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The Goal

» The main goal that we are aiming at:

"To Derive Einstein's equations in BSSN formalism”
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Notation and Convention

» The signature of the metric: (—+++)
» (We will use the abstract index notation)

e.q. Wald (1984); see also Penrose, R. and Rindler, W. Spinors and spacetime vol.,
Cambridge Univ. Press (1987)

» Geometrical unit c=G=1
» symmetric and anti-symmetric notations

1 1
T(al...an) = ﬁ 2 ‘,Taﬂ(l)...aﬁ(n) 1 T[al...an] = ﬁzsgn(ﬂ-)-raﬁ(l)...aﬁ(n)
- T " T

1 1
Toany = > (Tap +Toa)s  Tray = > (Tap — Toa)
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Solving Einstein’s equations on computers

» Einstein's equations in full covariant form are a set of
coupled partial differential equations

» The solution, metric g ,, is not a dynamical object and
represents the full geometry of the spacetime just as the
metric of a two-sphere does

» To reveal the dynamical nature of Einstein's equations, we must
break the 4D covariance and exploit the special nature of time
» One method is 3+1 decomposition in which spacetime
manifold and its geometry (graviational fields) are divided
into a sequence of 'instants’ of time

» Then, Einstein's equations are posed as a Cauchy problem
which can be solved numerically on computers
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3+1 decomposition of spacetime manifold

» Let us start to introduce foliation or slicing in the
spacetime manifold M

» Foliation {X} of M is a family of slices (spacelike
hypersurfaces) which do not intersect each other and fill

the whole of M ~—_ \

» Inaglobally hyperbolic spacetime,
each X is a Cauchy surface which is | T

parameterized by a global tfime | *
function, ¢ , as ' |
» Foliation is characterized by

the gradient one-form
|II II"'a
Q, =Vt V.Q,=0 \ M
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The lapse function

» The norm of Q, is related to a function called "lapse
function”, o(x%) , as :

gaanQb — gabvatvbt — _i

2
(04

» As we shall see later, the lapse function characterize the
proper time between the slices

» Also let us introduce the normalized one-form :

n,=—aQ,, g*nn =-1

a a

» the negative sign is introduced so that the direction of »
corresponds to the direction fo which ¢ increases

» n“ is the unit normal vector to X
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The spatial metric of 2 : V.

» The spatial metric y,;_induced by g, onto X is defined by
yab gab + n n

ac ~, bd

*=0%9"y, =9 +n°n’

» Using ’rhis 'induced’ metric, a tensor on M is decomposed
info two parts: components tangent and normal to =

» The tangent-projection operator is defined as

=0, +Nn°n,

» The normal-projection operator is Nj =-n°n, =&;— L;
» Then, projection of a tensor into X is defined by
LT b =12 L1 Ly T% %,

1... S

» Itiseasy tocheck |, g —jci9qg =
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Covariant derivative associated with v,

v

Covariant derivative acting on spatial tensors is defined by
DeT al.“arbl...bs = J_ VeT d1...a, b,..b,

SN AL SNEE 2 L

S

» The covariant derivative must satisfy the following conditions

» Itis alinear operator : (obviously holds from linearity of V)
Torsion free : DDy f=D,D,f, (easy to check by direct calculation)
Compatible with the metric : D.g,,=0, (easy to check also)

v Vv

Leibnitz's rule holds :

D,(v'w,) =12 V, (VW) = L2 v'oV W+ L2 W, Vv
=12 vI (LS +NV W+ L2 w, (LS +NI)V, v
=v°D,w_ +wW,D v+ 12 (NSV'V,w_ +Now,V,v°)

c d C,,d d
=v'D,w.+w,D,v-  for Nj;v- =N_w, =0

v
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Intrinsic and extrinsic curvature for X

» The Riemann tensor for the slice ¥ is defined by

Rd

(D,D,—D,D,) Vv, =V,

abc

» An other curvature tensor, the

extrinsic curvature for X is

a

defined by K b= J—V(anb) )

n® :unit normal toX

» extrinsic curvature provides information on how much the
normal direction changes and hence, how X is curved

» the antisymmeftric part vanish
due to Frobenius's theorem :

“"For unit normal »* to a slice
n.,vV,n,=0 "

0=_13(n°n, V,n,)=—LV,n,

parallel
transported

[on, =—K_,0x°
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The other expressions of K,

» First, note that
VN, =658, Veng = (LS +N9)(Ly +N;)V.n,
=1lv,n-n la =—-K_, —na,

» where ay is the acceleration of n® which is purely spatial
n"a, =n°n°v_n, =n®v, (nn°)=0

» Because the extrinsic curvature is symmetric, we have

1 1
K = V nb) (aab) L(gab+nnb)__2 n Y ab

» where Ln is the Lie derivative with respect to n
i 1
> Also, we simply have | — 1V, =—= 1L,

» Thus the extrinsic curvature is related to the "velocity” of
the spatial metric 7y,
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3+1 decomposition of 4D Riemann tensor

» Geometry of a slice X is described by v,, and K,
» Y. and K, represent the “instantaneous” gravitational fields in X

» In order that the foliation {£} to “fits" the spacetime
manifold, ¥,, and K,, must satisfy certain conditions known

as Gauss, Codazzi, and Ricci relations

» They are related to 3+1 decomposition
of Einstein's equations

» These equations are obtained by
taking the projections of the
4D Riemann tensor

4 4 d
J— Rabcd ’ J— Rabcdn J

4 b..d
1R, 4NN
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Gauss relation: spatial projection to >

» Let us calculate the spatial Riemann tensor
D.DwW.=LV_(LV,W,)

=LV VoWt L (VoW )(V, L9) + L (VW )(V, 17)
=1V, VW — 1K _Kw'— 1K, n'V, w,

» where we used (also note that Ln vanishes if n is uncontracted)
V, Ly =n,(V,n)+n"(V n,) =—n (K +n,a®)—n(K,, +n,a,)

» Then we obtain the Gauss relation
(Da Db — Db Da)Wc — Rabchd — J—4Rabcd Wy — KacKt()j Wy + Kch:Wd
J—4Rabcd — Rabcd + Kachd o Kad Kbc

» The contracted Gauss relations are
1R +1R, ,nn® =R _+KK_—K_ K’

abc
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Codazzi relation : mixed projection to ¥ and n

» Next, let us consider the "mixed" projection

LR, ny =L (V,V,n, -V, V.n)

» where the right hand side is calculated as

1tv.yv,n=LV_ (-K,.-na)=-D,K, . —LaV.,n
=-D, K, . +a.K_,

» Then we obtain the Codazzi relation
J—4Rabcd r]d — Db Kac o Da Kbc

» The contracted Codazzi relation is

1*R,n"=D,K-D,K?
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Gauss and Codazzi relations

» Note that the Gauss and Codazzi relations depend only on
the spatial metric v,;, the extrinsic curvature K,,, and
their spatial derivatives

» This implies that the Gauss-Codazzi relations represent
integrability conditions that v,, and K, must satisfy for
any slice to be embedded in the spacetime manifold

» The Gauss-Codazzi relations are directly associated with
the constraint equations of Einstein's equation

} 17 APCTP International school on NR and GW  July 28—August 3, 2011



Ricci relation (1)

