

onal Conference on Topics in Astropartic and a

The biennial TAUP series covers recent experimental and theoretical developments in astroparticle physics including Cosmology and particle physics, Dark matter and dark energy, Neutrino physics and astrophysics, Gravitational waves, High-energy astrophysics and cosmic rays

THEORETICAL PHYSICS

Observing Supernova Neutrino Light Curves with Super-Kamiokande: Expected Event Number over 10 s

Yudai Suwa

(Kyoto Sangyo University & YITP, Kyoto University)

collaboration with; K. Sumiyoshi (NIT, Numazu), K. Nakazato (Kyushu), Y. Takahira, Y. Koshio (Okayama), M. Mori, R. Wendell (Kyoto)

SN1987A

Yudai Suwa @ TAUP2019, Toyama

NASA/ESA

How many and long can we observe v now?

* How many?

- 11 events from SN1987A with Kamiokande
 - M=2.14 kton (full volume of inner tank)
 - D=51.2 kpc (LMC)
- SK (M=32.5 kton), D=10 kpc => 4400 events
- (with O(10)% of statistical error)

* How long?

- 12.4 s for SN1987A
- How long can we observe neutrinos from a Galactic SN? It's highly uncertain.

The latest SN found in our Galaxy, G1.9+0.3 (<150 years old) © NASA

10/9/2019

Yudai Suwa @ TAUP2019, Toyama

Many neutrinos from next Galactic SN

aller				↓ ·	- 10kpc
Detector	Туре	Mass (kt)	Location	Events	Status
Super-Kamiokande	H ₂ O	32	Japan	7000	Running
LVD	C_nH_{2n}	1	Italy	300	Running
KamLAND	$C_n H_{2n}$	1	Japan	300	Running
Borexino	C _n H _{2n}	0.3	Italy	100	Running
IceCube	Long string	(600)	South pole	(10^6)	Running
Baksan	C_nH_{2n}	0.33	Russia	50	Running
HALO	Pb	0.08	Canada	30	Running
Daya Bay	$C_n H_{2n}$	0.33	China	100	Running
$NO\nu A^*$	C_nH_{2n}	15	USA	4000	Running
MicroBooNE*	Ar	0.17	USA	17	Running
SNO+	$C_n H_{2n}$	0.8	Canada	300	Near future
DUNE	Ar	40	USA	3000	Future
Hyper-	H ₂ O	374	Japan	75 000	Future
Kamiokande	Part of the				
JUNO	C_nH_{2n}	20	China	6000	Future
RENO-50	C_nH_{2n}	18	Korea	5400	Future
PINGU	Long string	(600)	South pole	(10^6)	Future
Scholberg 2018					

10/9/2019

Yudai Suwa @ TAUP2019, Toyama

Current simulation data is not long enough

Hyper-Kamiokande Design Report, arXiv:1805.04163

Takiwaki, Kotake, Suwa (2014)

sukonh01:2 Desktop

Long-term evolution is essential

WV-SFV481 Network Camera - Mozilla Firefox

GIF file /export/home/s

GIF file /export/h

/event_run077958.

uper-Kamiokande IV

isplay	CHARGE IN
ate	: Wed May 30
un	: 77958 Noz
vent	: 622999961
vent time	: 20:35:46.1
RG Type (s)	: LE HE SLE
otalPE ID/OD	: 141178.9
umHits ID/OD	: 9798 174
ime Diff	: 56535.5429

Neutrinos from SN 20XX

10/9/2019

Yudai Suwa @ TAUP2019, Toyama

6/15

0

Late time v-LC is simpler

8/15

* Hydro. simulation (t<0.3s)

dynamical, GR, Boltzmann neutrino transport, nuclear EOS, 1D Yamada 1997, Sumiyoshi+ 2005

* PNS cooling simulation (t>0.3s)

static (TOV), FLD neutrino transport, nuclear EOS, 1D Suzuki 1993

* Connection

 Interpolate two results with t_{revive}=100, 200, 300 ms (appox. explosion time) *Nakazato*+ 2013

* Progenitor

■ **13, 20, 30, 50 M**_☉ *Umeda*+ *2012*

10 1475

Yudai Suwa @ TAUP2019, Toyama

Event rate evolution

[Suwa, Sumiyoshi, Nakazato, Takahira, Koshio, Mori, Wendell, ApJ, 881, 139 (2019)]

- Event rate evolution is calculated up to 20 s
 - with neutrino luminosity and spectrum
 - with full volume of SK's inner tank (32.5 kton)
 - from an SN at 10 kpc
 - only with inverse beta decay ($\bar{\nu}_e + p \rightarrow e^+ + n$)
- * Event rate is not related to progenitor mass, but PNS mass

Yudai Suwa @ TAUP2019, Toyama

Longer simulations with broader NS mass range

- * Even 20 s after the explosion, the event rate is still high
- * known mass range of NS is large: [1.17, 2.01]M_☉ Demorest+ 2010, Antoniadis+ 2013, Martinez+ 2015
- * Additional long-term simulations for PNS cooling
 - **canonical model has M_{NS}=1.35M_{\odot}**
 - parametric models
 - \blacktriangleright with $M_{NS}{=}1.20M_{\odot}$ and $2.05M_{\odot}$
 - with two extreme entropy profiles (low and high)
 - up to the *last* detectable event

How long can we see SN with neutrinos?

[Suwa, Sumiyoshi, Nakazato, Takahira, Koshio, Mori, Wendell, ApJ, 881, 139 (2019)]

10/9/2019

Yudai Suwa @ TAUP2019, Toyama

How long can we see SN with neutrinos?

[Suwa, Sumiyoshi, Nakazato, Takahira, Koshio, Mori, Wendell, ApJ, 881, 139 (2019)]

10/9/2019

Yudai Suwa @ TAUP2019, Toyama

How to analyze neutrinos?

10/9/2019

Yudai Suwa @ TAUP2019, Toyama

Backward cumulative plot

[Suwa, Sumiyoshi, Nakazato, Takahira, Koshio, Mori, Wendell, ApJ, 881, 139 (2019)]

10/9/2019

Yudai Suwa @ TAUP2019, Toyama

Summary

* Neutrinos from the next Galactic SN are studied

* Take home message

- O(10³) v will be detected, correlated to M_{NS}
- Observable time scale is O(10)s, even > 100s
- Backward cumulative event number is useful

* Next step

- spectral analysis
- EOS dependence
- other processes (ve, v¹⁶O)