermal pressure (e.g. Couch & Ott 2015). Therefore, it is
natural to introduce a factor (≈ 0.5) in Eq. (27), to take
into account multi-dimensional effects. Figure 3 shows the
impact of multidimensional effect on the temperature evo-
lution. As is shown, the initial temperature of multidimen-
sional model decreases than one-dimensional model. We also
represent the dependence of L in this figure. Obviously, a
smaller growth rate of the explosion energy leads to a lower
temperature and a smaller 56Ni amount.

In Figure 4 presents the amount of 56Ni as a function
of L. All parameters other than L are the same as Figure 2.
Note that from Eq. (20) it is apparent that there are some
parameter degeneracy with L. Therefore, the solid line in
this figure can shift in horizontal direction. However, we do
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What should we do next?

More detailed simulations 
accumulating 10% effects? 

Looking for missing physics 
importing something from other communities? 

Reconsidering initial value problem 
how reliable progenitor models?
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Initial condition may solve problem
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Takiwaki, Kotake, Suwa 2016 (3D)

Supernova simulation is an initial value problem

11

stellar evolutionary calculations 
ρ(r), T(r), Ye(r), vr(r)

supernova explosions

Suwa+ 2010 (2D)
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Initial condition dependences of SN simulations
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Figure 2. Upper panel: mean, minimum, and maximum shock radii vs. tpb for
all simulations. Lower panel: mean shock radii for all simulations and their 1D
equivalents.
(A color version of this figure is available in the online journal.)

in the animated version of Figure 1), causing, for example,
the gain region to swell along the poles and contract in the
equatorial regions (Figure 1; 150 ms panel). This distortion
mode increases τadv/τheat in the expanded regions and decreases
it in the contracted regions creating outflow plumes and inflow
funnels in the former and latter regions, respectively. Thus,
while the shocks of the 1D models slowly contract after
tpb ∼ 100 ms, the average shock radii of the 2D models continue
to slowly increase. The expansion accelerates after tpb ∼ 200 ms
(Figure 2).

Going from B12-WH07 to B25-WH07, Q̇νe
increases ∼2–2.5

fold, Eth increases ∼1.5 fold, and τadv decreases ∼1.5 fold, con-
sequently τadv/τheat ! 1 at about the same tpb for all four mod-
els. On the other hand, the decrease in τadv noticeably delays
the onset of neutrino-driven convection in the more massive
models—from tpb ∼ 60 ms (B12-WH07) to tpb ∼ 100 ms (B25-
WH07). Consequently, it appears that neutrino-driven convec-
tion precedes the SASI in B12-WH07 but follows it in the
B25-WH07, the SASI having time to saturate in the latter
model before the onset of convection (cf. Müller et al. 2012a).
B15-WH07 and B20-WH07 are intermediate cases and prece-
dence of convection or the SASI is not clear.

A Legendre decomposition of the shock deformation (com-
puted per Blondin & Mezzacappa 2006) indicates that the
growth of the SASI is dominated by the l = 2 (quadrupolar)
mode in B12-WH07 and B15-WH07, while the l = 1 (dipolar)
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Figure 3. Upper panel: analytic shock using Equation (1) of Janka (2012; solid
lines, dimensionless) for all simulations; and PNS radii (ρ = 1011 g cm−3

surface; dotted, km), 30 × dM/dt at shock (dash-dotted, M⊙ s−1), PNS mass
(double-dot-dashed, 0.1 M⊙), and ν-sphere temperature (dashed, MeV) for the
extreme cases, B12-WH07 and B25-WH07. Lower panel: luminosity (solid
lines, B s−1) and comoving-frame rms energies (dashed, MeV) for all species
of neutrinos, and mass accretion rate onto the PNS (dot-dashed, M⊙ s−1) for
B12-WH07.
(A color version of this figure is available in the online journal.)

mode is dominant in B20-WH07 and B25-WH07. The subse-
quent rise in the amplitude of shock deformation as the shock
begins to accelerate outward is always dominated by the l = 1
mode. The shock deformation oscillates, with a period increas-
ing with the progenitor mass, from 18 ms for B12-WH07 to
30 ms for B25-WH07, though period variations are seen in
each model.

The neutrino luminosities Lν and rms energies ⟨Eν⟩rms for all
models follow a similar pattern to that of B12-WH07 (Figure 3;
lower panel). Following the νe-break-out burst, the luminosities
of all neutrino species peak between 100 and 200 ms. The νe-,
ν̄e-luminosities, which arise both from the core and from the
energy released by accreting matter, exhibit a more pronounced
peak during the peak of the mass accretion rate than Lνµτ

and
Lν̄µτ

, which arise more exclusively from the core. After 200 ms
there is a rapid falloff in Lνe

and Lν̄e
as the shock begins to

accelerate outward and the mass accretion rate declines. ⟨Eν⟩rms
follows the usual hierarchy, with energy increasing from νe to ν̄e

to νµτ to ν̄µτ , the latter three becoming separated by only a few
MeV after several hundred ms. The split between ⟨Eνµτ

⟩rms and
⟨Eν̄µτ

⟩rms is due to weak magnetism, which increases (decreases)
the opacities of νµτ (ν̄µτ ). Weak magnetism also causes the
ν̄e-luminosity to exceed the νe-luminosity at times after bounce
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Figure 11. Time evolution of different diagnostic quantities for Model Set II. For better clarity, the 14 models are subdivided into two parts: the models with
lower ZAMS masses are displayed in the left column, the models with higher ZAMS masses in the right column. From top to bottom, the average shock radius,
the mass-accretion rate, the advection time scale, the heating time scale, and the time-scale ratio are depicted. Quantities that are not well defined shortly after
bounce are only shown for t � 0.05s post bounce. The black dots in the top panels mark the point in time when the ratio ⌧adv/⌧heat reaches unity (in the case
of model s11.2, the transient spike of ⌧adv/⌧heat & 1 at early times was disregarded). Note that the advection time scale of model s11.2 (left column, third panel
from top) is scaled with a factor of 0.25. All quantities are angle-averaged and the curves are smoothed by running averages of 5 ms.
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Fig. 7. As figure 6 but for models s25.0 (a) to s75.0 (i), from top left to bottom right. (Color online)

Fig. 8. Average shock radii (thick solid lines) and mass-accretion rate
of the collapsing stellar core at 500 km (thin dashed lines) for some
selected models. (Color online)

the most massive PNS in our 101 solar-metallicity models
(MPNS = 2.16 M⊙ for s23.4 model with ξ2.5 = 0.4273;
see also figure 14). In their 1D GR study, a model with
ξ2.5, cb > 0.4 leads to BH formation at tpb ! 1 s. For a given
BH-forming progenitor model, the BH formation timescale
might be delayed in our 2D exploding models because the
shock expansion would possibly make the mass accretion
onto the PNS smaller. Although multi-D GR simulations

Fig. 9. Time evolution of central PNS mass for the same models as
in figure 8. The compactness parameter ξ2.5 is labelled beside each
line. The horizontal dotted line represents the maximum mass of a cold
neutron star of the LS220 EOS. (Color online)

with elaborate neutrino transport scheme are needed to
unambiguously clarify this issue, the above exploratory
discussions lead us to speculate that BH formation is less
likely to affect the systematic features obtained in our solar
metallicity models. We will comment further on the pos-
sible effects of BH formation in section 5, including for
metal-deficient progenitors.
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(1985) and that our simulations are Newtonian. Müller et al.
(2012b) have shown that GR effects could enlarge the neutrino
luminosities and therefore make it easier to explode. The model
s20–2007 in Hanke (2014) and Melson et al. (2015a) shows a
similar explosion time to our model s20, but the shock radius at
∼150ms shrinks to ∼150 km due to GR effects. The reasons
for the differences between Vertex-Prometheus and
CHIMERA are still unclear, but the overall features for the
progenitor s20 are still rather similar. However, the model
s15–2007 in Hanke (2014) shows a very different result. The
shock stalls for ∼500ms and then explodes at around
∼600ms.