» Let us start from the following equation

J—Lll:\)ab(:dnbnd — J— nb(vavbnc —vaanc)
=1 n°[-V, (K,.+na)+V, (K, +na.)]
=1[K, V.,n°+V.a +n°V K, +aa +nn’V,a]

= 1[K,.(-K?—-na")+V.,a +n"V,K +aa, +nn’V,a]
=—K, K’ +D,a+Ln"V,K,_+a.a,

bc' “ra

» The Lie derivative of K, is

LK, =1NVK +K, V.n"°+K, V.n")=1n"V K _—-K K’-K_ K’

» Then we obtain the Ricci relation

4 b,.d b
1"R, nn =1L K _+K,K.+D,a +aa,
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Ricci relation (2)

» Note that the Lie derivative of K, is purely spatial, as

a a,C a C a c a c
n“L. K,=n"n"V.K, +n°K V. n +n°K V.n"=-K_ a"+K, a =0

bc " a

» Thus the Ricci relation is
1R, nn"=L K _+K_ K’>+D.,a +aa,
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Ricci relation (3)

» The acceleration a? is related to the lapse function a, as
a, =n°vV.n, =2nV n, =-2nV aQ, =-n"(QV.a-QV,a)

C c
=nnV.na+6,V.Ina = D,Inx

» where we have used the fact that Q is closed one-form

» Then the Ricci relation can be written as
1R, " =L K _+K K’+D,D.Inaz+D,InaD, Inx

=L K _+K_ K’ +1 D,D.«
a

» Furthermore, using the contracted Gauss relation
J—lll:zac_l_J-LlRabcdnbnOI = Rac + KKac - Kabe

» we obtain
1R, =-L K_ _L D.D.a+R, +KK_—2K_ K’
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volution vector” and an“

S

» What is the natural “"evolution” vector ?

» As stated before, the foliation is characterized by the closed one-
form Q

» Dual vectors # to Q will be the evolution vector : Q =1

» One simple candidate is #'=an“
» Note that n¢ is not the natural evolution vector because
L Lo=nV L1 -1 V.n'+12V.n°=n°V_ (n°n,)+ K —(K;+na%))

=ng, #0

» This means that the Lie derivative with respect to n* of a tensor
tangent to X is NOT a tensor tangent to X

» On the other hand,L,, 1; =0 and any tensor field tangent to X is
Lie transported by an® to a tensor field tangent to =
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The shift vector

» We have a degree of freedom to add any spatial vector,
called “shift vector”, B“ to an® because Q=10

» Therefore the general evolution vector is : *=an“+p*

» This freedom in the definition of the evolution time vector

stems from the general covariance of Einstein's equations

» It is convenient to rewrite the Ricci relation in terms of
the Lie derivative of the evolution time vector, as

1

~—-D,Da+R, +KK_ —2K_ K’
(04

1
J—4Rac -~ (Lt o L,B )Kac
(04

» where we have used

LK, =L, Ky +L Ky =anV K +K, V (an)+ K,V (an*)+L, K=ol K +L, K
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3+1 decomposition of Einstein’s equations (1)
- Decomposition of T,

» Now we proceed 3+1 decomposition of Einstein's equations

Gab :4Rab _%4Rg ab — 87Z-Tab

using the Gauss, Codazzi, and Ricci relations

» To do it, let us decompose the stress-energy tensor as
T, =En,n, +2B N, +S,,

» where E=nnT,, P,=-1(n"T,), and S, =1T, are the energy

a

density, momentum density/momentum flux, and stress tensor
of the source field measured by the Eulerian observer

» the traceis T=S-E
» We shall also use Einstein's equations in the form of
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3+1 decomposition of Einstein’s equations (2)

- Hamiltonian constraint

» We first project Einstein's equation into the direction
perpendicular to X to obtain

‘R n%n° +%4R =87E

» For the left-hand-side, we use the contracted Gauss relation
‘R+2°Rn°n°’ =R+K?*-K_ K%

» We finally obtain the Hamiltonian constraint
R+K?-K_ K =16E

» This is a single elliptic equation which must be satisfied
everywhere on the slice
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3+1 decomposition of Einstein’s equations (3)

- Momentum constraint

» Similary, "mixed"” projection of Einstein's equations gives
1R n° =-87P,

» Using the contracted Codazzi relation
1R, n°=D,K-D,K?

» We reach the momentum constraint
D, K?-D,K =8P,

» includes 3 elliptic equations
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3+1 decomposition of Einstein’s equations (4)

- Evolution equations

» The evolution part of Einstein's equations is given by the full
projection onfo Z of Einstein's equations :

1R, =1 BE(Sab +2n,P, —% ¥..(S —E) +%nanb (S + E)j = 87{Sab —% V(S — E)j

» Using a version of the Ricci relation

1R, = —i(Lt —L,)K,, _Z D.D.a+R, +KK_ —2K K’
(04 a

» We obtain the evolution equation for K,

(Lt _Lﬂ )Kab — _Da Dba + a[Rab + KKab _ 2KacKt():] _Sﬂa(sab _%7/ab(s - E)j

» The evolution equation for v, is given by an expression of K,

(L —=Ly)ya = —2aK,,
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Summary of 3+1 decomposition

» Einstein's equations are 3+1 decomposed as follows

Gauss rel. Jlamiltonian constraint
G, n°n’ =8zT,n*n° é R+K?*— KabKab =167E
| m .
b -1Codazzi rel. 5
LG, =87 LT,;n°| ey (D K> —-D K =87P,

Evolution Egq. of K

Ricci rel.
1G, =87 1T, | =) (L —L,; K, =-D,Dya +a[R,, + KK, — 2K, K]
Definition of K, Evolution Eq. of Y,
Kap ==LV, | e (L —L;)va =—2aK,,

» 3+1 decomposition of the stress-energy tensor
Tab — Enanb + 2|D(anb) + Sab E= r]anb-l-ab' Pa =—1 (anab)’ Sab EJ—Tab
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Similarity with the Maxwell’s equations

ab ar-b br—a abc
V.E® =4rJ *=4x(p.n° +J
b ( e ) *Fab — naBb _ana —EabCEC

b
V[anC]=O N Va*Fa =0 E’n =0, B°n, J°n, =0

a a

nV.,F*®=n_(4zJ %) I:"> D E® =47p, || Gauss's law, No monopole
Norma - ~ ho time derivatives of E, B

" projection
NV, *F® =0 ':!> D.B=0 Constraint equations

a

ab a a __ _abc a a
LV,F® =1 (47J ?) W (6,-L ,)E* =£™*D,(aB,)—47al® + aKE

projection -
LV, *F® =0| m===p> ((,-L ,)B* =—£D,(aE,)+aKB’

Faraday's law, Ampere's law

Evolution equations
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Evolution of constraints

» It can be shown that the "evolution” equations for the
Hamiltonian (Cy) and Momentum (C,,) constraints becomes

0.-L, )y =—D,(aCl) ~C{, D, +aK (2C,, - F) + aKF,
(0.~L, Joi =D, (aF")+2aK|C), +aKC,, +aD* (F ~C,,)+ (F ~2H)D'a

