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The Goal 
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 The main goal that we are aiming at: 

 

   “To Derive Einstein’s equations in BSSN formalism”  



Notation and Convention 
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 The signature of the metric: ( - + + + ) 

 (We will use the abstract index notation) 

 e.g. Wald (1984);  see also Penrose, R. and Rindler, W.  Spinors and spacetime  vol.1, 

Cambridge Univ. Press (1987) 

 Geometrical unit c=G=1 

 symmetric and anti-symmetric notations 
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Solving Einstein’s equations on computers 
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 Einstein’s equations in full covariant form are a set of 
coupled partial differential equations 
 The solution, metric g

ab
, is not a dynamical object and 

represents the full geometry of the spacetime just as the 
metric of a two-sphere does 

 To reveal the dynamical nature of Einstein’s equations, we must 
break the 4D covariance and exploit the special nature of time 

 One method is 3+1 decomposition in which spacetime 
manifold and its geometry (graviational fields) are divided 
into a sequence of ‘instants’ of time 

 Then, Einstein’s equations are posed as a Cauchy problem 
which can be solved numerically on computers 



3+1 decomposition of spacetime manifold 

 Let us start to introduce foliation or slicing in the 
spacetime manifold M 

 Foliation {S } of M is a family of slices (spacelike 
hypersurfaces) which do not intersect each other and fill 
the whole of M 

 In a globally hyperbolic spacetime, 

   each S is a Cauchy surface which is 

   parameterized by a global time  

   function, t , as St  

 Foliation is characterized by 
   the gradient one-form 
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The lapse function 

July 28-August 3, 2011 APCTP International school on NR and GW 9 

 The norm of a is related to a function called “lapse 
function”, a(xa) , as : 

 

 As we shall see later, the lapse function characterize the 
proper time between the slices 

 Also let us introduce the normalized one-form : 
 

 
 the negative sign is introduced so that the direction of n 

corresponds to the direction to which t  increases  

  na  is the unit normal vector to S 
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The spatial metric of S : gab 
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 The spatial metric gab induced by gab onto S is defined by  

 

 
 Using this ‘induced’ metric, a tensor on M is decomposed 

into two parts: components tangent and normal to S 

 The tangent-projection operator is defined as 

 
 The normal-projection operator is 

 Then, projection of a tensor into S is defined by 

 

 It is easy to check  

baab

cd

bdacab

baabab

nnggg

nng

+

+

gg

g

b

aa

b

a

b nn+ 

a

b

a

ba

ba

b nn -- 

s

rs

s

r

r
s

r
dd

ccb

d

b

d

a

c

a

cbb
aa

TT ...
...

...
...

1

11

1

1

1
1

1 ...... 

abcd

d

b

c

aab gg g



Covariant derivative associated with gab 
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 Covariant derivative acting on spatial tensors  is defined by 

 

 

 The covariant derivative must satisfy the following conditions 

 It is a linear operator : (obviously holds from linearity of ∇) 

 Torsion free : DaDb f = DbDa f , (easy to check by direct calculation) 

 Compatible with the metric : Dc gab=0 , (easy to check also) 

 Leibnitz’s rule holds :  
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Intrinsic and extrinsic curvature for S 
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 The Riemann tensor for the slice S is defined by 

 

 An other curvature tensor, the extrinsic curvature for S is 

defined by 
 

 extrinsic curvature provides information on how much the 
normal direction changes and hence, how S is curved  
 

 the antisymmetric part vanish 
    due to Frobenius’s theorem :  
    “For unit normal na to a slice 
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The other expressions of Kab 
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 First, note that 

 

 

 where ab is the acceleration of nb which is purely spatial 

 

 Because the extrinsic curvature is symmetric, we have 

 

 where L n is the Lie derivative with respect to n 

 Also, we simply have 
 

 Thus the extrinsic curvature is related to the “velocity” of 
the spatial metric gab 
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3+1 decomposition of 4D Riemann tensor  
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 Geometry of a slice S is described by gab and Kab 
 gab and Kab represent the “instantaneous” gravitational fields in S 

 In order that the foliation {S} to “fits” the spacetime 
manifold, gab and Kab must satisfy certain conditions known 
as Gauss, Codazzi, and Ricci relations 

 They are related to 3+1 decomposition  
    of Einstein’s equations 

 These equations are obtained by  
    taking the projections of the  
    4D Riemann tensor 
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Gauss relation: spatial projection to S 
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 Let us calculate the spatial Riemann tensor 

 

 

 
 where we used (also note that n vanishes if n is uncontracted) 

 