On the other hand, 2D CASTRO and ZEUS Newtonian
simulations by Dolence et al. (2015) and Suwa et al. (2014) did
not obtain an explosion with the s15 and s20 progenitors. Our
2D simulations show a fast shock expansion after the prompt
convection (∼20 ms, see Figure 9). This is similar to what was
observed in Dolence et al. (2015) but somewhat less dramatic.
The prompt convection and fast shock expansion coincide with
an oscillation of the electron antineutrino luminosity at
10–20 ms (see Figure 9 and Figure 6 of Dolence et al. 2015).
These could be caused by the reduced opacity or incomplete
neutrino interactions as discussed before. Note that Dolence
et al. (2015) use the Shen EOS, which is considered more
difficult to lead to explosions than LS220 (Couch 2013; Suwa
et al. 2013).

Suwa et al. (2014) also use the IDSA (without PD) but
with spherical coordinates and the “RbR” approach. In
principle, we should expect similar results, but the non-
explosion of s15 and s20 in Suwa et al. (2014) suggests that
the different hydrodynamics code, geometry, resolutions, and
multidimensional neutrino transport approximation may also
cause significant differences. Suwa et al. (2014) use 300
logarithmically spaced radial zones (from 1 to 5000 km) and
1°.4 angular resolution. This is roughly three times lower than

our simulations. Adetailed code comparison is therefore
necessary.

4. MULTI-PROGENITOR STUDY

We perform 1D and 2D simulations with s11.0, s15.0, s21.0,
and s27.0 progenitor models from Woosley et al. (2002).
Simulations run from the prebounce core collapse to several
hundred milliseconds postbounce with and without the PD in
the collapse phase. The former is important in order to
effectively take NES into account. Table 3 shows the core
properties of these four progenitors during collapse based on
1D simulations. A summary of all performed simulations is
shown in Table 4. The model abbreviations in Tables 3 and 4
are defined by a set of letters and numbers: the first two
characters define the dimension of the model (1D or 2D); the
first letter after the hyphen denotes the EOS of the model (L for
LS220 and D for DD2); the second letter shows the transport
scheme during the collapse (A for IDSA and P for PD); and the
last two numbers specify the mass of the investigated
progenitor model. A “−07” at the end shows progenitor
models from Woosley & Heger (2007), otherwise they are from
Woosley et al. (2002). For instance, model 1D-DA15 means a
1D simulation of the s15.0 progenitor with DD2 EOS and using
the IDSA in the collapse phase (i.e., effectively without NES).
When we refer to models DA, we consider all models with
“DA” in their abbreviations.

4.1. Stellar Collapse and Core Bounce

Simulations are started from the non-rotating, solar-
metallicity pre-supernova progenitors from Woosley et al.
(2002) without artificial perturbation. Couch & Ott (2013) and
Mueller & Janka (2015) show that small perturbations on the
Si/O interface during collapse could amplify post-shock
turbulence and turn a model that failed to explode toward a
successful explosion. In addition, Couch et al. (2015)

Figure 14. Average shock radius vs.postbounce time for different progenitors and neutrino transport approximations. All models use the DD2 EOS. Different colors
indicate different progenitor models. The left panel represents simulations without the PD and the right panel represents simulation with an effective inclusion of NES
by the PD. The solid lines show 2D simulations and the dashed lines show 1D simulations.
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Figure 5. Explosion and remnant properties resulting from our parameterized 1D neutrino-driven SN simulations: explosion energy (top left), time of the onset of the
explosion (top right), baryonic mass of the compact remnant (middle left), total release of gravitational binding energy by the compact remnant in neutrinos (middle
right), and ejected 56Ni mass (bottom left) as functions of stellar birth (ZAMS) mass. The bottom right panel shows the compact remnant mass vs. the enclosed mass
at the base of the oxygen-burning shell of the progenitor, where the stars possess an entropy jump of varying size. The green histogram bar indicates the 19.8 M⊙
calibration model (see the text). While vertical ticks in some panels mark masses where computed models did not explode, gray histogram bars reaching to the upper
panel edge and arrows in the bottom right panel signal the formation of a BH containing the whole mass of the progenitor at collapse. The only exception here is the
37 M⊙ star, where the explosion expulses ∼3.2 M⊙ while 4.5 M⊙ of fallback give birth to a BH with 6.5 M⊙. Blue histogram segments indicate fallback masses, and
orange segments the uncertainties of the 56Ni ejecta masses. The latter uncertainties are associated with inaccuracies in the Ye determination of the neutrino-heated
ejecta because of our approximative treatment of neutrino transport.
(A color version of this figure is available in the online journal.)

explosion with the Prometheus version described in Section 2.
The mapping, excision of the NS core, and approximate neutrino
treatment do not cause any worrisome transients.

3.1. Explosion Properties

Explosions can develop in the case of a favorable interplay
of mass-accretion rate and neutrino luminosities (e.g., Burrows
& Goshy 1993; Janka 2001; Fernández 2012). In all successful
cases compared to failed explosions of neighboring progenitors,
the mass-accretion rate either is lower during a long postbounce
period or decreases rapidly when a composition–shell interface
arrives at the shock. Shock revival occurs when the neutrino
luminosity is still sufficiently high (and thus neutrino heating
strong enough) at this time. In a large number of successful
and unsuccessful models the decreasing mass-accretion rate
triggers shock oscillations, which indicate the proximity to
runaway conditions (Buras et al. 2006b; Murphy & Burrows
2008; Fernández 2012) and whose amplification also leads to
large-amplitude pulses of the accretion component of the driving
neutrino luminosity (see Buras et al. 2006b). In some stars the
explosion is fostered by the Si/O interface reaching the shock
relatively soon after bounce, either due to its location at a smaller

mass coordinate or because of higher mass-accretion rates at
earlier times, corresponding to a more compact Si-layer. In this
case the high accretion luminosity seems to be supportive. (More
information on the time evolution, dynamics, and the neutrino
emission of our models will be provided in a separate paper.)
In summary, the destiny of a collapsing star does not hinge on
a single parameter but depends on the overall structure of the
stellar core.