» Where F; is the spatial projection : the evolution equation

|:ab =1 |:4 Rab _SE(Tab _%Tgabj:|

» The evolution equations for the constraints show that the
constraints are “preserved” or “satisfied" , if

» They are satisfied initially (C, = C,,=0)

» The evolution equation is solved correctly (F,,=0)
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Coordinate-basis vectors

» Let us choose the coordinate basis vectors
» First, we choose the evolution timelike vector #4 as the
time-basis vector : [t° = (&))"
» The spatial basis vectors are chosen such that|Q, (e)* =0
» The spatial basis vectors are Lie transported along #4:
L, (ei)a :tbvb (ei)a _(ei)bvbta =[t, ei]a =0
» (e;)remains purely spatial because
L (Q,(e)%) = (L€2,)(e)" —Q,L (&))" = (L£2,)(e)"
=(t"V,Q, + Q V., t°)(e)* =2t°V,,Q,,(e;)* =0
» (e,)* constitute the commutable coordinate basis
» Then |L, =0,
» We define the dual basis vectors by |(&#),: (£“),(e,)?
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Components of geometrical quantities (1)

» Now we have set the coordinate basis we proceed to
calculate the components of geometrical quantities

» Because the evolution time vector is the time-coordinate
basis we have|t* =t“(e,)* =(g,)* = t*=[1000]

» From the property of the spatial basis, we have
n =0 0=Q,(g) =Q,0"=an,

» Then, 0th contravariant components of spatial tensors vanish

v _[0 g W_OO KW_OO
A Ol I B N

» From the definition of the time vector and normalization
condition of n®, we obtain [ta_ nay g = ni—[o o8]

n“n,=-1 = n,=[-a 00 0]
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Components of geometrical quantities (2)

» From the definition of spatial metric, we have
g2 a2p'
a—lei }/ij _a—zﬂiﬂj

gab:yab_ﬂanb — g,uv:|:

Qab =7a0 — My = Qi =%

» We here note that from the spatial component of the
following equation, we have

790 =(9“7+0"N°)g,, =5/ +1"5) = y"y4 =5

» This means that the indices of spatial tensors can be
lowered and raised by the spatial metric

» Then, from the inverse of g*, we obtain
g = -’ + BB B
. 5/ Yij
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An intuitive interpretation

» The lapse function
measures proper
time between two
adjacent slices

» The shift vector
gives relation of
the spatial origin
between slices

ds? = —a2dt? +y, (dX' + g'dt)(dx! + dt)
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Conformal decomposition

» The importance of the conformal decomposition in the time
evolution problem was first noted by York (PRL 26, 1656 (1971); PRL
28, 1082 (1972))

» He showed that the two degrees of freedom of the gravitational
field are carried by the conformal equivalence classes of 3-metric,
which are related each other by the conformal tfransformation :

Vij = W477ij

» In the initial data problems, the conformal decomposition is a
powerful tool to solve the constraint equations, as studied by York
and O ’Murchadha (J. Math. Phys. 14, 456 (1973); PRD 10, 428 (1974)) (see for

reviews , €.g., Cook, G.B., Living Rev. Rel. 3, 5 (2000), Pfeiffer, H. P. gr—qc/0412002)

» In the following, we shall derive conformal decomposition of
Einstein's equations
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“Conformal” decomposition of Ricci tensor (1)

» The covariant derivative associated with the conformal
metric is characterized by

I5(:77ab — O

» The two covariant derivatives are related by (e.g. Wald )

DT/ =DT} +CyT, —C.T,

» where C’iik is a tensor defined by difference of Christoffel symbols

~ 1 ~ ~ =
Ckij EFkij —Fkij 257/“ (Di?/u T Dj7il N Dlyij)

=2(6¥D; Iny + 5D, Iny —7,D* Iny)

» By a straightforward calculation, we can show (e.g Wald )

R;v' =(D,D,-D,D;)v! =(D,D, -D,D,v' +(D,C; - D,C +C, C;; —C;iC; )V’
=R,V +(D,C! ~D,C{ +C,Ct —CiCy )V
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“Conformal” decomposition of Ricci tensor (2)

» Thus the Ricci tensor is decomposed into two parts, one
which is the Ricci tensor associated with the conformal
metric and one which contains the conformal factor w

» More explicitly one can show (see e.g. Wald (1984))
5 SR ~ N [k
R, =R, —2D,D, Iny —27,D,D" Iny
+4(D, Iny)(D, Inw) 47, (D, Inw)(D* Iny)
= Iiij + Ri‘f

» Then, the Ricci scalar is decomposed as

R=y*[R-8(D,D* Iny + (D, Iny)(D* Iny))]
_y*R—8y°D,D'w

} 36 APCTP International school on NR and GW  July 28-August 3, 2011



Conformal decomposition of extrinsic curvature

» The first step is to decompose K;; into trace (K) and
traceless (4;) parts as

1

Ki =A +§7/in’

K =AY += 5K
37

1

» Then, we perform the conformal decomposition of the

traceless part as

A = W4Zﬁj )

Al =y

ik _jl

/4

Ay = W_4'Zﬁj

» Under these conformal decompositions of the spatial
metric and the extrinsic curvature, let us consider the
conformal decomposition of Einstein's equation
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“Conformal” decomposition of the evolution
equations (0) — an additional constraint

» In the following, with BSSN reformulation in mind, we set
the determinant of the conformal metric to be unity:

y =dety,; =1
» with this setting, the conformal factor becomes

In —iln
v 12 /4

» In the BSSN formulation, the conformal factor is defined by
¢=Iny so that ¢ = Iny/12

» In the case that we do not impose the above condition to the
background conformal metric, the equations derived in the
following are modified slightly (for this, see Gourgoulhon, E.,
gr-qc/0703035)
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“Conformal” decomposition of the evolution
equations (1) : the conformal factor

» Let us start from the evolution equation of the spatial
meTr‘iC y’] : (Lt _Lﬁ)}/ab — Lanyab — _ZaKab

» Taking the trace of this equation, we have

7/abLan7/ab =—2aK

el

» Now we use an identity for any matrix A : |det[exp Al =exp[tr A
» By setting ¥, = exp A and taking the Lie derivative, we obtain

Ly =exp[tr (In 7, )1L, (tr(Iny)) = 77 L7
» Now we can derive the evolution equation for the
conformal factor : PL7s =L Ny =121, Iny = —2aK
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“Conformal” decomposition of the evolution
equations (2) : the conformal metric

» Again, we start from the evolution equation for vy, :
(Lt _Lﬂ)yab = Lanyab = —205K

» Substituting the decomposition of ¥, and K;, we obtain

- 1
v (L, —L,)y; + 4y (L — L)y = Za(w A+ oL 7.,K)

~ 1 -
(L —=Ly)yy +47;(L—Ly) Iy = 2a(ﬁx,+ 7.,Kj

» Now, we shall use the evolution equation for the conformal
factor, and finally, we get
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“Conformal” decomposition of the evolution
equations (3) : the inverse conformal metric

» For the later purpose, let us derive the evolution
equation for the inverse of the conformal metric

» It is easily obtained from the evolution equation for the
conformal metric, as

P, 1,7, = 2R
?/Ik [(L, _Lﬂ)ékj _7/kl (L, _Lﬂ)j;jl] = 2 A"
(L —L,)7" =2a A

} 41 APCTP International school on NR and GW  July 28-August 3, 2011



“Conformal” decomposition of the evolution
equations (4a) : the trace of the extrinsic curvature

