Introduction to $3+1$ and BSSN formalism

Yuichiro Sekiguchi (YITP)

Overview of numerical relativity

Scope of this lecture

The Goal

- The main goal that we are aiming at:
"To Derive Einstein's equations in BSSN formalism"

Notation and Convention

- The signature of the metric: $(-+++)$
- (We will use the abstract index notation)
- e.g. Wald (1984); see also Penrose, R. and Rindler, W. Spinors and spacetime vol.1, Cambridge Univ. Press (1987)
- Geometrical unit $c=G=1$
- symmetric and anti-symmetric notations

$$
T_{\left(a_{1}, a_{n}\right)} \equiv \frac{1}{n!} \sum_{\pi} T_{\left.a_{\pi(1)} \cdot a_{z(1)}\right)}, \quad T_{\left[a_{1}, a_{n}\right]} \equiv \frac{1}{n!} \sum_{\pi} \operatorname{sgn}(\pi) T_{\left.a_{\pi(1)}, a_{\pi(n)}\right)}
$$

$$
T_{a b)}=\frac{1}{2}\left(T_{a b}+T_{b a}, \quad T_{[a b]}=\frac{1}{2}\left(T_{a b}-T_{b a}\right)\right.
$$

Overview of numerical relativity

Solving Einstein's equations on computers

- Einstein's equations in full covariant form are a set of coupled partial differential equations
- The solution, metric $g_{a b}$, is not a dynamical object and represents the full geometry of the spacetime just as the metric of a two-sphere does
- To reveal the dynamical nature of Einstein's equations, we must break the 4D covariance and exploit the special nature of time
- One method is $3+1$ decomposition in which spacetime manifold and its geometry (graviational fields) are divided into a sequence of 'instants' of time
- Then, Einstein's equations are posed as a Cauchy problem which can be solved numerically on computers

3+1 decomposition of spacetime manifold

- Let us start to introduce foliation or slicing in the spacetime manifold M
- Foliation $\{\Sigma\}$ of M is a family of slices (spacelike hypersurfaces) which do not intersect each other and fill the whole of M
- In a globally hyperbolic spacetime, each Σ is a Cauchy surface which is parameterized by a global time function, t, as Σt
- Foliation is characterized by the gradient one-form

$$
\Omega_{a}=\nabla_{a} t, \quad \nabla_{[a} \Omega_{b]}=0
$$

The lapse function

- The norm of Ω_{a} is related to a function called "lapse function" ${ }^{\prime \prime} \alpha\left(x^{a}\right)$, as:

$$
g^{a b} \Omega_{a} \Omega_{b}=g^{a b} \nabla_{a} t \nabla_{b} t=-\frac{1}{\alpha^{2}}
$$

- As we shall see later, the lapse function characterize the proper time between the slices
- Also let us introduce the normalized one-form :

$$
n_{a}=-\alpha \Omega_{a}, \quad g^{a b} n_{a} n_{b}=-1
$$

- the negative sign is introduced so that the direction of n corresponds to the direction to which t increases
- n^{a} is the unit normal vector to Σ

The spatial metric of $\Sigma: \gamma_{a b}$

- The spatial metric $\gamma_{a b-}$ induced by $g_{a b}$ onto Σ is defined by

$$
\begin{aligned}
& \gamma_{a b}=g_{a b}+n_{a} n_{b} \\
& \gamma^{a b}=g^{a c} g^{b d} \gamma_{c d}=g^{a b}+n^{a} n^{b}
\end{aligned}
$$

- Using this 'induced' metric, a tensor on M is decomposed into two parts: components tangent and normal to Σ
- The tangent-projection operator is defined as

$$
\perp_{b}^{a}=\delta_{b}^{a}+n^{a} n_{b}
$$

- The normal-projection operator is $\mathrm{N}_{b}^{a}=-n^{b} n_{a}=\delta_{b}^{a}-\perp_{b}^{a}$
- Then, projection of a tensor into Σ is defined by

$$
\perp T^{a_{1} \ldots a_{r_{1}} b_{1}, b_{s}}=\perp_{c_{1}}^{a_{1}} \ldots \perp_{c_{r}}^{a_{r}} \perp \perp_{d_{1}}^{b_{1}} \ldots \perp_{d_{s}}^{b_{s}} T^{c_{1} \ldots c_{r_{1}} d_{1} \ldots d_{s}}
$$