Figure 5 gives an overview of the results of our whole
model set. All displayed quantities exhibit considerable scatter
even in narrow mass windows, which is a consequence of the
nonmonotonicities of the progenitor structure. Failed explosions
with BH formation seem to be possible for progenitors below
20 M⊙, and successful SNe with NS formation are also found
between 20 and 40 M⊙. While below 15 M⊙ all core collapses
produce NSs, the investigated progenitor set yields several
“islands” with preferred BH creation above 15 M⊙. A discussion
how BH formation cases correlate or do not correlate with the
density structure and characteristic quantities of the progenitor
cores can be found in Section 2.2.

The energies of the neutrino-driven explosions do not exceed
2 × 1051 erg, and 56Ni production up to 0.1–0.15 M⊙ can
be expected. Note that our determination of nickel yields is

6
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Figure 13. Outcome of core collapse as a function of ZAMS mass of single nonrotating massive stars, assuming that for moderately stiff nuclear EOS (e.g., LS180/
LS220), neutrino-driven explosions can be launched up to a bounce compactness ξ2.5 ! 0.45 (cf. Section 4.5). Other potential explosion mechanisms are neglected. We
consider only explosion and BH formation without explosion as outcomes and neglect other scenarios, including post-explosion BH formation via fallback accretion
(Zhang et al. 2008; Dessart et al. 2010), cooling or nuclear phase transitions. Shown are results for a range of model sets and metallicities (see Section 3). Very low
metallicity stars with ZAMS masses above ∼30 M⊙ robustly form a BH without explosion. At higher metallicity, uncertainties in the physics of mass loss (e.g., Smith
et al. 2010) make robust predictions difficult. This is reflected in the rather dramatic disagreement of the four solar-metallicity progenitor model sets that we include.
The “BH fractions” stated at the right edge of the plot denote the fraction of massive stars with M " 8 M⊙ that form BHs. They are obtained by convolution with a
Salpeter IMF under the assumption that stars with 8 M⊙ ! M ! 14 M⊙ explode robustly.
(A color version of this figure is available in the online journal.)

(IMF; α = 2.35, Mmin = 8.0 M⊙, and Mmax = 150.0 M⊙) we
estimate that ∼15% of all progenitors form BHs without explo-
sion. At (around) solar metallicity, the precise way of prescrib-
ing mass loss in stellar evolution has tremendous consequences
on the mapping between ZAMS mass and core collapse out-
come. Depending on the particular mass-loss prescription, we
predict a BH fraction of 0%–7% for solar-metallicity stars. This
makes mass loss the single most important unknown parameter
in connecting ZAMS conditions to core collapse outcome (in
agreement with Smith et al. 2010).

Rapid rotation, which may be present in a significant subset
of massive stars, generally increases the maximum PNS mass
by centrifugal support and delays BH formation. Assuming
(quite likely) uniform rotation of the PNS core, the increase
in maximum PNS mass due to centrifugal support in the
range of rotation rates explored is ∼5%–10%. In the basic
neutrino mechanism, rotation leads to a lower sum of νe and
ν̄e luminosities and lower mean energies for all neutrino types.
This is detrimental for explosion in 1.5D (and perhaps even
in 2.5D) despite centrifugal support (Fryer & Heger 2000; Ott
et al. 2008). A larger fraction of massive stars may form BHs
with (moderate) rotation than without. Left out of this picture are
potential magnetohydrodynamics contributions to the explosion
mechanism and energetics (cf. Burrows et al. 2007b).

Of particular interest to both formal relativity theory and
astrophysics is the range of potential birth spins of BHs.
Our results quite strikingly suggest that the rotation rate of
the maximum-mass PNS and, hence, the spin of the nascent
BH, will be limited to values of a⋆ below !0.9 by likely
nonaxisymmetric dynamics. If true and confirmed by multi-
dimensional simulations, 3D rotational instabilities may be a
cosmic censor preventing naked singularities from forming in
stellar collapse.

Rotation and the associated angular momentum are key
ingredients in the collapsar scenario for GRBs (Woosley 1993).
As part of this study, we have performed the first BH formation

study with the m35OC GRB progenitor of Woosley & Heger
(2006). Using the LS220 EOS, we predict an initial BH mass
of ∼2.29 M⊙ and a⋆ of ∼0.58. Assuming that the GRB engine
cannot operate until a Keplerian disk has formed, there will be a
delay of ∼10 s between BH formation and GRB engine ignition
at a BH mass of ∼8 M⊙ and a⋆ ∼ 0.75.

Finally, we re-emphasize that the goal of this study was not
to yield accurate predictions about the outcome of core collapse
in any individual progenitor. Rather, we have studied and
established overall trends with progenitor parameters. We have
made simplifications and approximations, and have omitted a
broad range of potentially relevant physics. The most important
of the latter may well be multi-dimensional dynamics and their
effect on the CCSN explosion mechanism and on the associated
failure rate of CCSNe.

Future work may be directed toward studying the systemat-
ics of BH formation in the post-explosion phase via fallback
accretion, PNS cooling, or EOS phase transitions. Our current
neutrino treatment must be upgraded for more quantitatively
accurate simulations and neutrino signature predictions. Ulti-
mately, multi-dimensional GR simulations of successful and
failing CCSNe will be necessary to study the multi-dimensional
dynamics left out here and for making truly robust predictions
of the outcome of stellar collapse for any given set of initial
conditions.

We acknowledge helpful discussions with and input from A.
Burrows, P. Cerdá-Durán, L. Dessart, M. Duez, T. Fischer, J.
Kaplan, J. Lattimer, C. Meakin, J. Murphy, F. Peng, S. Phin-
ney, C. Reisswig, S. Scheidegger, N. Smith, E. Schnetter, K.
Thorne, and S. Teukolsky. We thank S. Woosley and A. Heger
for their recent presupernova models and A. Chieffi and M.
Limongi for making available both of their presupernova model
sets. The computations were performed at Caltech’s Center for
Advanced Computing Research on the cluster “Zwicky” funded
through NSF grant no. PHY-0960291 and the Sherman Fairchild
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2.2.4 Evolution of Explosion and Remnant Parameters– Phase II

During phase II, the explosion energy can still change due to ex-
plosive burning in the shock, the accumulation of bound material
by the shock, and the energy input from the neutrino-driven wind
(which also reduces the proto-neutron star mass).

In recent self-consistent simulations of the wind phase in elec-
tron capture supernova explosion (Janka et al. 2008; von Groote
2014), the wind contributes only ⇠1048 erg to the explosion energy
�Ewind and the integrated mass loss is �Mwind . 10�4 M�. Even
for more massive progenitors that leave behind more massive neu-
tron stars with hotter neutrinospheres, the integrated mass loss in
the wind remains well below 10�3 M� (Hüdepohl 2014), implying a
contribution to the explosion energy of⌧ 1050 erg.

We therefore feel it is justified in neglect the e↵ect of the
neutrino-driven wind on the final explosion and remnant properties
in this work, and consider only the two remaining contributions.
Aside from the fact that all of the matter swept up by the shock
now contributes to the energy budget of the ejecta (and not just a
fraction ↵out), these can be treated exactly as in phase I, and the
equation for the explosion energy becomes,

dEdiag

dMsh
= ✏bind + ✏burn. (49)

The baryonic remnant mass M is left unchanged during this phase.