 Then we obtain the Gauss relation 

 

 

 The contracted Gauss relations are 
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Codazzi relation : mixed projection to S and n 
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 Next, let us consider the “mixed” projection  

 

  where the right hand side is calculated as 

 

 

 Then we obtain the Codazzi relation 

 

 The contracted Codazzi relation is 
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Gauss and Codazzi relations 
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 Note that the Gauss and Codazzi relations depend only on 
the spatial metric gab, the extrinsic curvature Kab, and 
their spatial derivatives 

 This implies that the Gauss-Codazzi relations represent 
integrability conditions that gab and Kab must satisfy for 
any slice to be embedded in the spacetime manifold 

 The Gauss-Codazzi relations are directly associated with 
the constraint equations of Einstein’s equation 



Ricci relation (1) 
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 Let us start from the following equation 

 

 

 

 

 

 The Lie derivative of Kac is  

 

 Then we obtain the Ricci relation 
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Ricci relation (2) 
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 Note that the Lie derivative of K
ab

 is purely spatial, as 

 

 Thus the Ricci relation is 
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Ricci relation (3) 
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 The acceleration ab is related to the lapse function a, as 

 

 

 where we have used the fact that  is closed one-form 

 Then the Ricci relation can be written as  
 
 
 

 Furthermore, using the contracted Gauss relation 
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“Evolution vector” and a na 
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 What is the natural “evolution” vector ? 

 As stated before, the foliation is characterized by the closed one-

form  

 Dual vectors ta to  will be the evolution vector : ata =1 

 One simple candidate is ta=ana 

 Note that na is not the natural evolution vector because 

 

 

 This means that the Lie derivative with respect to na of a tensor 

tangent to S is NOT a tensor tangent to S 

 On the other hand,                 and any tensor field tangent to S is 
Lie transported by ana to a tensor field tangent to S 
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The shift vector 
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 We have a degree of freedom to add any spatial vector, 
called “shift vector”, b a to ana because ab a = 0 

 Therefore the general evolution vector is : ta=ana+b a 

 This freedom in the definition of the evolution time vector 

stems from the general covariance of Einstein’s equations 

 

 It is convenient to rewrite the Ricci relation in terms of 
the Lie derivative of the evolution time vector, as 

 

 

 where we have used 
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3+1 decomposition of Einstein’s equations (1) 
- Decomposition of Tab 
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 Now we proceed 3+1 decomposition of  Einstein’s equations 

 

   using the Gauss, Codazzi, and Ricci relations 

 To do it, let us decompose the stress-energy tensor as 

 
 where                                                             are the energy 

density, momentum density/momentum flux, and stress tensor 
of the source field measured by the Eulerian observer  

 the trace is  

 We shall also use Einstein’s equations in the form of 
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3+1 decomposition of Einstein’s equations (2) 
- Hamiltonian constraint 
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 We first project Einstein’s equation into the direction 
perpendicular to S to obtain  

 

 

 For the left-hand-side, we use the contracted Gauss relation 

 

 We finally obtain the Hamiltonian constraint 

 

 This is a single elliptic equation which must be satisfied 
everywhere on the slice 
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3+1 decomposition of Einstein’s equations (3) 
- Momentum constraint 
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 Similary, “mixed” projection of Einstein’s equations gives 

 

 Using the contracted Codazzi relation 

 

 We reach the momentum constraint 

 

 includes 3 elliptic equations 
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3+1 decomposition of Einstein’s equations (4) 
- Evolution equations  
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 The evolution part of Einstein’s equations is given by the full 
projection onto S of Einstein’s equations : 
 
 
 Using a version of the Ricci relation 

 
 

 We obtain the evolution equation for Kab 

 

 

 The evolution equation for gab is given by an expression of Kab 
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Summary of 3+1 decomposition 
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 Einstein’s equations are 3+1 decomposed as follows 

 

 

 

 

 

 

 

 

 

 3+1 decomposition of the stress-energy tensor 
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Evolution of constraints 
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 It can be shown that the “evolution” equations for the 
Hamiltonian (CH) and Momentum (CM) constraints becomes 

 

 

 
 Where Fij is the spatial projection : the evolution equation  

 

 

 The evolution equations for the constraints show that the 
constraints are “preserved” or “satisfied” , if 
 They are satisfied initially (CH = CM = 0) 

 The evolution equation is solved correctly (Fab=0) 
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Coordinate-basis vectors 
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 Let us choose the coordinate basis vectors 

 First, we choose the evolution timelike vector t 
a as the 

time-basis vector : 

 The spatial basis vectors are chosen such that 

 The spatial basis vectors are Lie transported along t 
a : 