- It is easy to check

$$
\perp g_{a b}=\perp_{a}^{c} \perp_{b}^{d} g_{c d}=\gamma_{a b}
$$

Covariant derivative associated with $\gamma_{a b}$

- Covariant derivative acting on spatial tensors is defined by

$$
\begin{aligned}
D_{e} T^{a_{1} \ldots a_{r}}{ }_{b_{1} \ldots b_{s}} & \equiv \perp \nabla_{e} T^{a_{1} \ldots a_{r}}{ }_{b_{1} \ldots b_{s}} \\
& =\perp_{e}^{f} \perp_{c_{1}}^{a_{1}} \ldots \perp_{c_{r}}^{a_{r}} \perp_{d_{1}}^{b_{1}} \ldots \perp_{d_{s}}^{b_{s}} \nabla_{f} T^{c_{1} \ldots c_{r}}{ }_{d_{1} \ldots d_{s}}
\end{aligned}
$$

The covariant derivative must satisfy the following conditions

- It is a linear operator : (obviously holds from linearity of ∇)
- Torsion free : $\boldsymbol{D}_{a} \boldsymbol{D}_{b} \boldsymbol{f}=\boldsymbol{D}_{b} \boldsymbol{D}_{a} \boldsymbol{f}$, (easy to check by direct calculation)
- Compatible with the metric : $\boldsymbol{D}_{\boldsymbol{c}} \boldsymbol{g}_{a b}=0$, (easy to check also)
- Leibnitz's rule holds:

$$
\begin{aligned}
D_{a}\left(v^{c} w_{c}\right) & =\perp_{a}^{b} \nabla_{b}\left(v^{c} w_{c}\right)=\perp_{a}^{b} v^{d} \delta_{d}^{c} \nabla_{b} w_{c}+\perp_{a}^{b} w_{d} \delta_{c}^{d} \nabla_{b} v^{c} \\
& =\perp_{a}^{b} v^{d}\left(\perp_{d}^{c}+\mathrm{N}_{d}^{c}\right) \nabla_{b} w_{c}+\perp_{a}^{b} w_{d}\left(\perp_{c}^{d}+\mathrm{N}_{c}^{d}\right) \nabla_{b} v^{c} \\
& =v^{c} D_{a} w_{c}+w_{d} D_{a} v^{d}+\perp_{a}^{b}\left(\mathrm{~N}_{d}^{c} v^{d} \nabla_{b} w_{c}+\mathrm{N}_{c}^{d} w_{d} \nabla_{b} v^{c}\right) \\
& =v^{c} D_{a} w_{c}+w_{d} D_{a} v^{d} \quad \text { for } \quad \mathrm{N}_{d}^{c} v^{d}=\mathrm{N}_{c}^{d} w_{d}=0
\end{aligned}
$$

Intrinsic and extrinsic curvature for Σ

- The Riemann tensor for the slice Σ is defined by

$$
\left(D_{a} D_{b}-D_{b} D_{a}\right) v_{c}=v_{d} R_{a b c}^{d}
$$

- An other curvature tensor, the extrinsic curvature for Σ is defined by $\quad K_{a b} \equiv-\perp \nabla_{(a} n_{b)}, \quad n^{a}$: unit normal to Σ
- extrinsic curvature provides information on how much the normal direction changes and hence, how Σ is curved
- the antisymmetric part vanish due to Frobenius's theorem : "For unit normal n^{a} to a slice

$$
n_{[a} \nabla_{b} n_{c]}=0
$$

$$
0=\perp 3\left(n^{a} n_{[a} \nabla_{b} n_{c]}\right)=-\perp \nabla_{[b} n_{c]}
$$

The other expressions of $K_{a b}$

- First, note that

$$
\begin{gathered}
\nabla_{a} n_{b}=\delta_{a}^{c} \delta_{b}^{d} \nabla_{c} n_{d}=\left(\perp_{a}^{c}+\mathrm{N}_{a}^{c}\right)\left(\perp_{b}^{d}+\mathrm{N}_{b}^{d}\right) \nabla_{c} n_{d} \\
=\perp \nabla_{a} n_{b}-n_{a} \perp a_{b}=-K_{a b}-n_{a} a_{b}
\end{gathered}
$$

