

諏訪雄大 (東大総合文化&京大基研)

Massive stars in multiple-star systems

Offner+23

Diversity of binary evolutions

2025/3/6

Stripped envelope supernovae from close binaries

2025/3/6

Gravitational-wave objects

Masses in the Stellar Graveyard

2025/3/6

諏訪雄大 (東大総文/京大基研) @ 第24回高宇連研究会

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Double neutron stars (DNS)

- * 銀河系内には19個のDNSが見つかっている (Zhu & Ashton 2020)
- * 10個のDNSは宇宙年齢(13.8 Gyr)以内に合体する

合体時間 $\tau = 1.2 \times 10^8 \text{ yr} \left(\frac{a_0}{10^{11} \text{ cm}}\right)^4 \left(\frac{1}{2}\right)^4$

- (cf. 1AU=1.5x10¹³ cm, $R_{\odot}=7x10^{10}$ cm) * 中性子星合体の親星は超近接連星効果を経験したはず
- * こうしたシステムから生まれる超新星はどういう超新星?

$$\left(\frac{M_{\rm tot}}{2.8M_{\odot}}\right)^{-3}$$

* いま観測されている重力波天体を説明するには *a*₀ < 3 × 10¹¹ cm が必要

From binary stars to DNS

Ultra-stripped supernovae

Drout+ 2013

$$\tau \sim \sqrt{\frac{\kappa M_{ej}}{v_{ej}c}} = 30 \text{ day} \left(\frac{\kappa}{0.1 \text{ cm}^2/\text{g}}\right)^{1/2} \left(\frac{M_{ej}}{M_{\odot}}\right)^{1/2} \left(\frac{v_{ej}}{10^4 \text{ km}}\right)^{1/2} \left(\frac{v_{ej}}{10^4 \text{ km}}\right)^{1/2} \left(\frac{w_{ej}}{10^4 \text{ km}}\right)^{$$

Ultra-stripped supernovae

Mco~3M⊙ M_{total}~10M_☉

type II SN M_{ej} ~10 M_{\odot}

 $M_{CO} \sim 3 M_{\odot}$ M_{total}~5M_☉

type lbc SN M_{ej}~3M⊙

M_{total}~M_{co}~1.5M_☉

諏訪雄大 (東大総文/京大基研) @ 第24回高宇連研究会

Neutrino-driven explosions of USSNe

[Suwa, Yoshida, Shibata, Umeda, Takahashi, MNRAS, 454, 3073 (2015)]

stellar evolution

2025/3/6

Fallback onto NSs in USSNe

 $t \approx t_{\rm orb}$

$t \approx t_{\rm vis}$

諏訪雄大 (東大総文/京大基研) @ 第24回高宇連研究会

X-rays from accretion onto NS in USSNe [Sawada, Kashiyama, Suwa, ApJ, 927, 223 (2022); Kashiyama, Sawada, Suwa, ApJ, 935, 86 (2022)]

Periodic accretion onto a binary system

Duffell+ 2024

14/17

諏訪雄大 (東大総文/京大基研) @ 第24回高宇連研究会

Moore+ 2023

2025/3/6

諏訪雄大 (東大総文/京大基研) @ 第24回高宇連研究会

2025/3/6

- * SN 2023zaw (**D~43.9 Mpc**)
- * SN 2019wxt (D~154 Mpc)
- * SN 2019dge (D~93 Mpc)
- * SN 2019ehk (**D~16.2 Mpc**)
- * iPTF16hgs (D~73.8 Mpc)
- * iPTF15eqv (D~26.4 Mpc)
- * SN 2010X (D~62.5 Mpc) * iPTF14gqr (D~280 Mpc)
- * SN 2005ek (D~66.6 Mpc)

List of ultra-stripped SN candidates

Summary

- * 大質量星は連星系として生まれる * 近接連星効果が超新星の種族を決める * 中性子星合体にいたる連星は超近接連星であり、超新星も特殊なもの (ultra-stripped SN; USSN) になる
- 期待される
- * 楕円軌道の連星への降着がX線に周期的な変動をもたらす可能性
- * O(10) Mpc 以内に起こる USSN の軟X線フォローアップが重要
- * 軟X線の深い観測(Chandra next?)の衛星があるとよいと思います

* USSNのフォールバックによって、爆発後O(1)年後にX線が抜けてくることが