 

 ( e i )
a remains purely spatial because 

 

 

 ( em )
a constitute the commutable coordinate basis  

 Then 

 We define the dual basis vectors by 
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Components of geometrical quantities (1) 
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 Now we have set the coordinate basis we proceed to 
calculate the components of geometrical quantities 

 Because the evolution time vector is the time-coordinate 
basis we have 

 From the property of the spatial basis, we have 

 

 Then, 0th contravariant components of spatial tensors vanish 

 

 

 From the definition of the time vector and normalization 
condition of na, we obtain 

 

 

 

 The normalization of na gives  
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Components of geometrical quantities (2) 
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 From the definition of spatial metric, we have 

 

 

 

 We here note that from the spatial component of the 
following equation, we have  

 

 This means that the indices of spatial tensors can be 
lowered and raised by the spatial metric 

 Then, from the inverse of gab, we obtain 
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An intuitive interpretation  

July 28-August 3, 2011 APCTP International school on NR and GW 33 

an

ana

dti
b

idx

at dtdx ii
b+

))(( 22 dtdxdtdxdtds jjii

ij bbga +++- 

tS

dtt+S

 The lapse function 
measures proper 
time between two 
adjacent slices 

 

 The shift vector 
gives relation of 
the spatial origin 
between slices 



Conformal decomposition 
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 The importance of the conformal decomposition in the time 
evolution problem was first noted by York (PRL 26, 1656 (1971); PRL 

28, 1082 (1972)) 
 He showed that the two degrees of freedom of the gravitational 

field are carried by the conformal equivalence classes of 3-metric, 
which are related each other by the conformal transformation : 

 

 

 In the initial data problems, the conformal decomposition is a 
powerful tool to solve the constraint equations, as studied by York 
and O’Murchadha (J. Math. Phys. 14, 456 (1973); PRD 10, 428 (1974)) (see for 
reviews , e.g., Cook, G.B., Living Rev. Rel. 3, 5 (2000); Pfeiffer, H. P. gr-qc/0412002) 

 In the following, we shall derive conformal decomposition of 
Einstein’s equations 

ijij gg ~4



“Conformal” decomposition of Ricci tensor (1) 
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 The covariant derivative associated with the conformal 
metric is characterized by 

 

 The two covariant derivatives are related by (e.g. Wald ) 

 

 where Ci
jk is a tensor defined by difference of Christoffel symbols 

 

 

 

 By a straightforward calculation, we can show (e.g Wald ) 
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“Conformal” decomposition of Ricci tensor (2) 
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 Thus the Ricci tensor is decomposed into two parts, one 
which is the Ricci tensor associated with the conformal 
metric and one which contains the conformal factor    

 More explicitly one can show (see e.g. Wald (1984)) 

 

 

 

 

 Then, the Ricci scalar is decomposed as 
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Conformal decomposition of extrinsic curvature 
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 The first step is to decompose Kij into trace (K) and 
traceless (Aij) parts as  

 

 

 Then, we perform the conformal decomposition of the 
traceless part as  

 

 

 Under these conformal decompositions of the spatial 
metric and the extrinsic curvature, let us consider the 
conformal decomposition of Einstein’s equation 
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“Conformal” decomposition of the evolution 
equations (0) – an additional constraint 
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 In the following, with BSSN reformulation in mind, we set 
the determinant of the conformal metric to be unity: 

 

 with this setting, the conformal factor becomes 

 

 

 In the BSSN formulation, the conformal factor is defined by  
 = ln so that  = lng/12 

 In the case that we do not impose the above condition to the 

background conformal metric, the equations derived in the 
following are modified slightly (for this, see Gourgoulhon, E.,    

gr-qc/0703035) 
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“Conformal” decomposition of the evolution 
equations (1) : the conformal factor 
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 Let us start from the evolution equation of the spatial 
metric g

ij
 : 

 

 Taking the trace of this equation, we have 

 

 Now we use an identity for any matrix A :  

 By setting gij = exp A and taking the Lie derivative, we obtain 

 

 Now we can derive the evolution equation for the 
conformal factor : 
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 Again, we start from the evolution equation for g
ij
 : 

 

 Substituting the decomposition of gij and Kij,  we obtain 

 

 

 

 

 Now, we shall use the evolution equation for the conformal 
factor, and finally, we get 

 

“Conformal” decomposition of the evolution 
equations (2) : the conformal metric 
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 For the later purpose, let us derive the evolution 
equation for the inverse of the conformal metric 