- where a_{b} is the acceleration of n^{b} which is purely spatial

$$
n^{b} a_{b}=n^{a} n^{b} \nabla_{a} n_{b}=n^{a} \nabla_{a}\left(n_{b} n^{b}\right)=0
$$

- Because the extrinsic curvature is symmetric, we have

$$
K_{a b}=-\nabla_{(a} n_{b)}-n_{(a} a_{b)}=-\frac{1}{2} L_{n}\left(g_{a b}+n_{a} n_{b}\right)=-\frac{1}{2} L_{n} \gamma_{a b}
$$

- where L_{n} is the Lie derivative with respect to n
- Also, we simply have $K_{a b}=-\perp \nabla_{(a} n_{b)}=-\frac{1}{2} \perp \boldsymbol{L}_{n} g_{a b}$
- Thus the extrinsic curvature is related to the "velocity" of the spatial metric $\gamma_{a b}$

3+1 decomposition of 4D Riemann tensor

- Geometry of a slice Σ is described by $\gamma_{a b}$ and $\boldsymbol{K}_{a b}$
- $\gamma_{a b}$ and $\boldsymbol{K}_{a b}$ represent the "instantaneous" gravitational fields in Σ
- In order that the foliation $\{\Sigma\}$ to "fits" the spacetime manifold, $\gamma_{a b}$ and $\boldsymbol{K}_{a b}$ must satisfy certain conditions known as Gauss, Codazzi, and Ricci relations
- They are related to 3+1 decomposition of Einstein's equations
- These equations are obtained by taking the projections of the 4D Riemann tensor

$$
\begin{aligned}
& \perp^{4} R_{a b c d}, \quad \perp^{4} R_{a b c d} n^{d}, \\
& \perp^{4} R_{a b c d} n^{b} n^{d}
\end{aligned}
$$

Gauss relation: spatial projection to Σ

- Let us calculate the spatial Riemann tensor

$$
\begin{aligned}
D_{a} D_{b} w_{c} & =\perp \nabla_{a}\left(\perp \nabla_{b} w_{c}\right) \\
& =\perp \nabla_{a} \nabla_{b} w_{c}+\perp\left(\nabla_{b} w_{d}\right)\left(\nabla_{a} \perp_{c}^{d}\right)+\perp\left(\nabla_{d} w_{c}\right)\left(\nabla_{a} \perp_{b}^{d}\right) \\
& =\perp \nabla_{a} \nabla_{b} w_{c}-\perp K_{a c} K_{b}^{d} w^{d}-\perp K_{a b} n^{d} \nabla_{d} w_{c}
\end{aligned}
$$

- where we used (also note that $\perp n$ vanishes if n is uncontracted)

$$
\nabla_{a} \perp_{b}^{d}=n_{a}\left(\nabla_{b} n^{d}\right)+n^{d}\left(\nabla_{a} n_{b}\right)=-n_{b}\left(K_{a}^{d}+n_{a} a^{d}\right)-n^{d}\left(K_{a b}+n_{a} a_{b}\right)
$$

- Then we obtain the Gauss relation

$$
\begin{aligned}
& \left(D_{a} D_{b}-D_{b} D_{a}\right) w_{c}=R_{a b c}{ }^{d} w_{d}=\perp^{4} R_{a b c}{ }^{d} w_{d}-K_{a c} K_{b}^{d} w_{d}+K_{b c} K_{a}^{d} w_{d} \\
& \perp^{4} R_{a b c d}=R_{a b c d}+K_{a c} K_{b d}-K_{a d} K_{b c}
\end{aligned}
$$

- The contracted Gauss relations are

$$
\begin{array}{|c}
\frac{\perp^{4} R_{a c}+\perp^{4} R_{a b c d} n^{b} n^{d}=R_{a c}+K K_{a c}-K_{a b} K_{c}^{b}}{{ }^{4} R+2^{4} R_{a b} n^{a} n^{b}=R+K^{2}-K_{a b} K^{a b}}
\end{array}
$$