» We start from the evolution equation for K :
L, K; =—D,D;a+a[R; + KK; —2K, KT+ 47z (y; (S — E)-2S;)

an ' Nij

» We first simply take the trace of this equation
L.K-K;L,»"=—DD'a+a[R+K*-2K;K"]+ 47 (3(S - E) - 2S)

» Here, let make use of the evolution equation for the
inverse of the spatial metric, (L, _Lﬂ)yab — 20K

» Finally, using the Hamiltonian constraint, we obtain
(L, —L,)K=-DD'a+a[K;K" +47(E+S)]

R+K?-K, K =167E
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“Conformal” decomposition of the evolution
equations (4b) : the trace of the extrinsic curvature

» For convenience, let us express the right-hand-side in
terms of the conformal quantities, as well as give a
suggestion how to evaluate the derivative term :

Dkaaziﬁk(\/;Dka) G, ( ° ‘ija)zw 0 (l// 7o, a)
Jy

ij i Lo wxi, Lo
KKY = A/AT+ 2K = A /AT +2K
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“Conformal” decomposition of the evolution
equations (9a) : the traceless part of the extrinsic curvature

» We start from the Lie derivative of K;; :

1 1
L, Ki=L,A "‘g?ﬁ"— K +§ KL,.7:

] T an

» Substituting the following equations into this yields
L. K; =—DD;a+a[R; + KK — 2K, K1+ 47 (y; (S — E) - 2S;)

L K=-DD'a+a[R+K?*]+47a(S—3E)| |La.ry=—20K;

5 1
LA =—(DD,a)" +a(R," —87S;" )+ a[g KK; — 2K, K" . K%}

» where TF denotes the trace free part : T,;"7=T,;- (1/3)y;{(trT)

» The terms that involve K in the right-hand-side can be written as

S « 10 1 k g L7 A AK
gKKij_ZKikKj _éK Vi :éKAij_ZAikAj =V gKAij_ZAikAj
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“Conformal” decomposition of the evolution
equations (Sb) : the traceless part of the extrinsic curvature

» We further proceed to decompose the left-hand-side :

— —~ — 2 —~
LanAij — W4 I:LanAij +4AﬁjLan In l//]: W4|:LanA1j _gaKAij:l

» Combining all of the result, we finally reach

(L, _Lﬂ)lzﬁj =y t—(Di DJ-Oc)TF +0¢(RijTF —87zSijTF)J+ a{KAj —ZZ‘k,&}(J

» We here note that the second-order covariant derivative of
the lapse function may be calculated as

D.D;a=D,0,a = |5iaja—cgaka
=[0.0,a T 0,a)-220, Iy, a-7,746, Inwé,a]

» NOTE: there is the same 2"d order derivative in Rij¢
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“Conformal” decomposition of the constraint
equations

» Let us turn now to consider the conformal decomposition
of the constraint equations

» Hamiltonian constraint R+K?—K, K®=167E
K;K" = AJ Al +K2/3 ﬁ
R—vf“R 8 DDV | [~ 1= (1~ 1., s _
Dti—ngwL(gAjA _EK +277ij =0
» Momentum constraint : —
D,K* —D*K =87P* DKE=D,AT+DK/3
' D,A’ =D,A’ +C! A% +CJ, A*
= = DA’ +10A'D; Iny
D, A’ +6ATD, Inw—gD K =8y *P' _y[B, A1 +6A15, Iny]
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Summary of conformal decomposition

» With the conformal decomposition defined by

4~ 1 . -
Vii=VW¥ 7 Kij:w4Aij+§7/in 7/=det7/ij=1

» The 3+1 decomposition (ADM formulation) of Einstein's
equations becomes

Constraint equations

~ ~ 1 l ~~: 1
D.D'y —— Al - —K? +27rEj =0
Evolution equations Vo 8 ( AA 12 4
1 ~—~ o~ ~ ~. .
(Li=Ly)Iny =—ZaK D,A" +6AD, |ny/—§D'K=8m//4P'

(L, _L,B)j;ij = _Za'Aﬁj

(L, —L;)K=—D,D'a+a[K;K" +47(E+S)]
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Lie derivatives of tensor density

» A tensor density of weight w is a object which is a tensor
Tlmes ,YW/Z . T }/W/ZT

» One should be careful because the Lie derivative of a tensor
density is different from that of a tensor, as

LT, { Beo T ZTal”saﬁ ZTéfcb }WTQ%::SS@MK

= [LﬁTb?%::t;:] +WT 0, B

w=0

LTI =L,("°T)) = y"?|B*0, T/ ~T*8, B' +T.0, B |+ T (Wi 2)y"* 'L,y

= [0, T =T B 0™ ~Tro B +Ted B [+ T w1 27" [y L,
=0, T ~T/wy ™2 g0, 42 —T*6, B +Ti0, B* |+ T'wy"*D, B

=[g0, T ~T/wy 2 0, 42 - T%6, B +Ti0, ¥ |+ Twy 2|y %0, (V28]
=g 0,1 -0, 8 +Ti0, 8" |+ T/, B
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Lie derivatives in conformal decomposition

» The weight factor of the conformal factor w= y"? is 1/6
» Thus the weight factor of the conformal metric and the
conformal extrinsic curvature is —2/3, so that

» Note that the Lie derivative along ¢“ is equivalent to the
partial derivative along the time direction

» Thus

1
(L —Ly)Iny = (5, - B0, )In y—=0,p"

- - o~ - 2 —
(L, _Lﬂ)7/ij :(8t _/Bkék);/ij _7ik5j:3k _7jkaiﬂk +§7/ijakﬁk

(Lt _Lﬂ)gij = (at _/Bkak);ij _ ’Z‘ikajﬂk — 'Z‘jkaiﬂk "‘% Eijakﬂk
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Evolution of constraints

» It can be shown that the "evolution” equations for the
Hamiltonian (Cy) and Momentum (C,,) constraints becomes

0.-L, )y =—D,(aCl) ~Cf, D, +aK (2C,, - F) + aKF,
(0.~L, JCu =D, (aF")+2aK|C), +aKC,, +aD* (F ~C,,)+ (F ~2H)D'a

» Where F; is the spatial projection of the evolution equation

|:ab =1 |:4 Rab _SE(Tab _%Tgabj:|

» The evolution equations for the constraints show that the
constraints are “preserved” or “satisfied" , if

» They are satisfied initially (C, = C,,=0)

» The evolution equation is solved correctly (F,,=0)

} 50 APCTP International school on NR and GW  July 28-August 3, 2011




Numerical-relativity simulations based on
the 3+1 decomposition is unstable !!

» It is known that simulations based on the 3+1 decomposition
(ADM formulation), unfortunately crash in a rather short time
» This crucial limitation may be captured in ferms of notions of
hyperbolicity (e.g. see textbook by Aicubierre (2008) )
» Consider Thg following first-order system 6U+A-0U =0
» The system is called

Strongly Hyperbolic ,if a matrix representation of A has real
eigenvalues and complete set of eigenvectors

Weakly Hyperbolic , if A has real eigenvalues but not a complete
set of eigenvectors

» The key property of strongly and weakly hyperbolic systems :

Strongly hyperbolic system is well-posed, and hence, the solution
for the finite-time evolution is bounded

Weakly hyperbolic system is ill-posed and the solution can be
unbounded
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Numerical-relativity simulations based on
the 3+1 decomposition is unstable !!