 It is easily obtained from the evolution equation for the 
conformal metric, as 

“Conformal” decomposition of the evolution 
equations (3) : the inverse conformal metric 
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 We start from the evolution equation for Kij : 

 

 We first simply take the trace of this equation  

 

 Here, let make use of the evolution equation for the 
inverse of the spatial metric, 

 

    then we obtain 
 

 Finally,  using the Hamiltonian constraint, we obtain 

“Conformal” decomposition of the evolution 
equations (4a) : the trace of the extrinsic curvature 

)2)((4]2 ijij

k

jikijijjiijn SESKKKKRDDK --+-++- gaaaaL

)2)(3(4]22 SESKKKRDDKK ij

ij

i

i

ij

nijn --+-++-- aaagaa LL

abab

t K 2)( agb -LL

)3(4]2 ESKRDDK i

in -+++- aaaaL

)](4)( SEKKDDK ij

ij

i

it +++-- aabLL

EKKKR ab

ab 162 -+



July 28-August 3, 2011 APCTP International school on NR and GW 43 

 For convenience, let us express the right-hand-side in 
terms of the conformal quantities, as well as give a 
suggestion how to evaluate the derivative term :  

“Conformal” decomposition of the evolution 
equations (4b) : the trace of the extrinsic curvature 
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 We start from the Lie derivative of Kij  : 

 

 

 Substituting the following equations into this yields 

 

 

 

 
 where TF denotes the trace free part : Tij

TF = Tij - (1/3)gij(trT) 

 The terms that involve K in the right-hand-side can be written as 

“Conformal” decomposition of the evolution 
equations (5a) : the traceless part of the extrinsic curvature 
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 We further proceed to decompose the left-hand-side : 

 

 

 Combining all of the result, we finally reach 

 

 

 We here note that the second-order covariant derivative of 
the lapse function may be calculated as  

 

 

 

 NOTE: there is the same 2nd order derivative in Rij
 

“Conformal” decomposition of the evolution 
equations (5b) : the traceless part of the extrinsic curvature 
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 Let us turn now to consider the conformal decomposition 
of the constraint equations 

 Hamiltonian constraint 
 
 
 
 

 Momentum constraint 

“Conformal” decomposition of the constraint 

equations 

July 28-August 3, 2011 APCTP International school on NR and GW 46 

EKKKR ab

ab  162 -+

 k

k DDRR
~~

8
~ -- -

3/
~~ 2KAAKK ij

ij

ij

ij +

aaab

b PKDKD  8-

 



ln
~~

6
~~

          

ln
~

10
~

          

~

3/

j

ijij

j

j

ijij

ikj

jk

kji

jk

ij

j

ij

j

iij

j

ij

j

DAAD

DAAD

ACACADAD

KDADKD

+

+

++

+

-

02
12

1~~~~~ 2 







+-




+




- 

  EKAARDD ij

ij

i

i

ii

j

ijij

j PKDDAAD 



-+  8

~
ln

~~
6

~~



Summary of conformal decomposition 
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 With the conformal decomposition defined by  

 

 The 3+1 decomposition (ADM formulation) of Einstein’s 
equations becomes 
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Lie derivatives of tensor density 
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 A tensor density of weight w is a object which is a tensor 
times gw/2 : 

 One should be careful because the Lie derivative of a tensor 
density is different from that of a tensor, as 
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Lie derivatives in conformal decomposition 
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 The weight factor of the conformal factor  = g1/12 is 1/6 

 Thus the weight factor of the conformal metric and the 
conformal extrinsic curvature is -2/3, so that 

 Note that the Lie derivative along t 
a is equivalent to the 

partial derivative along the time direction 

 Thus 
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Evolution of constraints 
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 It can be shown that the “evolution” equations for the 
Hamiltonian (CH) and Momentum (CM) constraints becomes 

 

 

 
 Where Fij is the spatial projection of the evolution equation  

 

 

 The evolution equations for the constraints show that the 
constraints are “preserved” or “satisfied” , if 
 They are satisfied initially (CH = CM = 0) 

 The evolution equation is solved correctly (Fab=0) 
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Numerical-relativity simulations based on 

the 3+1 decomposition is unstable !! 
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 It is known that simulations based on the 3+1 decomposition 
(ADM formulation), unfortunately crash in a rather short time 

 This crucial limitation may be captured in terms of notions of 
hyperbolicity (e.g. see textbook by Alcubierre (2008) ) 
 Consider the following first-order system 
 The system is called  

 Strongly Hyperbolic ,if a matrix representation of A has real 
eigenvalues and complete set of eigenvectors 

