強い重力レンズを用いた 超新星予報

諏訪 雄大

(京都大学/基礎物理学研究所/重力物理学研究センター)

SN shock breakout

Observations before 2008

X-ray

SN 2008D/XRF080109 -serendipitous detection-

SNLS-04D2dc

SNLS-04D2d (type II, z=0.1854)

雄大

諏訪

2017/9/12

UV

Schawinski+08

5/18

optical

KSN 2011d

Rubin & Gal-Yam 16

Kepler

Survey programs for optical transient objects

Untargeted optical transient surveys with wide-field cameras

Survey	Diameter [m]	FoV [deg ²]	Etendue (AΩ, roughly) [m²deg²]
ASAS-SN	0.14	20	22 (8 cameras)
ROTSE-III	0.45	3.42	0.54
CRTS	0.7	8	3.1
KISS	1.05	4	3.5
PTF	1.26	7.8	9.7
Skymapper	1.33	5.7	7.9
Pan-STARRS	1.8	7	17.8
SDSS	2.5	1.5	7.4
SNLS	3.6	1	10.2
HST/GOODS	2.5	0.003	0.015
DECam	4	3.0	38
Subaru/HSC	8.2	1.75	92
LSST	8.4 (6.4)	9.62	319

2017/9/12

A limitation of survey programs

- * discovery by optical telescope first
- * follow-up obs. by other telescopes/satellites after the discovery
- * multi-messenger obs. is impossible

Gravitational lensing

Cosmic smiley NASA & ESA

9

Strongly lensed SNe

* There have been three lensed SN observations so far

PS1-10afx (Ia; Quimby+ 2013), SN Refsdal (CC; Kelly+ 2015), iPTF16geu (Ia; Goobar+ 2017)

* SN Refsdal

- four images were found at the same time
- one more event had been predicted one year *after* the images
- another image indeed appeared! (Kelly+ 2016)

Image evolution: an example

A strategy

model LC from SN 1999ex

(3)

0

60

80

0

-1

-2

20

2

1.5

0.5

n

4

-2

40

;3

0

LSST is great

* LSST (2022~)

- 8.4 m mirror, 15 s exposure, 9.6 deg² of f.o.v., 6 bands
- ~24 mag of 5σ depth, 0.75 arcsec (FWHM) resolution, 5 day cadence
- will detect O(10⁶) SNe

* In LSST era, we will have number of strongly lensed SNe

- ~130 in 10 year observation (conservative estimate) (m_{peak}<22.6 (25σ), Δθ>0.5 arcsec; Oguri & Marshall 2010) could be ~1000, depending on criteria (Goldstein & Nugget 2017)
- Ia 34%; Ib/c 31%; IIL 5%; IIP 15%; IIn 15%
- ~1/4 have four images

The Large Synoptic Survey Telescope

https://gallery.lsst.org/bp/#/folder/2334406/

- * Target-of-Opportunity (ToO) observation is necessary for transient observation
- After the discovery of 1st/2nd/3rd images, we have to trigger ToO obs. to catch 4th image
- A typical duration of ToO obs. is <~ 1 night for an 8m-size telescope
- Question: how precisely can we predict when and where the 4th image appears w/ 1st-2nd-3rd image information?

glafic

http://www.slac.stanford.edu/~oguri/glafic/

glafic

- public software for strong lensing analysis ("parametric" mass modeling)
- adaptive grid to solve lens equation efficiently
- support many lens potentials
- please use!

from YITP seminar slide by Masamune Oguri

Precision of 'prediction'

Data is taken from mock sample by Oguri & Marshall (2010)

2017/9/12

諏訪 雄大

Summary

* Shock breakout is the first flush of supernova

- Number of survey programs are running
- multi-messenger obs. is required
- * Strongly lensed SNe are potential probes
 - O(100) lensed SNe will be detected by LSST (~5 years from now)
 - SN with 4 images is an ideal target
 - With conservative error, prediction is feasible (within 1 day)