Codazzi relation : mixed projection to Σ and \boldsymbol{n}

- Next, let us consider the "mixed" projection

$$
\perp^{4} R_{a b c}{ }^{d} n_{d}=\perp\left(\nabla_{a} \nabla_{b} n_{c}-\nabla_{b} \nabla_{a} n_{c}\right)
$$

- where the right hand side is calculated as

$$
\begin{aligned}
\perp \nabla_{a} \nabla_{b} n_{c} & =\perp \nabla_{a}\left(-K_{b c}-n_{b} a_{c}\right)=-D_{a} K_{b c}-\perp a_{c} \nabla_{a} n_{b} \\
& =-D_{a} K_{b c}+a_{c} K_{a b}
\end{aligned}
$$

- Then we obtain the Codazzi relation

$$
\perp^{4} R_{a b c}{ }^{d} n_{d}=D_{b} K_{a c}-D_{a} K_{b c}
$$

- The contracted Codazzi relation is

$$
\perp^{4} R_{a b} n^{b}=D_{a} K-D_{b} K_{a}^{b}
$$

Gauss and Codazzi relations

- Note that the Gauss and Codazzi relations depend only on the spatial metric $\gamma_{a b}$, the extrinsic curvature $\boldsymbol{K}_{a b}$, and their spatial derivatives
- This implies that the Gauss-Codazzi relations represent integrability conditions that $\gamma_{a b}$ and $\boldsymbol{K}_{a b}$ must satisfy for any slice to be embedded in the spacetime manifold
- The Gauss-Codazzi relations are directly associated with the constraint equations of Einstein's equation

Ricci relation (1)

- Let us start from the following equation

$$
\begin{aligned}
\perp^{4} R_{a b c d} n^{b} n^{d} & =\perp n^{b}\left(\nabla_{a} \nabla_{b} n_{c}-\nabla_{b} \nabla_{a} n_{c}\right) \\
& =\perp n^{b}\left[-\nabla_{a}\left(K_{b c}+n_{b} a_{c}\right)+\nabla_{b}\left(K_{a c}+n_{a} a_{c}\right)\right] \\
& =\perp\left[K_{b c} \nabla_{a} n^{b}+\nabla_{a} a_{c}+n^{b} \nabla_{b} K_{a c}+a_{c} a_{a}+n_{a} n^{b} \nabla_{b} a_{c}\right] \\
& =\perp\left[K_{b c}\left(-K_{a}^{b}-n_{a} a^{b}\right)+\nabla_{a} a_{c}+n^{b} \nabla_{b} K_{a c}+a_{c} a_{a}+n_{a} n^{b} \nabla_{b} a_{c}\right] \\
& =-K_{b c} K_{a}^{b}+D_{a} a_{c}+\perp n^{b} \nabla_{b} K_{a c}+a_{c} a_{a}
\end{aligned}
$$

- The Lie derivative of $\boldsymbol{K}_{a c}$ is

$$
\perp \boldsymbol{L}_{n} K_{a c}=\perp\left(n^{b} \nabla_{b} K_{a c}+K_{a b} \nabla_{c} n^{b}+K_{c b} \nabla_{a} n^{b}\right)=\perp n^{b} \nabla_{b} K_{a c}-K_{a b} K_{c}^{b}-K_{c b} K_{a}^{b}
$$

- Then we obtain the Ricci relation

$$
\perp^{4} R_{a b c d} n^{b} n^{d}=\perp L_{n} K_{a c}+K_{a b} K_{c}^{b}+D_{a} a_{c}+a_{c} a_{a}
$$

Ricci relation (2)

- Note that the Lie derivative of $K_{a b}$ is purely spatial, as

$$
n^{a} \grave{L}_{n} K_{a b}=n^{a} n^{c} \nabla_{c} K_{a b}+n^{a} K_{a c} \nabla_{b} n^{c}+n^{a} K_{b c} \nabla_{a} n^{c}=-K_{a b} a^{a}+K_{b c} a^{c}=0
$$

- Thus the Ricci relation is

$$
\perp^{4} R_{a b c d} n^{b} n^{d}=L_{n} K_{a c}+K_{a b} K_{c}^{b}+D_{a} a_{c}+a_{c} a_{a}
$$

Ricci relation (3)