 Weakly Hyperbolic , if A has real eigenvalues but not a complete 
set of eigenvectors 

 The key property of strongly and weakly hyperbolic systems : 
 Strongly hyperbolic system is well-posed, and hence, the solution 

for the finite-time evolution is bounded 

 Weakly hyperbolic system is ill-posed and the solution can be 
unbounded  
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Numerical-relativity simulations based on 

the 3+1 decomposition is unstable !! 
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 It is known that the ADM formulation is only weakly hyperbolic 
( Alcubierre (2008) ) 

 Consequently, the ADM formulation is ill-posed and the numerical 
solution can be unbounded, leading to termination of the simulation 

 We need formulations for the Einstein’s equation which is (at 
least) strongly hyperbolic 

 Let us consider Maxwell’s equations in flat spacetime to capture 
what we should do to obtain a more stable system  
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Consideration in Maxwell’s equations 
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 First of all, let us note the similarity of the Maxwell’s 
equations with the ADM equations (for simplicity in vacuum) 

 

 

 

 

 Second, the Maxwell’s equations are ‘almost’ wave equation 

 

 Recall that in the Coulomb gauge DjA
j=0, the longitudinal part 

(associated with divergence part) of the electric field E does not 

obey a wave equation but is described by a Poisson equation         

(see a standard textbook,  e.g., Jakson) 
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Reformulating Maxwell’s equations (1)  
- Introducing auxiliary variables 
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 A simple but viable approach is to introduce independent 
auxiliary variables to the system  

 Let us introduce a new independent variable defined by 

 

 The evolution equation for this is  

 

 Then, the Maxwell’s equations for the vector potential 
become a wave equation in the form : 
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 A second approach is to impose a good gauge condition 

 In the Lorenz gauge, the Maxwell’s equations in the flat 
spacetime are wave equations 

 

 Alternatively, by introducing a source function, one may 
“generalize” the Coulomb gauge condition so that Poisson-
like equations do not appear 

 

 

  Recall again, that in the Coulomb gauge DjA
j=0, the longitudinal 

part (associated with divergence part) of the electric field E is 

described by a Poisson-type equation 

 

Reformulating Maxwell’s equations (2)  
- Imposing a better gauge 
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 A third approach is to use the constraint equations 

 To see this, let us back to the example considered in 
“introducing auxiliary variables” 

 

 

 

 

 The constraint equation can be used to rewrite the evolution 
equation for the auxiliary variable 

 Seen as the first-order system, the hyperbolic properties of the 
two system is different: the hyperbolicity could be changed ! 

 It is important and sometimes even crucial to use the constraint 
equations to change the hyperbolic properties of the system  

Reformulating Maxwell’s equations (3)  
- Using the constraint equations 
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Reformulating Einstein’s equations 
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 The lessons learned from the Maxwell’s equations are 
 Introducing new, independent variables 

 BSSN ( Shibata & Nakamura PRD 52, 5428 (1995);                                       

                    Baumgarte & Shapiro PRD 59, 024007 (1999) ) 

 see also Nakamura et al. Prog. Theor. Phys. Suppl. 90, 1 (1987) 

 Kidder-Scheel-Teukolsky ( Kidder et al. PRD 64, 064017 (2001) ) 

 Bona-Masso ( Bona et al. PRD 56, 3405 (1997) ) 

 Nagy-Ortiz-Reula ( Nagy et al. PRD 70, 044012 (2004) ) 

 Choosing a better gauge 
 Generalized harmonic gauge ( Pretorius, CQG 22, 425 (2005) ) 

 Z4 formalism ( Bona et al. PRD 67, 104005 (2003) ) 

 Using the constraint equations to improve the hyperbolicity 
 adjusted ADM/BSSN ( Shinkai & Yoneda, gr-qc/0209111 ) 

 BSSN outperforms ( Alcubierre (2008) ) ! 
 Exact reason is not clear 



BSSN formalism (1) 
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 Let first analyze the conformal Ricci tensor 

 By noting that                            the conformal Ricci tensor is 

 

 

 

 If we divide the conformal metric formally as                    , we have 

 

 Thus we can eliminate the “mixed derivative” terms by 
introducing new auxiliary variable ( Shibata & Nakamura (1995) ) 
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BSSN formalism (2) 
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 Baumgarte and Shapiro introduced the slightly different 
auxiliary variables 

 

 In this case,  the mixed-second-derivative terms are 
encompassed as  

 

 

 In linear regime, SN and BS are equivalent 
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BSSN formalism (3) 
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 Finally let us consider the evolution equation for the auxiliary 
variables (giving only a rough sketch of derivation) 
 Let us start from the momentum constraint equation 