» Tt is known that the ADM formulation is only weakly hyperbolic

( Alcubierre (2008) )

» Consequently, the ADM formulation is ill-posed and the numerical
solution can be unbounded, leading to termination of the simulation

v

least) strongly hyperbolic

We need formulations for the Einstein's equation which is (at

» Let us consider Maxwell's equations in flat spacetime to capture
what we should do to obtain a more stable system

0.E' =4np, A = (@, A) 0.E' =4np,
i B =¢g,0 A" - - :
0,B' =0 _B=ame oE =DD'A, ~D'D;A ~4r]
0. :gijkajBk_47Tji 0,A =—E —-D,®
0.B. = _gijkai EX Note the similarity of these equations
to those in the ADM formulation
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Consideration in Maxwell’s equations

» First of all, let us note the similarity of the Maxwell's

equations with the ADM equations (for simplicity in vacuum)

0.E' =0 (constraint eq.) ||(constraint egs.)
0.E, =\D,D'A|-{D'D, A| [2Ln Kij = —20Rj +----- e 2"
oA =-E -D® = a(e/klalaij/kj +7/klajak7/ill_7/klakal7/ij )"‘
|
L.y ij — —20!Kij “mixed-derivative” part

» Second, the Maxwell's equations are ‘almost’ wave equation
~0;A +D“D,A —D,D'A =D,5,®

» Recall that in the Coulomb gauge D.4'=0, the longitudinal part
(associated with divergence part) of the electric field E does not
obey a wave equation but is described by a Poisson equation
(see a standard textbook, e.g., Jakson)
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Reformulating Maxwell’s equations (1)

- Introducing auxiliary variables

» A simple but viable approach is to intfroduce independent
auxiliary variables to the system

» Let us introduce a new independent variable defined by
F=D"A

» The evolution equation for this is
o,F =0,D“A =-D'E, —D,D*®

» Then, the Maxwell's equations for the vector potential
become a wave equation in the form :

~0’A +D*D,A =D, ®+DF

} 54 APCTP International school on NR and GW  July 28—August 3, 2011



Reformulating Maxwell’s equations (2)
- Imposing a better gauge

» A second approach is to impose a good gauge condition

» In the Lorenz gauge, the Maxwell's equations in the flat
spacetime are wave equations

0,0"A, =0

» Alternatively, by introducing a source function, one may
“generalize” the Coulomb gauge condition so that Poisson-
like equations do not appear

DA =H(x*)

» Recall again, that in the Coulomb gauge D.4'=0, the longitudinal
part (associated with divergence part) of the electric field E is
described by a Poisson-type equation
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Reformulating Maxwell’s equations (3)

- Using the constraint equations

A third approach is to use the constraint equations

» To see this, let us back to the example considered in
“introducing auxiliary variables”

v

DE' =470, — — — — — — — D.E' =4p,

0,E, =D.F—D*D A —4rj| | 0,E, =D,F —D*D A —4r]j;
0,A =—E, -D.® ” 0,A =—E, —D.®

0,F =(D'E)-D,D"® | — — — — —aF=C4m)-D,D‘®

» The constraint equation can be used to rewrite the evolution
equation for the auxiliary variable

» Seen as the first-order system, the hyperbolic properties of the
two system is different: the hyperbolicity could be changed !

» It is important and sometimes even crucial to use the constraint
equations to change the hyperbolic properties of the system
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(]

Reformulating Einstein’s equations

» The lessons learned from the Maxwell's equations are

» Introducing new, independent variables
BSSN ( Shibata & Nakamura PRD 52, 5428 (1995);
Baumgarte & Shapiro PRD 59, 024007 (1999) )

0 see also Nakamura et al. Prog. Theor. Phys. Suppl. 90, 1 (1987)
Kidder-Scheel-Teukolsky ( Kidder et al. PRD 64, 064017 (2001) )
Bona-Masso ( Bona et al. PRD 56, 3405 (1997) )
Nagy-Ortiz-Reula ( Nagy et al. PRD 70, 044012 (2004) )

» Choosing a better gauge
Generalized harmonic gauge ( Pretorius, COG 22, 425 (2005) )
Z4 formalism ( Bona et al. PRD 67, 104005 (2003) )

» Using the constraint equations to improve the hyperbolicity
adjusted ADM/BSSN ( Shinkai & Yoneda, gr-qc/0209111 )

» BSSN outperforms ( Alcubierre (2008) )|
» Exact reason is not clear
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BSSN formalism (1)

» Let first analyze the conformal Ricci tensor
» By noting that 2T =0, In7 =0 the conformal Ricci tensor is

ﬁij - akfi;( _ajfii +1:i;'<1:k|| _I:i:(l:lij W
= 159(0,0,7, —0:0,7 . —0,0,7 ) (terms with 797)

» If we divide the conformal metric formally as 7" =6" + 7, we have
W, =8,8"7, — (6,63, +0,0"7, )+ (terms with f&F )

» Thus we can eliminate the "mixed derivative” terms by
introducing new auxiliary variable ( Shibata & Nakamura (1995) )

F = 5jkak77ij :aj77ij

W, =8,8"7, —(6,F; +a,F, )+ (terms with fof)
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BSSN formalism (2)

» Baumgarte and Shapiro introduced the slightly different
auxiliary variables i i
[" =-0 iV

» In this case, the mixed-second-derivative terms are
encompassed as

R. = —% (70.8,7, = 7,0 T = 7,6, )+ (terms with 8y 0y)

ij

» Inlinear regime, SN and BS are equivalent
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BSSN formalism (3)

» Finally let us consider the evolution equation for the auxiliary
variables (giving only a rough sketch of derivation)

» Let us start from the momentum constraint equation

I:'Sk(j;jk'&j)"'6;1j?7jk|5k |nW_§5iK =87y *P

N Al NS 2 = 4pi
D;A”+6AD; Iny — = D'K =87y ‘P

» Substituting the evolution equation for the conformal extrinsic
curvature (L —L,)7; =20,

(L —L,)7" =2aA’

» We obtain the evolution equations for F;and I, respectively
It can be seen from the above sketch of derivation, the evolution
equation for I'' is slightly simpler
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BSSN formalism (4)

» The explicit forms of the evolution equations are

o~ o~ e 1~ ~. 2
(at —ﬁk@k)ﬁ = —167aP +2a[f K0 A + A0 —EAJk@iyjk +6A'0, |nw—§ai|<}

+5J’{ 2A0,2+(08')(07;) +0, (7"8 B +710F - 7.,8ﬂ ﬂ

(6t—,8k8k)1“i:—167205Pi+2a[l:}k,&jk+6,&”8jInz// %77”8 K} 2A10 .

