平成30年度~令和4年度新学術領域研究

新しい星形成理論によるパラダイムシフト 銀河系におけるハビタブル惑星開拓史の解明

超新星爆発による元素合成

- 諏訪雄大
- (京産大&京大基研)

京都産業大学

14/9/2020

諏訪雄大 @ 「星惑星形成」AO1研究会

- * 銀河進化における超新星フィードバック
- * 星の進化における元素合成
- * 超新星からの同位体(特に²⁶Alと⁶⁰Fe)

諏訪雄大 @ 「星惑星形成」AO1研究会

現 在

<u>多様な系外惑星系と太陽系の起源</u>を解 明するには?

太陽系は46億年前にどこで生まれたのか? <u>銀河の化学進化</u>⇒<u>重元素</u>(H, He以外の元素)の増加 単独星&高い重元素量&短寿命元素の含有量 →銀河系内側領域の星団の超新星残骸の中か?

14/9/2020

Our Conjecture

現在の銀河系

約46億年前 の銀河系

銀河進化と超新星フィードバック

長島【銀河の形成モデルの構築】 スケールは220Myr程度と推測される

14/9/2020

犬塚さんスライド@3/27シンポジウムより

諏訪雄大 @ 「星惑星形成」AO1研究会

* 星形成とともに銀河の金属増加 * ヘリウム(α)燃焼で作られる元素: 大質量星が起源 (低金属で平坦。O, Mg, Si, S, Ca, Tiなど) * Ni: la型超新星が起源 (WD形成と軌道進化の遅延) * 奇核元素:増加まで時間がかかる (CNOサイクルが必要。Na, Al, Cuなど)

詳しくは林さん、小林さんの講演

宇宙におけるガスの輪廻

14/9/2020

諏訪雄大 @ 「星惑星形成」AO1研究会

星の進化と元素合成

https://en.wikipedia.org/wiki/Stellar_nucleosynthesis

14/9/2020

諏訪雄大 @ 「星惑星形成」AO1研究会

periodictable.com

「星惑星形成」AO1研究会

Core-collapse supernova

諏訪雄大 @ 「星惑星形成」AO1研究会

https://astrobites.org/2015/04/07/super-bright-supernovae-are-single-degenerate/

* 白色矮星の起こす爆発 * α元素合成

- * 鉄族元素の主起源
- * 標準光源としての役割 (暗黒エネルギー発見)
- * Ekin~10⁵¹ erg

諏訪雄大 @ 「星惑星形成」AO1研究会

* Lph,peak~1043 erg/s

https://www.physicscentral.com/explore/action/neutrino.cfm

* 大質量星 (≥8M_☉)の最期

- * コンパクト天体の形成
- * ニュートリノ放射
- * Ekin~10⁵¹ erg
- * Lph,peak~ 10^{42} erg/s
- * Lv,peak~10⁵³ erg/s

lsotope	Mean Lifetime	Decay Chain	γ-ray Energy (keV)	
56 Ni	111 d	$56Ni \rightarrow 56Co^* \rightarrow 56Fe^*$	847, 1238, 1771,2598	
57 Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122, 136	indiv
44 Ti	89 y	44 Ti→ 44Sc*→44Ca*	68, 78, 1156	
26 A	1.04x10 ⁶ y	26 AI→ 26Mn*	1809	\ cumul
⁶⁰ Fe	3.8x10 ⁶ y	⁶⁰ Fe→ ⁶⁰ Co [*] → ⁶⁰ Ni [*]	59, 1173, 1332) nonn ev

periodictable.com

「星惑星形成」AO1研究会

諏訪雄大 @

* np=nn (Ye=0.5)かつT≳5x10⁹Kで爆発時 に生成(爆発的元素合成)

- * 超新星光度曲線
 - 初期:ガンマ線→可視光に下方散乱
 - 後期:ガンマ線のまま抜けてくる
- * ガンマ線直接検出例
 - **SN 1987A (CC, 51.4 kpc)** [Matz+ 1988]
 - **SN 2014J (la, 3.6 Mpc)** [Churazov+ 2015]
- *爆発機構と相関?

[Suwa-Tominaga-Maeda 2019; Sawada-Maeda 2019]

Continuum

Si/Mg Jet

Grefenstette+2017

*爆発的元素合成

* ガンマ線直接検出例

- **SN 1987A** [Grebenev+ 2012]
- **Cas A (SN 16XX)** [lyudin+ 1994]
- * 衝撃波の非等方性
- * パルサーキックと相関?