2.2.5 Final Explosion Properties and Neutron Star Mass

Integrating Equation (49) out to the stellar surface yields the final
explosion energy Eexpl. If Eexpl is positive, we compute the final
gravitational mass of the neutron star using the approximate for-
mula (Lattimer & Yahil 1989; Lattimer & Prakash 2001)

Mgrav = Mby � 0.084M�(Mgrav/M�)2. (50)

If Ediag becomes negative at any Msh, if the remnant mass Mgrav

exceeds the maximum neutron star mass Mmax, or (as discussed
earlier) if the condition ⌧adv/⌧heat = 1 was never met, we assume
that the entire star collapses to a black hole and set Eexpl = 0. The
possibility of fallback is thus considered only as an all-or-nothing
event – it will involve the entire star if the diagnostic energy be-
comes negative, and no fallback is assumed to happen for success-
ful explosions. The reality is obviously more complicated, and the
systematics of fallback will need to be studied in greater detail in a
future continuation of this work.

During phase I and phase II, we also integrate the mass of iron
group elements MIG produced by explosive nuclear burning (taking
into account that only a fraction ↵out out these will be ejected during
phase I). MIG can be taken as a rough proxy for the nickel mass,
but needs to be interpreted with caution: 56Ni is not the only iron
group element produced by explosive burning at su�ciently high
temperatures, and the very crude “flashing” treatment based on an
estimate of the post-shock temperature cannot be expected to yield
quantitatively reliable results. For these reasons, MIG can at best be
expected to agree with the actual nickel mass within a factor of ⇠2.

3 RESULTS

We apply our model to a set of 2120 solar-metallicity progenitor
models computed with an up-to-date version of the stellar evolution
code Kepler (Weaver et al. 1978; Heger & Woosley 2010). The
models cover a range from 10 M� and 32 M� in ZAMS mass with
a typical spacing of 0.01M� except for the mass range between
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Figure 2. Explosion energy Eexpl (panel a), remnant mass Mgrav (panels b
and c), and the iron-group mass MIG (panel d) as a function of ZAMS mass
for the standard case. The distribution of black hole and neutron star masses
are shown in separate panels. Note that there is a gap in our set of progen-
itors around 11M�; missing data points in this region are not indicative of
black hole formation.

Figure 3. Histogram of the distribution of gravitational neutron star masses
for the standard case. The stacked bars in di↵erent colours give the contri-
bution of progenitors from di↵erent ranges of the ZAMS mass m (measured
in solar masses) to the probability density in a given bin.
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Figure 2. Explosion energy Eexpl (panel a), remnant mass Mgrav (panels b
and c), and the iron-group mass MIG (panel d) as a function of ZAMS mass
for the standard case. The distribution of black hole and neutron star masses
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Figure 18. Effect of various zoning and time step criteria on the final core compactness in two different regions—A:17.1–17.5 M⊙ and B:20.1–20.5 M⊙. 1A,B—different
zoning: default (thick) and 2/3 of default (dot-dashed). 2A,B—time step: default (thick), half (dot-dashed) and double (thick-dashed).

U-series and SH-series stars, albeit at slightly different masses
(Figure 3). It is also present in the compactness plot for the bare
CO cores studied later in Section 5.

This behavior can be traced to the presence of a strong,
extended convective oxygen burning shell during the post-
silicon burning evolution of stars over about 50 M⊙. The lighter
stars lack this shell; the heavier ones have it. Starting at 50 M⊙
for the U-series, this shell is present at silicon depletion with a
base at 1.8 M⊙. Moving to heavier masses, the shell grows larger
and its base moves outward, reaching 2.5 M⊙ at 65 M⊙. There
is a sharp density decline at the base of the shell and because
of this migration outside the fiducial point for measuring ξ2.5,
the compactness parameter rises again as the star mass passes
about 60 M⊙.

Whether this shell is present or not depends upon the timing
of silicon core ignition and oxygen shell burning. Recall the key
role played by the carbon shell and oxygen ignition for stars in
the range 21–30 M⊙ (Section 3.2). When the carbon shell was
situated far enough out, oxygen burning would ignite before
carbon shell burning was done with major consequences for
the compactness. Here, the oxygen shell plays the role of the
former carbon shell. If it burns far enough out, the silicon core
can ignite earlier. In this case, however, igniting silicon does not
blow out the oxygen shell. It persists until the end.

Figure 19 shows the locations of various silicon and oxygen
burning episodes as a function of mass for the SH series models.

Figure 19. Maximum extents of the oxygen and silicon burning convective cores
and 1st shells are plotted against the initial mass of the model for SH stars. The
base of the single remaining carbon convective shell (dashed) is also shown,
but lies well outside 2.5 M⊙ and has little effect on ξ2.5 in this mass range. The
bases of the 1st shells are not plotted for clarity, but they almost always perfectly
match with the extents of the cores. Notice, how the silicon core size responds
as the oxygen core overgrows the silicon shell near 45–50 M⊙.

Though it lacks the time dimension of a full convective history
plot, the figure shows that the size of the oxygen convective core
increases monotonically with mass for these heavy stars. Where
the oxygen convective shell ignites is pegged to the extent of
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NB) all MZAMS=15M⊙

that shock revival will be fizzled if the system evolves rapidly
after the turning point, rolling down the second half of the
trajectory and quickly passing the critical point again. Hence, it
is important that the system stays for a long time around the
turning point.

Since the critical curve is a convex and the monotonically
increasing function of the mass accretion rate, the more to the
upper left the turning point is located, the more likely shock
revival is to obtain. Although the critical curve has been well
studied by several groups,11 we emphasize here the importance
of the trajectory as well. In principle, multidimensional
neutrino-radiation hydrodynamic simulations, or ab initio
computations, with detailed neutrino physics and radiative
transfer being incorporated, are required to obtain reliable
model trajectories. It has been demonstrated, however, that one
observed effect of multidimensionality in supernova dynamics
is to lower the critical curve (Murphy & Burrows 2008;
Nordhaus et al. 2010; Hanke et al. 2012), although the
trajectory is also somewhat modified. Hence, it is expected that
1D simulations will be sufficient to find approximate locations

Figure 12. Same as Figure 2, but for progenitors with the ZAMS mass of 15 Me. Here we use five models from Nomoto & Hashimoto (1988) (NH88), Woosley &
Weaver (1995) (WW95), Woosley et al. (2002) (WHW02), Limongi & Chieffi (2006) (LC06), and Woosley & Heger (2007) (WH07). Owing to the different
treatments of physics and numerics for stellar evolutionary calculations, the structures prior to collapse show diversity even if they have the same ZAMS mass. In
panel (b), free-fall times are given by dashed lines.

Figure 13. Model trajectories in the OM L˙ – plane for the 1D simulations of
15 Me progenitors. This is the same as Figure 6, but for different progenitor
models. The mass accretion rate is evaluated at 300 km from the center.

Figure 14. Time evolutions of the angle-averaged shock radius for 15 Me
progenitors. NH88 and WW95 produce explosion owing to small densities of
the envelopes.