+plo.T' -T'o,8' + ra ,B’+177”8 o +7%0,0,8
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BSSN formalism : summary (1)

5

E-Siw—é§w+(— A,j;&” N K? +27rij =0

D,A" +6A'D, Iny — gﬁk 8y ‘P’

( kak)lnwz—%aK+£8k,Bk

ﬂ 0 );/Ij z_zaAi +7/|ka ﬁ +7/1k8ﬁ _%jakﬁk

Hamiltonian

@,
(at _ngak )K — _Di D'er + a| Kij K" + 47T(E B S)] constraint is used

g _'Bkak)x‘i =y~ l_(DiDj“)TF +a(RijTF _87TSijTF)]+a[KEij _Z'Kik'&}(:l

- - 9 -
+ A0 8"+ A8, " 3 A0S
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BSSN formalism : summary (2)

o~ o~ 1~ ~. 2
(@ —ﬂ"@k)Fi = —167aP +20{f KO A + A0 —EAJkaiyjk +6A0, |nw—§ai|<}

+5J’{ 2A8,a+(0,8')0,7;)+5, (7"5 7,08 - y” i ﬂ

Momentum
constraint is used

(8t—,b’kak)Fi:—167zaPi+2a[l~“}k,&jk+6,&”8jInw %7”@ K} 2A10.

+p0' -0, + 1“8,6"+:1377”88,B +7%0,0,8
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Overview of numerical relativity

Solving the Setting 'realistic’ or
constraint << 'physically motivated’
equations initial conditions
.......................................... WooooosnennnnMain Joop [GR-HD
g : . — . : | GR-MHD
I_’l Solving Einstein's equations :
o — GR-Rad(M)HD
olving gauge olving source ]
conditions l filed equations 1 7| Microphysics
R R RN Rl R A N R R RN R R R RN N R R RN R R R R RN R R N R AR R R . e EOS
’ ; * weak processes
Locating BH | Extracting GWs |

(solving AH finder )

2

| BH excision

JI
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Gauge conditions

» Associated directly with the general covariance in general
relativity, there are degrees of freedom in choosing
coordinates (gauge freedom)

» Slicing condition is a prescription of choosing the lapse function
» Shift condition is that of choosing the shift vector

» Einstein's equations say nothing about how the gauge
conditions should be imposed

» As we have seen in the reformulation of the ADM system,
choosing "good"” gauge conditions are very important to
achieve stable and robust numerical simulations

» An improper slicing conditions in a stellar-collapse problem will
lead to appearance of (coordinate and physical) singularities

» Also, the shift vector is important in resolving the frame dragging
effect in simulations of e.g. compact binary merger
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Preliminary
— decomposition of covariant derivative of n —

» The covariant derivative of a timelike unit vector z* can
be decomposed as

1
V.2, = @,, + 0y, "‘é h,.0-2.¢,

h,=09.,+2,2,, (induced metric)
» Where, the deformation of the @=L V2,  (twist)
congruence of the timelike vector

: - =1V,_z,", (shear
is characterized by these tensors b (a”b) ( )

0=V._.z°, (expansion)

=21V 7%, (acceleration)

» For the unit normal vector to X, n* we have
» The expansion is —K

» The shear is -4, vV n — 1
a =—A, ——y7.,K—na
» The twist vanishes ab Aoy 37 e
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» In the geodesic slicing, the evolution equation of the trace
of the extrinsic curvature is 0,K =K;K" +47z(E +3S)

» For normal matter (which satisfies the strong energy condition),
the right-hand-side is positive
» Thus the expansion of time coordinate ( -K ) decreases
monotonically in tfime
» In terms of the volume element y*2, this means that the
volume element goes to zero, as

o, Iny"? :%yij(ﬁt}/ﬂ =—aK+D,f“ = —K

» This behavior results in a coordinate singularity

» As can be seen in this example, how to impose a slicing condition is
closely related to the trace of the extrinsic curvature
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Maximal slicing

» Because the decrease in time of the volume element results in a
coordinate singularity, let us maximize the volume element

» We take the volume of a 3D-domain S: VI[S] =L Jyd®x
and consider a variation along the time vector t2 =gn®+ °

» At the boundary of S, we set a=1, =0

LV[S]= [ d°X|-aKyfy +0,(/y A)]= | aK\[yd*x

» Thus if K=0 on a slice, the volume is extremal (maximal)

» We shall demand that this maximal slicing condition holds for
all slices and set [ _ () | )k =—D,D'a+a[K, K" +47(E +S)]

» The maximal slicing has a strong singularity avoidance property
(E.g. Estabrook & Wahlquist PRD 7, 2814 (1973); Smarr & York, PRD 17, 1945/2529 (1978) )

» However this is a elliptic equation and is computationally expensive
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(K-driver)/(approximate maximal) condition

» As a generalization of the maximal slicing condition, let us
consider the following condition with a positive constant ¢

0,K =—-cK

» This (elliptic) condition drives K back to zero even when K
deviates from zero due to some error or insufficient convergence

» Balakrishna et al. ( coG 13, L135 (1996) ) and Shibata ( Prog. Theor.
Phys. 101, 251 (1999) ) converted this equation into a parabolic

one by adding a "time" derivative of the lapse :
0,a=D,D'a—a[K;K" +47(E+S)]- ' DK +cK

» If acertain degree of the "convergence” is achieved and the lapse
relaxes to a "stationary state”, it suggests 9K =—cK

» This condition is called K-driver or approximate maximal
slicing condition = —5(8t K + oK ), =
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Harmonic slicing

» The harmonic gauge conditionV . V°x* =0 have played an
important role in theoretical developments (Choguet-Bruhat’s textbook)

» Existence and uniqueness of the solution of the Cauchy problem of
Einstein's equations (somewhat similar to Lorenz gauge in EM)

» The harmonic slicing condition is defined by
VVt=0 < aﬂ(w/—gg”"):O

» Note that,/—g =a,/y

» The harmonic slicing condition can be written as
(6, -0, 8 )a =—a’K
» This is an evolution equation

» It is known that the harmonic slicing condition has some

singularity avoidance property, although weaker than that of the
maximal slicing ( €.9. Cook & Scheel PRD 56, 4775 (1997), Alcubierre’s textbook)
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Generalized harmonic slicing

» Bona et al. ( PrL 75, 600 (1995) ) generalized the harmonic
slicing condition to

(6, -8, 8" ) =—a* f (@)K
» This family of slicing includes the geodesic slicing ( /=0 ), the

harmonic slicing (/=1 ), and formally the maximal slicing ( /=)

» The choice fta)=2/a , which is called 1+log slicing , has

stronger singularity avoidance properties than the
harmonic slicing ( 4nninos et al. PRD 52, 2059 (1995) )

» The 1+log slicing has been widely used and has proven to be a
successful and robust slicing condition
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Minimal distortion (shift) condition

Smarr and York (PRD 17, 1945/2529 (1978)) proposed a well motivated
shift condition called the minimal distortion condition

» As seen in the preliminary, the "distortion” part of the congruence
is contained in the shear tensor

They define a distortion functional by |1 = jzabzabﬁdﬁ
and take a variation in terms of the shift

» here the distortion tensor is defined by

1
S . EZJ_Ltyab "~ Kyt =1Vn, "

v

v

» The resulting shift condition is |D.Z*" =0

» Beautiful and physical but vector elliptic equations (computationally
expensive)