 

 

 

 Substituting the evolution equation for the conformal extrinsic 
curvature 

 

 
 We obtain the evolution equations for Fi and i, respectively 

 It can be seen from the above sketch of derivation, the evolution 
equation for i is slightly simpler 
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BSSN formalism (4) 
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 The explicit forms of the evolution equations are 
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BSSN formalism : summary (1) 
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Momentum 

constraint is used 
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Gauge conditions 
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 Associated directly with the general covariance in general 
relativity, there are degrees of freedom in choosing 
coordinates (gauge freedom) 
 Slicing condition is a prescription of choosing the lapse function 

 Shift condition is that of choosing the shift vector 

 Einstein’s equations say nothing about how the gauge 
conditions should be imposed 

 As we have seen in the reformulation of the ADM system, 
choosing “good” gauge conditions are very important to 
achieve stable and robust numerical simulations 
 An improper slicing conditions in a stellar-collapse problem will 

lead to appearance of (coordinate and physical) singularities  

 Also, the shift vector is important in resolving the frame dragging 

effect in simulations of e.g. compact binary merger 



Preliminary  
– decomposition of covariant derivative of na – 
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 The covariant derivative of a timelike unit vector za can 
be decomposed as 

 

 

 

 Where, the deformation of the  

    congruence of the timelike vector 

    is characterized by these tensors  

 

 
 For the unit normal vector to S, na  we have 

 The expansion is –K 

 The shear is –Aab 

 The twist vanishes 
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Geodesic slicing a=1,  bi=0 
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 In the geodesic slicing, the evolution equation of the trace 
of the extrinsic curvature is 

 For normal matter (which satisfies the strong energy condition), 

the right-hand-side is positive  

 Thus the expansion of time coordinate ( -K ) decreases 
monotonically in time  

 In terms of the volume element g1/2 , this means that the 
volume element goes to zero, as 
 

 

 This behavior results in a coordinate singularity 

 As can be seen in this example, how to impose a slicing condition is 
closely related to the trace of the extrinsic curvature 
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Maximal slicing 
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 Because the decrease in time of the volume element results in a 
coordinate singularity, let us maximize the volume element 

 We take the volume of a 3D-domain S : 
   and consider a variation along the time vector 

 At the boundary of S, we set a=1, b i=0 

 

 Thus if K=0 on a slice, the volume is extremal (maximal)  

 We shall demand that this maximal slicing condition holds for 
all slices and set  

 

 The maximal slicing has a strong singularity avoidance property  
(E.g. Estabrook & Wahlquist PRD 7, 2814 (1973); Smarr & York, PRD 17, 1945/2529 (1978) ) 

 However this is a elliptic equation and is computationally expensive 
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(K-driver)/(approximate maximal) condition 
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 As a generalization of the maximal slicing condition, let us 
consider the following condition with a positive constant c  

 
 This (elliptic) condition drives K back to zero even when K 

deviates from zero due to some error or insufficient convergence 

 Balakrishna et al. ( CQG 13, L135 (1996) ) and Shibata ( Prog. Theor. 

Phys. 101, 251 (1999) ) converted this equation into a parabolic 
one by adding a “time” derivative of the lapse :  

 

 If a certain degree of the “convergence” is achieved and the lapse 

relaxes to a “stationary state”, it suggests 

 This condition is called K-driver or approximate maximal 
slicing condition 
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Harmonic slicing 
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 The harmonic gauge condition                  have played an 
important role in theoretical developments (Choquet-Bruhat’s textbook) 

 Existence and uniqueness of the solution of the Cauchy problem of 

Einstein’s equations (somewhat similar to Lorenz gauge in EM) 

 The harmonic slicing condition is defined by  

 

 Note that                     

 The harmonic slicing condition can be written as 

 

 This is an evolution equation 

 It is known that the harmonic slicing condition has some 
singularity avoidance property, although weaker than that of the 
maximal slicing ( e.g. Cook & Scheel PRD 56, 4775 (1997), Alcubierre’s textbook ) 
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Generalized harmonic slicing  
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 Bona et al. ( PRL 75, 600 (1995) ) generalized the harmonic 
slicing condition to  

 

 This family of slicing includes the geodesic slicing ( f=0 ), the 

harmonic slicing ( f=1 ), and formally the maximal slicing ( f= ) 

 The choice f(a)=2/a , which is called 1+log slicing , has  
stronger singularity avoidance properties than the 
harmonic slicing ( Anninos et al. PRD 52, 2059 (1995) ) 