Figure 15. Schematic picture of the critical curve and turning point. If the
turning point is located above the critical curve and the luminosity and mass
accretion rate stay in the vicinity of the tuning point for a long time, such a
model will produce an explosion. The critical curve is expected to be shifted by
macrophysics such as dimensionality, and the turning point may be shifted by
microphysics, as well as the progenitor structure. The critical curve and turning
point are also useful to assess the influence of a particular physics incorporated.

11 There are a few attempts to derive the critical curve analytically (Janka
2012; Keshet & Balberg 2012; Pejcha & Thompson 2012). The impact of
properties of the nuclear equation of state on the critical curve is also studied
(Couch 2013a) and is found to be minor compared to the dimensionality.
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that the explosion characteristics strongly depend on
the mass of the progenitor and on its internal structure.
However, it is still unclear which are the most important
quantities among those characterizing the internal structure
of a core-collapse supernova progenitor.

Because stellar evolutionary calculations are subject
to restrictions (see, e.g. Jones et al. 2015, for recent code
comparison), we decided to generate progenitor mod-
els by ourselves in a more systematic and manageable
way. To this end, we used the approach proposed by
Baron & Cooperstein (1990) to construct initial models. In
this approach one prescribes the distributions of entropy
and electron fraction (Ye) in a progenitor model as func-
tions of the mass coordinate, and one assumes hydrostatic
equilibrium to obtain the density structure from these dis-
tributions. The hydrodynamic evolution of the progenitor
models is then simulated employing a microscopic equation
of state.

Contrary to Baron & Cooperstein (1990), we apply
their approach to modern radiation hydrodynamic simula-
tions of neutrino-driven core-collapse supernovae. While a
neutrino-driven explosion is the current standard paradigm
for core-collapse supernovae, Baron & Cooperstein (1990)
were discussing the influence of progenitor properties on
the prompt explosion scenario, in which the prompt shock
resulting from core bounce was thought to cause the ex-
plosion. In particular, we have performed one-dimensional
(1D) general relativistic hydrodynamic simulations includ-
ing a detailed treatment of neutrino transport and a nuclear
equation of state, i.e., our study is more elaborate than that
of Baron & Cooperstein (1990).

Using this approach, we were able to perform a com-
prehensive parameter study which displays the dependen-
cies of the outcome of 1D core-collapse supernova simula-
tions on the properties of the progenitor models. In addi-
tion, our approach has the advantage over other numerical
studies of core-collapse supernovae, which all rely on pro-
genitor models from stellar evolutionary calculations (but
see Yamamoto & Yamada 2016), that initial conditions can
be studied, which extend those currently predicted by stellar
evolutionary calculations.

In section 2 we explain how we constructed the progen-
itor models, and in section 3 we describe our hydrodynamic
method and present the results of our simulations. We dis-
cuss in detail the influence of the progenitor properties on
the core-collapse supernova dynamics in section 4, and con-
clude in section 5 with a summary and discussion of our
results.

2 PROGENITOR MODELS

In this section, we explain the strategies to obtain progenitor
models for core-collapse supernova simulations. First of all,
we construct progenitor models resembling the stellar evo-
lutionary model s11.2 of Woosley et al. (2002), which has
been widely used in hydrodynamic simulations.

M
M1 M2 M3 M4 M5

Sc
S1

S2

S5

Yec

Ye3

Ye4

S,Ye

Figure 1. Schematic behavior of the entropy S (red line) and
electron fraction Ye (blue line) distribution as a function of mass
for our progenitor models.

2.1 Hydrostatic equation

To construct a progenitor model for our hydrodynamic sim-
ulations, we solve the hydrostatic equation

dP
dM

= −
GM
4πr4

, (1)

where P,M,G, and r are the pressure, the mass coordinate,
the gravitational constant, and the radial coordinate, respec-
tively. The density is given by dM/dr = 4πr2ρ. To solve
Eq. (1) one needs to specify a value for the central density,
ρ0, which is one of parameters of this approach, and one
needs to have P given as a function of density ρ, entropy S,
and electron fraction Ye, i.e., an equation of state (EOS).

Following Baron & Cooperstein (1990), we change G →

geffG in Eq. (1), where geff < 1 is a factor mimicking the fact
that the progenitors are no longer in hydrostatic equilibrium,
but already in a dynamic state. We used this procedure to
destabilize the core in a uniform way, because reducing in-
stead the pressure (by reducing the entropy or Ye) may lead
to undesirable effects, like e.g., a strange mass accretion his-
tory (see Baron & Cooperstein 1990).

In the following subsections, we give the distributions
of S and Ye as functions of the mass coordinate M that we
used in our study. Given these functions, we integrate Eq. (1)
and obtain ρ(r) and M(r). Due to limited extent of the tab-
ular equation of state used in our simulations, we integrate
Eq. (1) outward in mass until the density drops below a value
of 103 g cm−3. We note that this Newtonian treatment of the
progenitor model is compatible with the general relativistic
treatment used in our hydrodynamic simulations, because
the central lapse function is 1 − α ≈ O(10−3) for the pro-
genitor models, i.e., the use of the Newtonian approximation
is well justified.

MNRAS 000, 1–10 (2016)

M1: the edge of the final convection in the radiative core 
M2: the inner edge of the convection zone in the iron core 
M3: the NSE core 
M4: the iron core mass 
M5: the base of the silicon/oxygen shell

[Suwa & Müller, MNRAS, 460, 2664 (2016)]
original idea is given by Baron & Cooperstein (1990)
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Table 1. Parameters of our models resembling the stellar evolutionary model s11.2 of Woosley et al. (2002)

Model M1 M2 M3 M4 M5 Sc S1 S2 S5 Yec Ye3 Ye4 ρc geff
[M⊙] [kB/baryon] [1010g cm−3]

WHW02-s11.2-g0.99 0.82 1.16 1.26 1.30 1.32 0.62 1.1 1.74 5.4 0.425 0.48 0.5 1.6 0.99
WHW02-s11.2-g0.975 — — — — — — 1.0 1.65 — — — — — 0.975
WHW02-s11.2-g0.95 — — — — — — 0.75 1.64 — — — — — 0.95
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Figure 3. Density (top panel) and temperature (bottom panel)
distributions of the stellar evolutionary model s11.2 (red) and
of our three corresponding progenitor models (purple, blue, and
green). The bottom plot in the upper panel shows the density
distributions of our three models normalized by that of the s11.2
model.

approximation (IDSA) (Liebendörfer et al. 2009), which
has been used, e.g., by Suwa et al. (2010); Takiwaki et al.
(2012); Nakamura et al. (2015), and Pan et al. (2016) to
perform multi-dimensional core-collapse simulations. In
IDSA the electron neutrino and electron anti-neutrino dis-
tribution functions are split into two components, which are
solved with different numerical techniques.