- The acceleration a^{b} is related to the lapse function α, as

$$
\begin{aligned}
a_{b} & =n^{c} \nabla_{c} n_{b}=2 n^{c} \nabla_{[c} n_{b]}=-2 n^{c} \nabla_{[c} \alpha \Omega_{b]}=-n^{c}\left(\Omega_{b} \nabla_{c} \alpha-\Omega_{c} \nabla_{b} \alpha\right) \\
& =n^{c} n_{b} \nabla_{c} \ln \alpha+\delta_{b}^{c} \nabla_{c} \ln \alpha=D_{b} \ln \alpha
\end{aligned}
$$

- where we have used the fact that Ω is closed one-form
- Then the Ricci relation can be written as

$$
\begin{aligned}
\perp^{4} R_{a b c d} h^{b} n^{d} & =L_{n} K_{a c}+K_{a b} K_{c}^{b}+D_{a} D_{c} \ln \alpha+D_{a} \ln \alpha D_{a} \ln \alpha \\
& =L_{n} K_{a c}+K_{a b} K_{c}^{b}+\frac{1}{\alpha} D_{a} D_{c} \alpha
\end{aligned}
$$

- Furthermore, using the contracted Gauss relation

$$
\perp^{4} R_{a c}+\perp^{4} R_{a b c d} h^{b} n^{d}=R_{a c}+K K_{a c}-K_{a b} K_{c}^{b}
$$

- we obtain

$$
\perp^{4} R_{a c}=-L_{n} K_{a c}-\frac{1}{\alpha} D_{a} D_{c} \alpha+R_{a c}+K K_{a c}-2 K_{a b} K_{c}^{b}
$$

"Evolution vector" and αn^{a}

-What is the natural "evolution" vector?

- As stated before, the foliation is characterized by the closed oneform Ω
- Dual vectors t^{a} to Ω will be the evolution vector : $\Omega_{\underline{a}} \underline{a}=1$
- One simple candidate is $t^{a}=\alpha n^{a}$
- Note that \boldsymbol{n}^{a} is not the natural evolution vector because

$$
\begin{aligned}
\boldsymbol{L}_{n} \perp_{b}^{a} & \left.=n^{c} \nabla_{c} \perp_{b}^{a}-\perp_{b}^{c} \nabla_{c} n^{a}+\perp_{c}^{a} \nabla_{b} n^{c}=n^{c} \nabla_{c}\left(n^{a} n_{b}\right)+K_{b}^{a}-\left(K_{b}^{a}+n_{b} a^{a}\right)\right) \\
& =n^{a} a_{b} \neq 0
\end{aligned}
$$

- This means that the Lie derivative with respect to \boldsymbol{n}^{a} of a tensor tangent to Σ is NOT a tensor tangent to Σ
- On the other hand, $\boldsymbol{L}_{\alpha n} \perp_{b}^{a}=0$ and any tensor field tangent to Σ is Lie transported by αn^{a} to a tensor field tangent to Σ

The shift vector

- We have a degree of freedom to add any spatial vector, called "shift vector", β^{a} to αn^{a} because $\Omega_{a} \beta^{a}=0$
- Therefore the general evolution vector is : $t^{a}=\alpha n^{a}+\beta^{a}$
- This freedom in the definition of the evolution time vector stems from the general covariance of Einstein's equations
- It is convenient to rewrite the Ricci relation in terms of the Lie derivative of the evolution time vector, as

$$
\perp^{4} R_{a c}=-\frac{1}{\alpha}\left(L_{t}-L_{\beta}\right) K_{a c}-\frac{1}{\alpha} D_{a} D_{c} \alpha+R_{a c}+K K_{a c}-2 K_{a b} K_{c}^{b}
$$

- where we have used

$$
\mathbf{L}_{t} K_{a b}=\mathbf{L}_{c n} K_{a b}+\mathbf{L}_{\beta} K_{a b}=\alpha n^{c} \nabla_{c} K_{a b}+K_{a c} \nabla_{b}\left(\alpha n^{c}\right)+K_{b c} \nabla_{a}\left(\alpha n^{c}\right)+\mathbf{L}_{\beta} K_{a b}=\alpha \mathbf{L}_{n} K_{a b}+\mathbf{L}_{\beta} K_{a b}
$$

3+1 decomposition of Einstein's equations (1)