[Wongwathanarat+ 2017]

	\ cumul
²⁶ Al 1.04x10 ⁶ y ${}^{26}Al \rightarrow {}^{26}Mn^*$ 1809	
⁴⁴ Ti 89 y 44 Ti $\rightarrow {}^{44}$ Sc* $\rightarrow {}^{44}$ Ca* 68, 78, 1156	
⁵⁷ Ni 390 d ⁵⁷ Co→ ⁵⁷ Fe* 122, 136	indiv
⁵⁶ Ni 111 d ⁵⁶ Ni→ ⁵⁶ Co [*] → ⁵⁶ Fe [*] 847, 1238, 1771, 25	98
Isotope Mean Lifetime Decay Chain γ-ray Energy (keV	/)

Bouchet+ 2015

諏訪雄大 @ 「星惑星形成」AO1研究会

Diehl+2013

- * 非常に強いシグナル(28 σ)
- * 銀河面内の分布 [Wang+2009] **OB** association
- ***** M(²⁶AI)~2M_☉
- 銀河中心部からの放射は * 回転によるドップラーシ フトも検出 →フィードバックに知見?

60**Fe**

* ²⁶Alより強度が低い(5σ)ため 空間分布は不定

* flux: F(⁶⁰Fe)/F(²⁶Al)~20% [Wang+ 2020]

* 2009年に半減期80%長く

[Rugel+ 2009]

(組成率の評価に影響?)

***** 26**A**

- × ²⁵Mn+p→²⁶Al+γ
- 水素燃焼段階
- 炭素ネオン燃焼段階
- 星風と超新星で放出

- * 60**Fe**
 - n-capture
 - 進化後期の殻燃焼
 - 超新星で放出

* ²⁶Alと⁶⁰Feは近い場所で作られる

■ Ne/C燃焼殻での爆発的元素合成

- ニュートリノによる組成変化も影響
 - (ニュートリノ破砕反応で自由陽子の数が変わる)
- 水素層にあるのは、水素燃焼期(主系列)に作ら れたものが対流で運ばれた

- ニュートリノの影響はない
 - (反応に必要な中性子は核反応から作られる)

どれくらい作るのか?

- * 典型的にはO(10-5)M_☉/star
- * 同位体の寿命がMyr →ある領域から観測できる時間スケール
- * 銀河系内の量がわかれば、超新星発生率 が評価できる
 - 2.6 ± 2.0 SN/century [Timmes+ 1997]
 - 1.54 ± 0.89 SN/century [Deihl+ 2013]

理論モデルの不定性

14/9/2020

*** 10**-5-10-4M_☉

- * 一つの天体からの元素放出 量は不定性が大きい
- * 元素合成
 - **triple-alpha** $(3 \alpha \rightarrow {}^{12}C)$
 - $12C+\alpha \rightarrow 16O+\gamma$
- * 対流の強さ
 - 生成されて壊れる前に外に運 ばれるかどうか

Tur+ 2010

諏訪雄大 @ 「星惑星形成」AO1研究会

地上での測定

* 深海堆積物の同位体測定

- * ⁶⁰Feは1.7-3.2Myrに超過
- * ²⁶AIは超過なし
- * ⁶⁰Fe/²⁶AIの下限は
 - $0.18^{+0.15}_{-0.08}$
- * ガンマ線観測と無矛盾

Gal-Yam 2012

* 超新星の様々な種族

- 明るい人々
 - **Super-luminous SN**
 - hypernova/broad-line lc
- 暗い/早い人々
 - faint SN
 - rapidly-evolving SN
- 普通の超新星も広い分布
 - 爆発エネルギー、Ni量
- 起源は?
 - 質量、星風、回転、金属量、連星、星 周物質、etc.

まとめ

- * 銀河進化における超新星フィードバック
 - エネルギー、運動量注入
 - 化学進化
- * ガンマ線で観測できる同位体
 - 56Ni、44Ti、26Al、60Fe
 - ■特に、²⁶Alと⁶⁰Fe
- * 理論モデル
 - どこでつくるのか?どれくらい作るのか?
- * これらの情報をふまえて、超新星シミュレーション と銀河形成進化をどうつなげるか?

「星惑星形成」A01研究会