The weak interaction rates implemented in our code
are based on Mezzacappa & Bruenn (1993), and the cool-
ing by muon and tau neutrinos is modeled with a leakage
scheme. Neutrino-electron scattering is also implemented
in this code according to Liebendörfer (2005) by express-
ing the electron fraction Ye as a function of ρ. However,
since this function is calibrated for specific progenitor mod-
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Figure 4. Central density as a function of time after bounce for
the stellar evolutionary model s11.2 (red) and our three corre-
sponding progenitor models (purple, blue, and green). The time
of bounce differs, being later for models with a larger geff because
these models are closer to a hydrostatic configuration.

els and it is not always adequate, we did not employ it in
this work. The equation of state (EOS) used in our simu-
lations is that of Lattimer & Swesty (1991) with an incom-
pressibility K = 220MeV for ρ ! 108 g cm−3 and that of
Timmes & Arnett (1999) for ρ < 108 g cm−3. In the lat-
ter density range the average nuclear mass number A and
atomic number Z are assumed to be the same as in the EOS
of Lattimer & Swesty (1991) at ρ = 108 g cm−3. We follow
O’Connor & Ott (2010) to match the thermodynamic quan-
tities of both EOS tables at the transition density. The min-
imum density of of our combined EOS table is 103 g cm−3.

Accordingly, the results of our study are based on the
use of a modern numerical tool that is well suited for sim-
ulations of neutrino-driven supernova explosions, because it
is able to handle general relativistic gravity, neutrino radi-
ation transport, and a nuclear equation of state. Nowadays
we know that all of these ingredients are of considerable im-
portance for a proper simulation of the supernova explosion
mechanism, but none of them were taken into account in the
work of Baron & Cooperstein (1990).

3.2 Results

Fig. 4 shows the central density as a function of time after
bounce for all investigated models based on s11.2. Because
our models were computed with different values of geff , they
bounce at different times, which range from ∼ 390 to 170ms.
The density evolution of the stellar evolutionary model s11.2
is very similar to that of model WHW02-s11.2-g0.975 (al-
though the central density of the model slightly decreases
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Figure 5. Comparison of the density, temperature, radial ve-
locity, and electron fraction distributions (from top to bottom).
Dashed and dotted lines give the profiles at the time when the
central density reaches a value of about 1011 and 1014 g cm−3,
respectively.

because the grid resolutions of the hydrodynamical simu-
lations and those of the initial models differ). The figure
implies that the collapse of our initially hydrostatic models
with geff

∼
< 0.975 proceeds similarly to that of the already

dynamically collapsing core of the stellar evolutionary pro-
genitor model s11.2, even though the former models do not
have any initial radial velocity.

Fig. 5 shows the evolution of the density, temperature,
radial velocity, and electron fraction distributions before
core bounce. The snapshots are taken at the time when
the central density has a value of ≈ 1011 (dashed lines)
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Figure 6. Evolution of the mass accretion rate (top) and of the
electron neutrino (solid) and electron antineutrino (dashed) lu-
minosities (bottom) of the stellar evolutionary model s11.2 (red)
and our three corresponding progenitor models (purple, blue, and
green).

and ≈ 1014 g cm−3 (dotted lines), respectively. At the earlier
snapshot (ρc = 1011 g cm−3), the temperature distribution
of model WHW02-s11.2-g0.95 is quite different, because its
initial temperature profile differed significantly from those
of all other models. At later times all models evolved quite
similarly. The early electron fraction distributions exhibit
larger difference than those of the other quantities, because
the electron capture rate strongly depends on temperature
(∝ T 6), i.e., a small difference in temperature can result
in a large difference in Ye. However, once β−equilibrium is
achieved, the Ye distributions of the models become quite
similar (see dotted lines in bottom panel).

In Fig. 6 we display the evolution of the mass accre-
tion rate measured at a radius of 300 km (top panel) and of
the electron neutrino (solid lines) and electron antineutrino
(dashed lines) luminosities of the stellar evolutionary model
s11.2 and of our three corresponding progenitor models. Be-
cause of small differences in the density structures of the
models, both the mass accretion rates and the neutrino lu-
minosities differ slightly between the models. About 50ms
post bounce, model s11.2 has the smallest mass accretion
rate because the density gradient at M ≈ 1.3M⊙ is steepest
for this model. At later times (∼ 100ms post bounce) the
mass accretion rate is largest in this model, because its den-
sity is the largest of all models in the relevant mass range
1.3

∼
< M/M⊙

∼
< 1.5 (see Fig. 3).
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Fig. 7 illustrates the shock evolution after core bounce.
We define the shock position as the radius where the spe-
cific entropy reaches a value of 6 kB baryon−1. Model s11.2
has the largest peak shock radius among all the investigated
models, because it possesses the steepest density gradient
(see Fig. 3). This fact leads to a rapid decrease of the mass
accretion rate with radius and hence of the ram pressure
on the shock. Since the shock radius is determined by the
force balance between the thermal post-shock pressure and
the pre-shock ram pressure, a lower ram pressure gives rise
to a larger shock radius. Our three other corresponding pro-
genitor models also show slightly different shock evolutions
because their mass accretion rates differ from each other and
from that of model s11.2 (see Fig. 6).

4 PARAMETER DEPENDENCIES AND

EXPLOSION PROPERTIES

In the last section, we demonstrated the reliability of the new
method for constructing initial conditions for core-collapse
supernova simulations by comparing models constructed by
this method with a particular widely used presupernova
model (WHW02-s11.2). The hydrodynamic features of these
models agree with each other quite well. In Appendix A,
we provide fitting parameters (see TableA1) which closely
approximate the density structures of other presupernova
models used in the literature (see Fig. A1).

Next we consider a second set of initial conditions dif-
fering from those reproducing progenitor models based on
stellar evolutionary calculations. In particular, we present
our numerical results for parameterized initial models based
on model 109 of Baron & Cooperstein (1990), which has a
relatively small central entropy and a small core mass, i.e.
its structure differs significantly from that of initial models
obtained with stellar evolutionary calculations. Thus, this
second set of parametrized initial models allows us to study
the dependence of the outcome of core-collapse supernova
simulations for quite different initial conditions. The corre-
sponding model parameters are given in Table 2.

We first changed the value of one parameter from model
to model (BC01 to BC15 in Table 2), and then we fixed the
value of the central entropy to Sc = 0.4 and again changed
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Figure 8. Model structure in a temperature-density plane. Black
and grey lines give the profiles of our parameterized models and
of models obtained from stellar evolutionary calculations (see Ap-
pendix A), respectively.

one of the other parameters from model to model(BC16 to
BC22 in Table 2). As we will show below, the reason for this
approach was that model BC02 gives rise to a successful ex-
plosion, i.e., the parameter space around this model is worth
investigating. We note that we restricted the parameters we
chose in our study by the condition that the density at M5

is larger than 103 g cm−3, which implies a lower limit for
the entropy or the electron fraction, because a low entropy
or electron fraction leads to a faster decrease of the density
with increasing mass coordinate.