- Decomposition of $T_{a b}$
- Now we proceed $3+1$ decomposition of Einstein's equations

$$
G_{a b}={ }^{4} R_{a b}-\frac{1}{2}{ }^{4} R g_{a b}=8 \pi T_{a b}
$$

using the Gauss, Codazzi, and Ricci relations

- To do it, let us decompose the stress-energy tensor as

$$
T_{a b}=E n_{a} n_{b}+2 P_{(a} n_{b)}+S_{a b}
$$

- where $E \equiv n_{a} n_{b} T_{a b}, P_{a} \equiv-\perp\left(n^{b} T_{a b}\right)$, and $S_{a b} \equiv \perp T_{a b}$ are the energy density, momentum density/momentum flux, and stress tensor of the source field measured by the Eulerian observer
- the trace is $T=S-E$
- We shall also use Einstein's equations in the form of

$$
{ }^{4} R_{a b}=8 \pi\left(T_{a b}-\frac{1}{2} g_{a b} T\right)
$$

3+1 decomposition of Einstein's equations (2)

- Hamiltonian constraint
- We first project Einstein's equation into the direction perpendicular to Σ to obtain

$$
{ }^{4} R_{a b} n^{a} n^{b}+\frac{1}{2}{ }^{4} R=8 \pi E
$$

- For the left-hand-side, we use the contracted Gauss relation

$$
{ }^{4} R+2^{4} R_{a b} n^{a} n^{b}=R+K^{2}-K_{a b} K^{a b}
$$

- We finally obtain the Hamiltonian constraint

$$
R+K^{2}-K_{a b} K^{a b}=16 \pi E
$$

- This is a single elliptic equation which must be satisfied everywhere on the slice

3+1 decomposition of Einstein's equations (3)

- Momentum constraint
- Similary, "mixed" projection of Einstein's equations gives

$$
\perp^{4} R_{a b} n^{b}=-8 \pi P_{a}
$$

- Using the contracted Codazzi relation

$$
\perp^{4} R_{a b} h^{b}=D_{a} K-D_{b} K_{a}^{b}
$$

- We reach the momentum constraint

$$
D_{b} K_{a}^{b}-D_{a} K=8 \pi P_{a}
$$

- includes 3 elliptic equations

3+1 decomposition of Einstein's equations (4)

- Evolution equations
- The evolution part of Einstein's equations is given by the full projection onto Σ of Einstein's equations:

$$
\perp^{4} R_{a b}=\perp 8 \pi\left(S_{a b}+2 n_{(a} P_{b)}-\frac{1}{2} \gamma_{a b}(S-E)+\frac{1}{2} n_{a} n_{b}(S+E)\right)=8 \pi\left(S_{a b}-\frac{1}{2} \gamma_{a b}(S-E)\right)
$$

- Using a version of the Ricci relation

$$
\perp^{4} R_{a c}=-\frac{1}{\alpha}\left(L_{t}-L_{\beta}\right) K_{a c}-\frac{1}{\alpha} D_{a} D_{c} \alpha+R_{a c}+K K_{a c}-2 K_{a b} K_{c}^{b}
$$

- We obtain the evolution equation for $K_{a b}$

$$
\left(L_{t}-\boldsymbol{L}_{\beta}\right) K_{a b}=-D_{a} D_{b} \alpha+\alpha\left[R_{a b}+K K_{a b}-2 K_{a c} K_{b}^{c}\right]-8 \pi \alpha\left(S_{a b}-\frac{1}{2} \gamma_{a b}(S-E)\right)
$$

- The evolution equation for $\gamma_{a b}$ is given by an expression of $\boldsymbol{K}_{a b}$

$$
\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \gamma_{a b}=-2 \alpha K_{a b}
$$