D.D°4* +D,D_ ¢ + R, B° = D°[20A, | = 2A™ D, + a(% 7D, K +167zPaj
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['-Freezing and
approximate minimal condition

» With some calculations, one can show that the minimal
distortion condition is written as Bi (6.5 =0
» The conformal factor is coupled ! (¥"0.7;) =

» Modifications of the minimal distortion condition are proposed
by Nakamura et al. (Prog. Theor. Phys. Suppl. 128, 183 (1997)) and
Shibata (Prog. Theor. Phys. 101, 1199 (1999))

» E.g., Nakamura et al. proposed instead to solve the decoupled pseudo-
minimal distortion condition : D) (8t77ij) —0

» Alcubierre and Brugmann (PRrD 63, 104006 (2001)) proposed an
approximate minimal distortion condition called Gamma-

ey D,(0,7") =8, =0

» Anyway, these conditions are elliptic-type |
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['-Driver condition

» Alcubierre and Brugmann (PrD 63, 104006 (2001)) converted the T'-
freezing elliptic condition into a parabolic one by adding a
time derivative of the shift (somewhat similar to the K-driver)

0.8 =ko T

» Alcubierre et al. (PRD 67, 084023 (2003)) and others (Lindbiom & Scheel
PRD 67, 124005 (2003); Bona et al. PRD 72, 104009 (2005)) extended the I'-
freezing condition to hyperbolic conditions |5 5' = kB’

» There are several alternative conditions 0B =T — 7B

» Shibata (4pJ 595, 992 (2003)) proposed a hyperbolic shift condition
o8 =7(F +At 0F) At

step

. time - step used in simulation

step

» To date, the above two families of shift conditions are known
to be robust
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Overview of numerical relativity

Solving the Setting 'realistic’ or

constraint << 'physically motivated’

equations initial conditions
.......................................... WeevoreenennMain doop [GRHD

, , — , : | GR-MHD
I_’l Solving Einstein's equations I_l :
: | GR-Rad(M)HD
Solving gauge Solving source ]
conditions filed equations -; ' Microphysics

e P ’ ; ........... : :Egj( rocesses

Locating BH | Extracting GWs |
(solving AH finder )

2

| BH excision

JI
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3+1 decomposition of V,.T**=0
- Energy Conservation Equation (1)

» First, substitute the 3+1 decomposition of 7, to obtain
0=V, T”=V,(En°n_+P°n_+Pn°+S?)
=nn°V,E+Ea, —KEn, —P°K,, +n,V,P’+n°V, P, —KP, +V,S’

A 4

Then, let us project it onto normal direction to X.
Noting that P*, K, and a’ is purely spatial, we obtain
—n°V,E+KE-V_P*+n°n"V,P, +n%V,S> =0

v

Because n+S ,=0, we have
n*v,S? =-S’V,n* =S (K2 +na*)=S*K_,

v

Similarly, n*n®v,P, =—P.n°V,n* =—Ra"

» The divergence term of P*is

D,P? =12 V,P* =(5;. +n,n")V,P* =V, P*—Pa*
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3+1 decomposition of V. .T**=0
- Energy Conservation Equation (2)

» Combining altogether, we reach the energy conservation
equation

n°V,E+D,P° +2P"a, —KE-K_S* =0
(0, B“D,)E +a[D,P° -KE-K,S*]+2P°D,a =0
0,E+D, (aP“ —EB*)+E(D, " —aK)-aK_S* + P°D,a =0

» where we have used
n°V,E=LE=a"'(L-L,)E=a"'(6,- BD,)E

a,=D Inha

» The last equation will be used to derive the conservative forms
of the energy equation
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3+1 decomposition of V. .T**=0

- Momentum Conservation Equation (1)

» To this turn, let us project the equation onto X to obtain
Ea, - P°K, .+ 1Sn°V,P.—KP,+ 1S V,S> =0

» The spacetime-divergence term of S, can be replaced by
the spatial-divergence by

DbS? :J—S J—i VdS: :J—i (55 +nbnd)vdS: :J_i Vbss _Sgad

» The projection term with the covariant derivative of P, is
J—; nbvbl:)c = a_l J—; (anb)vbpc = a_l J—; (LanPc o Pdvc (and))

» Note that (an)-Lie derivative of any spatial tensor is spatial, and

V,(an*)=n’V,a+aV,n* =n"V,a-a(K, +na?)

» so that
1Ln°V,P.=a'L P, +K_P"
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3+1 decomposition of V. .T**=0

- Momentum Conservation Equation (2)

» Combining altogether, we obtain the momentum
conservation equation :

(L, —L,;)P,+a[D,S; +S.a, —KP, +Ea,]=0

(6, —L;)P, +a[D,S; —KP,]+ S, D,a + ED,a =0

(6, — B°D,)P, +aD,S. +(D,f° —aK)P, +S’D,a + ED,a =0
0P, + D, (aS¢ — B°P.)+(D,S° —aK)P, —P.D,3° + ED,a = 0

» Where we have expressed the Lie derivative by spatial covariant
derivative

» The last equation will be used in conservative reformulation

» NOTE: In York (1979), because he used P’ instead of P,, a extra
term appear in the equation.
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3+1 decomposition of V. .T**=0

- Conservative Formulation (1)

» Now we will show the energy and momentum conservation
equations can be recast to conservative form

0,E+D,(aP° —EB°)+(D,B° —aK)E—-aK_S* +P°D,a =0
0,P, + D (aS{ — B°P,) +(D.B° —aK)P, —P.D,3° + ED,a =0

» First, by taking the trace of evolution eq. of y,,, we get

a a 1 ij 1
7/b(at7/ab_Daﬂb_DbIBa):_2aK — Daﬂ _aKzayjatyij:ﬁat\/;

» Second, note that for any rank-(1,1) spatial tensor,
DT =0, T* +TET) ~T)T =8, T + (@, In\Jy)T) -TJT*

= iak (\/;Tik)_rijk-rjk

Jr
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3+1 decomposition of V. .T**=0

- Conservative Formulation (2)

» Using the equations derived the above, we can finally reach
the conservative forms of the energy and momentum
equations

o.7E)+o. [y (eP* —EB¥))=J (aK,S" —P*D,a)
0.J7R)+ 0,7 (e8! - 5P))= 7 [R.D,S* ~EDar+ T (a8 - 5'P,)]

» For the perfect fluid, for instance, these equations may be
solved by high resolution shock capturing schemes
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Overview of numerical relativity
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constraint << 'physically motivated’

equations initial conditions
.......................................... WeevoreenennMain doop [GRHD

: | GR-MHD

I_’l Solving Einstein's equations

Solving gauge Solving source
conditions filed equations Microphysics

T g 1%
" ; . wgai processes

GR-Rad(M)HD

Locating BH | Extracting GWs |
(solving AH finder )

%

| BH excision

JI

} 82 APCTP International school on NR and GW  July 28-August 3, 2011



Locating the apparent horizon (1)

» Apparent horizon (e.g. Wald (1984)): the apparent horizon
is the boundary of the (total) trapped region

» Trapped region: the trapped region is collections of points where the
expansion of the null geodesics is negative or zero

» Thus, to locate the apparent horizon, we must calculate the
expansion of the null geodesics and determine the points
where the expansion vanishes