In Table 3 we give the values of some quantities char-
acterizing the density structures of our second set of
parametrized models. Columns 2 to 4 give the radius (in
units of 108 cm), the density (in units of 106 g cm−3), and
the temperature (in units of 109 K) at the mass coordinate
M = M5, respectively. In the fifth column we list the com-
pactness parameter ξM (O’Connor & Ott 2011), which is
defined as

ξM =
M/M⊙

R(M)/1000 km
, (10)

where R(M) is the radius of the sphere containing a mass
M . Note that we use here the compactness parameter ξM5

,
whereas O’Connor & Ott (2011) considered ξM=2.5M⊙

in-
stead. According to O’Connor & Ott (2011) smaller values
of ξM are better for explosions. Column 6 gives the param-
eter µM , defined by Ertl et al. (2016) as

µM =
dM
dr

∣

∣

∣

∣

r=R(M)

= 4πρR2(M). (11)

Whereas Ertl et al. (2016) obtained the value of dM/dr
by computing the numerical derivative of dM/dr at the
mass shell where S = 4kB baryon−1 with a mass interval of
0.3M⊙, we used for simplicity the second equality in Eq. (11)
to compute dM/dr analytically. Ertl et al. (2016) showed
that for a given value of MS=4 (the mass coordinate where
S = 4kB baryon−1), a smaller value of µM is better for an
explosion. Finally, the last column gives the total binding
energy of the initial model, which includes the contribution
of the internal energy.

Fig. 8 shows the structure of our second set of parame-
terized models (solid lines) in a density-temperature plane.
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Table 1. Parameters of our models resembling the stellar evolutionary model s11.2 of Woosley et al. (2002)

Model M1 M2 M3 M4 M5 Sc S1 S2 S5 Yec Ye3 Ye4 ρc geff
[M⊙] [kB/baryon] [1010g cm−3]

WHW02-s11.2-g0.99 0.82 1.16 1.26 1.30 1.32 0.62 1.1 1.74 5.4 0.425 0.48 0.5 1.6 0.99
WHW02-s11.2-g0.975 — — — — — — 1.0 1.65 — — — — — 0.975
WHW02-s11.2-g0.95 — — — — — — 0.75 1.64 — — — — — 0.95
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Figure 3. Density (top panel) and temperature (bottom panel)
distributions of the stellar evolutionary model s11.2 (red) and
of our three corresponding progenitor models (purple, blue, and
green). The bottom plot in the upper panel shows the density
distributions of our three models normalized by that of the s11.2
model.

approximation (IDSA) (Liebendörfer et al. 2009), which
has been used, e.g., by Suwa et al. (2010); Takiwaki et al.
(2012); Nakamura et al. (2015), and Pan et al. (2016) to
perform multi-dimensional core-collapse simulations. In
IDSA the electron neutrino and electron anti-neutrino dis-
tribution functions are split into two components, which are
solved with different numerical techniques.

The weak interaction rates implemented in our code
are based on Mezzacappa & Bruenn (1993), and the cool-
ing by muon and tau neutrinos is modeled with a leakage
scheme. Neutrino-electron scattering is also implemented
in this code according to Liebendörfer (2005) by express-
ing the electron fraction Ye as a function of ρ. However,
since this function is calibrated for specific progenitor mod-
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Figure 4. Central density as a function of time after bounce for
the stellar evolutionary model s11.2 (red) and our three corre-
sponding progenitor models (purple, blue, and green). The time
of bounce differs, being later for models with a larger geff because
these models are closer to a hydrostatic configuration.

els and it is not always adequate, we did not employ it in
this work. The equation of state (EOS) used in our simu-
lations is that of Lattimer & Swesty (1991) with an incom-
pressibility K = 220MeV for ρ ! 108 g cm−3 and that of
Timmes & Arnett (1999) for ρ < 108 g cm−3. In the lat-
ter density range the average nuclear mass number A and
atomic number Z are assumed to be the same as in the EOS
of Lattimer & Swesty (1991) at ρ = 108 g cm−3. We follow
O’Connor & Ott (2010) to match the thermodynamic quan-
tities of both EOS tables at the transition density. The min-
imum density of of our combined EOS table is 103 g cm−3.

Accordingly, the results of our study are based on the
use of a modern numerical tool that is well suited for sim-
ulations of neutrino-driven supernova explosions, because it
is able to handle general relativistic gravity, neutrino radi-
ation transport, and a nuclear equation of state. Nowadays
we know that all of these ingredients are of considerable im-
portance for a proper simulation of the supernova explosion
mechanism, but none of them were taken into account in the
work of Baron & Cooperstein (1990).

3.2 Results

Fig. 4 shows the central density as a function of time after
bounce for all investigated models based on s11.2. Because
our models were computed with different values of geff , they
bounce at different times, which range from ∼ 390 to 170ms.
The density evolution of the stellar evolutionary model s11.2
is very similar to that of model WHW02-s11.2-g0.975 (al-
though the central density of the model slightly decreases

MNRAS 000, 1–10 (2016)

Agile-IDSA: 1D/GR/neutrino-radiation hydro code, publicly available
https://physik.unibas.ch/~liebend/download/
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Table 2. Parameters characterizing the entropy, electron fraction, and density distributions of our initial models, which all had M1 =
0.72M⊙, M2 = 1.0M⊙, M3 = 1.1M⊙, M4 = 1.15M⊙, M5 = 1.17M⊙, Ye4 = 0.5, and geff = 0.975. The parameter values which differ
from those of model BC01 are given in boldface.

Model Sc S1 S2 S5 Yec Ye3 ρc
[kB/baryon] [1010 g cm−3]

BC01 0.5 0.63 1.6 4.0 0.415 0.46 2.0
BC02 0.4 0.63 1.6 4.0 0.415 0.46 2.0
BC03 0.6 0.63 1.6 4.0 0.415 0.46 2.0
BC04 0.5 0.53 1.6 4.0 0.415 0.46 2.0
BC05 0.5 0.73 1.6 4.0 0.415 0.46 2.0
BC06 0.5 0.63 1.5 4.0 0.415 0.46 2.0
BC07 0.5 0.63 1.7 4.0 0.415 0.46 2.0
BC08 0.5 0.63 1.6 3.0 0.415 0.46 2.0
BC09 0.5 0.63 1.6 6.0 0.415 0.46 2.0
BC10 0.5 0.63 1.6 4.0 0.411 0.46 2.0
BC11 0.5 0.63 1.6 4.0 0.425 0.46 2.0
BC12 0.5 0.63 1.6 4.0 0.415 0.452 2.0
BC13 0.5 0.63 1.6 4.0 0.415 0.47 2.0
BC14 0.5 0.63 1.6 4.0 0.415 0.46 1.0

BC15 0.5 0.63 1.6 4.0 0.415 0.46 3.0

BC16 0.4 0.73 1.6 4.0 0.415 0.46 2.0
BC17 0.4 0.63 1.7 4.0 0.415 0.46 2.0
BC18 0.4 0.63 1.6 6.0 0.415 0.46 2.0
BC19 0.4 0.63 1.6 4.0 0.425 0.46 2.0
BC20 0.4 0.63 1.6 4.0 0.415 0.47 2.0
BC21 0.4 0.63 1.6 4.0 0.415 0.46 1.0

BC22 0.4 0.63 1.6 4.0 0.415 0.46 3.0

Table 3. Some properties characterizing our parametrized initial models

Model R(M5)a ρ(M5)b T (M5)c ξM5

d µM5

e Eb
f

[108 cm] [106 g cm−3] [109 K] [B]