 The 1+log slicing has been widely used and has proven to be a 

successful and robust slicing condition 
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Minimal distortion (shift) condition 
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 Smarr and York (PRD 17, 1945/2529 (1978)) proposed a well motivated 
shift condition called the minimal distortion condition 

 As seen in the preliminary, the “distortion” part of the congruence 
is contained in the shear tensor 

 They define a distortion functional by 
    and take a variation in terms of the shift 

 here the distortion tensor is defined by 
 
 

 The resulting shift condition is 
 Beautiful and physical but vector elliptic equations  (computationally 

expensive) 
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-Freezing and  

approximate minimal condition 

July 28-August 3, 2011 APCTP International school on NR and GW 73 

 With some calculations, one can show that the minimal 
distortion condition is written as 
 The conformal factor is coupled ! 

 Modifications of the minimal distortion condition are proposed 
by Nakamura et al. (Prog. Theor. Phys. Suppl. 128, 183 (1997)) and 
Shibata (Prog. Theor. Phys. 101, 1199 (1999)) 

 E.g., Nakamura et al. proposed instead to solve the decoupled  pseudo-

minimal distortion condition : 
 

 Alcubierre and Brugmann (PRD 63, 104006 (2001)) proposed an 
approximate minimal distortion condition called Gamma-
Freezing :  

 

 Anyway, these conditions are elliptic-type ! 
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-Driver condition 
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 Alcubierre and Brugmann (PRD 63, 104006 (2001)) converted the -
freezing elliptic condition into a parabolic one by adding a 
time derivative of the shift (somewhat similar to the K-driver) 

 

 Alcubierre et al. (PRD 67, 084023 (2003)) and others (Lindblom & Scheel 

PRD 67, 124005 (2003); Bona et al. PRD 72, 104009 (2005)) extended the -
freezing condition to hyperbolic conditions 

 There are several alternative conditions 

 

 Shibata (ApJ 595, 992 (2003)) proposed a hyperbolic shift condition  

 

 To date, the above two families of shift conditions are known 
to be robust 
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3+1 decomposition of                
- Energy Conservation Equation (1) 
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 First, substitute the 3+1 decomposition of Tab to obtain 

 

 

 Then, let us project it onto normal direction to S.                    

Noting that Pa, Kab, and ab is purely spatial, we obtain 

 

 Because naSab=0, we have 

 

 Similarly, 
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 Combining altogether, we reach the energy conservation 
equation 

 

 

 

 where we have used 

 

 

 The last equation will be used to derive the conservative forms 

of the energy equation 

 

 

3+1 decomposition of                
- Energy Conservation Equation (2) 
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 To this turn, let us project the equation onto S to obtain 

 

 The spacetime-divergence term of Sb
c can be replaced by 

the spatial-divergence by 

 

 The projection term with the covariant derivative of P
c
 is 

 

 Note that (an)-Lie derivative of any spatial tensor is spatial, and  

 

 so that 

3+1 decomposition of                
- Momentum Conservation Equation (1) 
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 Combining altogether, we obtain the momentum 
conservation equation :  

 

 

 

 

 Where we have expressed the Lie derivative by spatial covariant 
derivative 

 The last equation will be used in conservative reformulation 

 NOTE: In York (1979), because he used Pa instead of Pa, a extra 

term appear in the equation. 

3+1 decomposition of                
- Momentum Conservation Equation (2) 
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 Now we will show the energy and momentum conservation 
equations can be recast to conservative form 

 

 

 First, by taking the trace of evolution eq. of gab, we get 

 

 Second, note that for any rank-(1,1) spatial tensor, 

 

3+1 decomposition of                
- Conservative Formulation (1) 
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 Using the equations derived the above, we can finally reach 
the conservative forms of the energy and momentum 
equations 

 

 

 

 

 For the perfect fluid, for instance, these equations may be 
solved by high resolution shock capturing schemes  

3+1 decomposition of                
- Conservative Formulation (2) 
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Locating the apparent horizon (1) 
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 Apparent horizon (e.g. Wald (1984)): the apparent horizon 
is the boundary of the (total) trapped region 

 Trapped region: the trapped region is collections of points where the 

expansion of the null geodesics is negative or zero 

 Thus, to locate the apparent horizon, we must calculate the 
expansion of the null geodesics and determine the points 
where the expansion vanishes 

 

 Recall that the expansion is related to the trace of the 
extrinsic curvature : K  expansion 

 So that let us first define the extrinsic curvature of a null 
surface N generated by an outgoing null vector on a slice S:  

 

 



Locating the apparent horizon (2) 
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 Let S to be an intersection of the slice S and the null surface N 
 We denote the unit normal of S in S, as sa  

 Then the outgoing ( ka ) and ingoing ( la ) null vectors on S are 

 
 Using ka and la , the metric 
    on S induced by gab is given by 
 
 
 
 Thus we can define the  
    projection operator to S : 
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Locating the apparent horizon (3) 
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 Using the projection operator, the extrinsic curvature for N 
is defined by 

 
 Because ka is the outgoing null vector on S, the 2D-surface S 

is the apparent horizon  if  tr[k] = ka
a = k = 0 

 This condition can be written in terms of sa as 

 

 
 This is a single equation for the three unknown “functions” sk ! 