» Recall that the expansion is related to the trace of the
extrinsic curvature : K <> expansion

» So that let us first define the extrinsic curvature of a null
surface N generated by an outgoing null vector on a slice X:
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Locating the apparent horizon (2)

» Let Sto be an intersection of the slice X and the null surface N
» We denote the unit normal of Sin X, as s

» Then the outgoing ( £ ) and ingoing ( I* ) null vectors on Sare

» Using k“ and I* , the metric /2
on Sinduced by g, is given by

av = 9ap T K1 K,
— gab + nanb o SaSb

» Thus we can define the
projection operator to S :

P’=06, +n°n, —s°s,
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Locating the apparent horizon (3)

» Using the projection operator, the extrinsic curvature for N
is defined b d
'S de ey K =—P R V(ckd)

» Because k* is the outgoing null vector on S, the 2D-surface S
is the apparent horizon if tr[x] =, = k=0

» This condition can be written in ’rer'ms: of s% as

D" —K+K;s's! =0

» This is a single equation for the three unknown "functions” s* |

» However, the condition that Sis closed 2-sphere and that s*
is a unit normal vector bring two additional relation to s*

» For detail, see ( e.g. Bowen, J. M. & York, J. W., PRD 21, 2047 (1980);
Gundlach, C. PRD 57, 863 (1998) )
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Canonical formulation (1)

» The Lagrangian density of gravitational field in General
Relativity is (e.g. wald (1984))

L. =/-¢ 4R—‘
» Because the 4D Ricci scalar is written as
*R=2(G,,n*n"-"R_n*n")

= a7 (R+K,_K®—K?) + (Divergence terms)

» Noting that the extrinsic curvature is

K =5 (oo~ Duf” ~D,f5")
o

» The conjugate momentum nt* is defined by

a 8'[’ a a
7= =y (K®=Ky™)

?/ab
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Canonical Formulation (2)

» Now we obtain the Hamiltonian density as

HG Eﬂ.abyab_LG

=y {% (— YR+ 77, — % 72'2] -2p,D, (y”;zab)} + ( Divergence terms )

» The Hamiltonian is defined by H,, Ejﬁedxg

» The constraint equations are derived by taking the variations with

respect to the lapse and the shift, respectively, as

1 e :
C,=-R+y'm, n%°— 5 y~'7° =0 :Hamiltonian constraint

Cl =D, (y¥2x*)=0 : Momentumconstraint

where we have dropped the surface term
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Canonical Formulation (3)

» The evolution equations are derived by taking the variations
with respect to the canonical variables (e.q. waid (1984)) :

. oH yy 1
Y ab E&Z—fb = 20(7/ : 2|:7Z'ab _Eyabﬂ-i|+2D(aﬂb) = Bab

S
If

ab _ OHg _ —0671/2|:R—E R}/ab:|+la71/27/ab|:ﬂ_cdﬂ_w —17[2}—20(7/1/2{7[“72’? _Eﬂ_ﬂ,ab:|
& s 2 2 2 2

+ 7/1/2(Dan0£ —]/abDCDCd)-i- 7/1/2DC(7/_1/2,BC7Z'ab)_ ZﬂC(aDcﬂb) = Aab

» again, we here dropped the divergence terms
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Energy for Asymptotically Flat spacetime (1)

» Let us consider the energy of gravitational field in the
asymptotically flat spacetime

» Although there is no unique definition of ‘local’ gravitational
energy in General Relativity, we can consider the total energy in
the asymptotically flat spacetime

» Asymptotically flat spacetime represent ideally isolated
spacetime, and hence, there will be the conserved energy

» A simple consideration based on the Hamiltonian density,
H, = ﬁ[aCH —Z,BbCf,,] + ( Divergence terms )
may lead to a conclusion that the energy of any spacetime
is zero when the constraint equations are satisfied |

» This "contradiction” stems from the wrong treatment of
the divergence (surface) terms (which we have dropped)
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Energy for Asymptotically Flat spacetime (2)

» The boundary conditions to be imposed are not fixed ones
80| boundary =0 Where @ denotes relevant geometrical variables,
but the "asymptotic flatness" :

a=1+0(r™), ' =0(r™), Vi —Oj =0(r™), #'=0(r?)

1)

A 4

Keeping the divergence terms, the variation of the
Hamiltonian now becomes (Regge & Teitelboim, Ann. Phys 88. 286 (1974))

:—{I\/lijkI [aD (97;;) — (D, a)@/ij]dgl
_§[2ﬂk57zk'+(2ﬁk " B *)y o

» where we have assumed that the constraint equations and the
evolution equations are satisfied, do, is the volume element of the
boundary sphere and MY* is defined as

ukl \/7[7/Ik7/j| n 7I|7/jk 2]/”7/” ]
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Energy for Asymptotically Flat spacetime (3)

» Under the boundary conditions of the asymptotic flatness,
the non-zero contribution of the surface terms is,

_ifM”le (6;)doy = _5§\/77U kl 87« ak?/ij)dG|

» Thus, we define the Hamiltonian of the asymptotically flat
SPGCCTIme as Hésympt.fla _ H +167E [7/”]

EG[7/ij]_ §\//7/” kl 8 iVik — kyij)dal

» Then, the energy of the gravitational fields is not zero but Efy,]

» The overall factor is determined by the requirement that the
energy of an asymptotically flat spacetime is M

2MX; X
ds® [1—2—det +[é‘ij + jdx dx’
r
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Momentums for Asymptotically Flat spacetime (1)

» The action for the region V (¢,<t<t,) is
SG =LLGdX4 :J‘ttz dtj‘d3X[7Z'ij7./ij _HG]

4 Takmg the VGI"iGTiOh we obtain (Regge& Teitelboim, Ann. Phys 88. 286 (1974))

S dt—jd x[yr”@/u + terms vanishing by EOI\/I]

» When there is a Killing vector £, the action is invariant
under the Lie transport by &

» Making use of o =—L.y; =—(D,&; +D,&), we obtain
= [ dt%jcﬁx[— D,(27"¢, )+ 26D,z |=0

» Note that the second term in the integrand vanished thanks to the
momentum constraint
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Momentums for Asymptotically Flat spacetime (2)

Finally the variation of the action is reduced to
L

5, = Bda, (~27%¢,) =0

b

v

» Because the Killing vector approaches at the boundary (spacelike
infinity) to a constant translation vector field t, , we have

r Pt - P )]=0, Py 1= —é{dcﬂﬂ“

» This equation means that P,* represent the total linear momentum

» Similarly, the generator of the rotational Lie transport approaches
E ik @’ x* (@is a constant vector field, ¢is the totally anti-symetric

tensor) , we may define the total angular momentum by

1 :
¢k I:L(If (tZ)_ Lck; (tl)]:O1 Lck;[j/”] Eg{d(f'gijkﬂjlxk
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Energy and Momentums : summary

» To summarize, we define the energy, the linear momentum,
and the angular momentum in the asymptotically flat
spacetime by

EG[7/ij]_ §f7lj kl 8 i7ik — k7ij)d5|

PGk[Vij] E_gffdalﬂk

1 .
L(If [7/ij] = §§d(7|5ijk””xk

» A number of examples of the actual calculation will be found in a
textbook (Baumgarte & Shapiro (2010))
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