BC01 1.25 5.77 3.76 0.93 0.057 2.59
BC02 1.50 1.98 2.73 0.78 0.028 2.50
BC03 1.10 11.7 4.58 1.06 0.090 2.78
BC04 1.81 0.53 1.78 0.65 0.011 2.47
BC05 1.08 13.8 4.79 1.08 0.103 2.91
BC06 1.44 2.13 2.80 0.81 0.028 2.50
BC07 1.17 10.0 4.39 1.00 0.086 2.80
BC08 1.22 7.29 3.44 0.96 0.069 2.52
BC09 1.31 4.07 4.06 0.89 0.044 4.96
BC10 1.72 0.81 2.05 0.68 0.015 2.47
BC11 0.96 26.2 5.68 1.22 0.151 3.47
BC12 1.98 0.27 1.41 0.59 0.007 2.47
BC13 1.07 14.8 4.88 1.09 0.107 2.95
BC14 1.56 3.14 3.15 0.75 0.048 2.61
BC15 1.14 6.30 3.86 1.02 0.052 2.54

BC16 1.19 8.17 4.15 0.98 0.073 2.68
BC17 1.29 5.68 3.75 0.90 0.060 2.62
BC18 1.58 1.56 3.06 0.74 0.025 5.60
BC19 1.01 19.2 5.24 1.16 0.125 3.14
BC20 1.16 9.44 4.32 1.01 0.081 2.72
BC21 1.90 0.91 2.13 0.61 0.021 2.49
BC22 1.43 1.60 2.56 0.82 0.021 2.48

a Radius of M = M5
b Density of M = M5
c Temperature of M = M5
d Compactness parameter, ξM ≡ (M/M⊙)/[R(M)/1000 km]
e µM ≡ dM/dR = 4πR(M)2ρ(M) in units of M⊙/1000 km
f Total binding energy

MNRAS 000, 1–10 (2016)

[Suwa & Müller, MNRAS, 460, 2664 (2016)]
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Figure 9. Evolution of the diagnostic explosion energy for model
BC18.

The additional grey lines give the structures of the models
listed in Appendix A, which are obtained by stellar evolu-
tion calculations. Obviously, our parametrized models show
a similar trend as the evolutionary ones, except for their
non-monotonic behavior at densities ρ ∼ 107 g cm−3 and
at densities of a few times 109 g cm−3, i.e. near the center.
In other words, these models allow us to investigate ther-
modynamic regimes beyond those encountered in canonical
models.

The Chandrasekhar mass is often used as a rough esti-
mate of the iron core mass. Since the former mass depends
on the electron fraction as

Mch ≈ 5.87Y 2
e M⊙ (12)

= 1.01

(

Ye

0.415

)2

M⊙, (13)

our small iron core (M4 = 1.15M⊙) can be unstable.
In Table 4 we provide an overview of the hydrody-

namic simulations with our second set of models. The table
columns give the time until bounce, the postbounce time
when the shock reaches a radius of 400 km, the final time of
the simulation, the maximum shock radius, the final bary-
onic mass of the PNS, and the diagnostic explosion energy
at the times when the shock reaches a radius of 1000km and
at tfin, respectively. The remaining columns give the mini-
mum inner core mass, the value of Ye in the center at tbounce,
and the initial kinetic energy. The PNS mass is defined as
the mass with ρ > 1011 g cm−3, and the diagnostic explo-
sion energy as the integral of the local energy, i.e. the sum
of the specific internal, kinetic and gravitational energies,
of all zones where this quantity and the radial velocity are
positive. Here we used the general relativistic expression for
the local energy of Müller et al. (2012), which is given as

elocal = α
[(

ρc2 + ϵc2 + P
)

W 2
− P

]

− ρWc2, (14)

where α is the lapse function, c the speed of light, ϵ the
specific internal energy, and W the Lorentz factor. This ex-
pression reduces to the well-known Newtonian expression
(elocal = ρφ + ρv2/2 + ρϵ with φ and v being the gravi-
tational potential and the velocity, respectively) when one
omits higher-order terms like (v/c)2.

For model BC18, which produces the most energetic
explosion of our second set of models, Sc = 0.4 and

S5 = 6 kB baryon−1. The diagnostic explosion energy of this
model already reaches 0.39 B (= 3.9 × 1050 erg) at the end
of the simulation, and it is still increasing (see Fig. 9) at a
rate of 5B s−1, i.e., it will reach a value of 1B about 310ms
after core bounce.

Concerning the explosion energy one should note that
the envelope located above the Si/O layer has a large binding
energy of O(1049) to O(1051), the actual value depending on
the ZAMS mass of the progenitor (e.g. Pejcha & Thompson
2015). Therefore, the values given in Table 4 are not the
observable explosion energies. To determine the latter ener-
gies, one needs to perform long-term simulations including
the stellar envelopes, which will be left for future work.

For our second set of models, the electron fraction at
bounce is larger than in the simulations with our first set
of models based on the stellar evolutionary model s11.2
(see previous section and Fig. 5), in which Yc,bounce ≈ 0.3.
Because of their smaller initial central entropy, the latter
models have a lower temperature, which implies a smaller
electron capture rate during collapse. The resulting larger
electron fractions explain the larger kinetic energies at the
bounce (see, e.g. Müller 1998), which are given by the ki-
netic energy of the inner core at the “last good homology”
(Brown et al. 1982). Of the models listed in the upper part
of Table 4, model BC02 has the largest initial kinetic energy.
Among these models, model BC02 is also the only explod-
ing model. Although a higher value of Yec also leads to a
larger value of Yc,bounce and a larger initial kinetic energy
(see model BC19 in the lower part of Table 4), model BC19
does not explode because of its larger gravitational binding
energy (see Table 3). However, we note that in comparison to
the other non-exploding models (BC16-BC18, BC20-BC22),
the shock propagates out to an exceptionally large maximum
shock radius of 873 km in model BC19, i.e, it is a marginal
model marking the boundary between exploding and non-
exploding models.

In all exploding models the explosion sets in early (∼
20ms after core bounce), which seems to suggest a prompt
explosion. However, these explosions are still aided by neu-
trino heating, i.e., they differ from prompt explosion models,
in which initial kinetic energy is large enough to eject the
envelope. To validate this statement, we performed a simu-
lation without neutrino heating by setting the distribution
function of streaming particles, which is essential for neu-
trino heating in IDSA (see Liebendörfer et al. 2009), to zero.
Then, the exploding model does no longer explode, i.e., it
was no prompt explosion.

From these result, we conclude that the iron core struc-
ture is crucial for obtaining an explosion. Especially, a low
entropy at the center helps to make an explosion. To reach
a more general conclusion, we need a large number of sim-
ulations covering a wider range of parameter space, which
will be reported in a forthcoming publication.

5 SUMMARY AND DISCUSSION

In this paper, we investigated a method to construct
parametrized initial progenitor models for core-collapse su-
pernova simulations. So far, initial conditions of these simu-
lations have been taken from the final phase of stellar evolu-
tionary calculations, which depend on several uncertainties,
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Summary

Bright side 
success of detailed numerical simulations 
Many exploding models 

Dark side 
insufficient explosion energy and 56Ni mass 
2D>1D, but 3D<2D (probably) 

Initial condition may solve problem
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