 However,  the condition that S is closed 2-sphere and that sa 
is a unit normal vector bring two additional relation to sk 

 For detail, see ( e.g. Bowen, J. M. & York, J. W., PRD 21, 2047 (1980);  

Gundlach, C. PRD 57, 863 (1998) ) 
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Canonical formulation (1) 
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 The Lagrangian density of gravitational field in General 
Relativity is (e.g. Wald (1984)) 

 

 Because the 4D Ricci scalar is written as 

 

 

 Noting that the extrinsic curvature is 

 

 The conjugate momentum ab is defined by 
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Canonical Formulation (2) 
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 Now we obtain the Hamiltonian density as 

 

 

 

 The Hamiltonian is defined by 
 

 The constraint equations are derived by taking the variations with 

respect to the lapse and the shift, respectively, as  

 

 

 

     where we have dropped the surface term 
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Canonical Formulation (3) 
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 The evolution equations are derived by taking the variations 
with respect to the canonical variables (e.g. Wald (1984)) : 

 

 

 

 

 

 again, we here dropped the divergence terms 
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Energy for Asymptotically Flat spacetime (1) 
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 Let us consider the energy of gravitational field in the 
asymptotically flat spacetime 
 Although there is no unique definition of ‘local’ gravitational 

energy in General Relativity, we can consider the total energy in 
the asymptotically flat spacetime 

 Asymptotically flat spacetime represent ideally isolated 
spacetime, and hence, there will be the conserved energy 

 A simple consideration based on the Hamiltonian density, 

 

   may lead to a conclusion that the energy of any spacetime 
is zero when the constraint equations are satisfied ! 

 This “contradiction” stems from the wrong treatment of 
the divergence (surface) terms (which we have dropped) 
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Energy for Asymptotically Flat spacetime (2) 
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 The boundary conditions to be imposed are not fixed ones 
Q|boundary = 0 where Q denotes relevant geometrical variables, 
but the “asymptotic flatness” : 

 

 Keeping the divergence terms, the variation of the 
Hamiltonian now becomes (Regge & Teitelboim, Ann. Phys 88. 286 (1974)) 

 

 

 where we have assumed that the constraint equations and the 
evolution equations are satisfied, dl is the volume element of the 

boundary sphere and Mijkl is defined as 
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Energy for Asymptotically Flat spacetime (3) 
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 Under the boundary conditions of the asymptotic flatness, 
the non-zero contribution of the surface terms is, 

 

 Thus, we define the Hamiltonian of the asymptotically flat 
spacetime as 

 

 

 
 Then, the energy of the gravitational fields is not zero but E[gij] 

 The overall factor is determined by the requirement that the 
energy of an asymptotically flat spacetime is M 
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Momentums for Asymptotically Flat spacetime (1)  
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 The action for the region V (t1<t<t2) is 

 

 

 Taking the variation, we obtain (Regge & Teitelboim, Ann. Phys 88. 286 (1974)) 

 

 

 When there is a Killing vector  a , the action is invariant 
under the Lie transport by  a  

 Making use of                                      , we obtain 

 

 

 Note that the second term in the integrand vanished thanks to the 

momentum constraint 
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 Finally the variation of the action is reduced to 

 

 
 Because the  Killing vector approaches at the boundary (spacelike 

infinity) to a constant translation vector field ta , we have 

 

 

 This equation means that PG
k represent the total linear momentum 

 Similarly, the generator of the rotational Lie transport approaches  
 ijk j j xk (j is a constant vector field,  is the totally anti-symetric 
tensor) , we may define the total angular momentum by 

Momentums for Asymptotically Flat spacetime (2)  
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 To summarize, we define the energy, the linear momentum, 
and the angular momentum in the asymptotically flat 
spacetime by 

 

 

 

 

 

 
 

 A number of examples of the actual calculation will be found in a 
textbook (Baumgarte & Shapiro (2010)) 

Energy and Momentums : summary 
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