Summary of 3+1 decomposition

- Einstein's equations are $3+1$ decomposed as follows
$G_{a b} n^{a} n^{b}=8 \pi T_{a b} n^{a} n^{b} \quad$ Gauss rel.
$\perp G_{a b} n^{b}=8 \pi \perp T_{a b} n^{b}$ Codazzi rel

$$
\xrightarrow{\text { Ricci rel. }}
$$

Hamiltonian constraint

$$
R+K^{2}-K_{a b} K^{a b}=16 \pi E
$$

Momentum constraint

$$
D_{b} K_{a}^{b}-D_{a} K=8 \pi P_{a}
$$

Evolution Eq. of $K_{a b}$

$$
\begin{aligned}
\left(L_{t}-L_{\beta}\right) K_{a b}= & -D_{a} D_{b} \alpha+\alpha\left[R_{a b}+K K_{a b}-2 K_{a c} K_{b}^{c}\right] \\
& -4 \pi \alpha\left(2 S_{a b}-\gamma_{a b}(S-E)\right)
\end{aligned}
$$

Definition of $K_{a b}$
Evolution Eq. of $\gamma_{a b}$

$$
\left(L_{t}-L_{\beta}\right) \gamma_{a b}=-2 \alpha K_{a b}
$$

- 3+1 decomposition of the stress-energy tensor

$$
T_{a b}=E n_{a} n_{b}+2 P_{(a} n_{b)}+S_{a b} \quad E \equiv n_{a} n_{b} T_{a b}, P_{a} \equiv-\perp\left(n^{b} T_{a b}\right), \quad S_{a b} \equiv \perp T_{a b}
$$

Similarity with the Maxwell's equations

$$
\begin{aligned}
& \nabla_{b} F^{a b}=4 \pi J^{a}=4 \pi\left(\rho_{\mathrm{e}} n^{a}+J^{a}\right) \\
& \nabla_{[a} F_{b c]}=0 \Leftrightarrow \nabla_{a} * F^{a b}=0
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline F^{a b}=n^{a} E^{b}-n^{b} E^{a}+\varepsilon^{a b c} B_{c} \\
* F^{a b}=n^{a} B^{b}-n^{b} B^{a}-\varepsilon^{a b c} E_{c} \\
\hline E^{a} n_{a}=0, \quad B^{a} n_{a}, \quad J^{a} n_{a}=0
\end{array}
$$

Faraday's law, Ampere's law
Evolution equations

$$
\begin{aligned}
& n_{a} \nabla_{b} F^{a b}=n_{a}\left(4 \pi \mathrm{~J}^{a}\right) \xrightarrow{\text { Normal }} D_{a} E^{a}=4 \pi \rho_{\mathrm{e}} \\
& n_{a} \nabla_{b} * F^{a b}=0 \text { projection } D_{a} B^{a}=0 \\
& \text { Gauss's law, No monopole } \\
& \text { no time derivatives of } E, B \\
& \text { Constraint equations } \\
& \perp \nabla_{b} F^{a b}=\perp\left(4 \pi J^{a}\right) \quad \underset{\text { Spatial }}{ }>\left(\partial_{t}-\mathrm{L}_{\beta}\right) E^{a}=\varepsilon^{a b c} D_{b}\left(\alpha B_{c}\right)-4 \pi \alpha J^{a}+\alpha K E^{a} \\
& \perp \nabla_{b} * F^{a b}=0 \\
& \left(\partial_{t}-\mathrm{L}_{\beta}\right) B^{a}=-\varepsilon^{a b c} D_{b}\left(\alpha E_{c}\right)+\alpha K B^{a}
\end{aligned}
$$

Evolution of constraints

- It can be shown that the "evolution" equations for the Hamiltonian (C_{H}) and Momentum (C_{M}) constraints becomes

$$
\begin{aligned}
& \left(\partial_{t}-L_{\beta}\right) C_{H}=-D_{k}\left(\alpha C_{M}^{k}\right)-C_{M}^{k} D_{k} \alpha+\alpha K\left(2 C_{H}-F\right)+\alpha K^{i j} F_{i j} \\
& \left(\partial_{t}-L_{\beta}\right) C_{M}^{i}=-D_{j}\left(\alpha F^{i j}\right)+2 \alpha K_{j}^{i} C_{M}^{j}+\alpha K C_{M}^{i}+\alpha D^{k}\left(F-C_{H}\right)+(F-2 H) D^{i} \alpha
\end{aligned}
$$

- Where $F_{i j}$ is the spatial projection: the evolution equation

$$
F_{a b} \equiv \perp\left[{ }^{4} R_{a b}-8 \pi\left(T_{a b}-\frac{1}{2} T g_{a b}\right)\right]
$$

- The evolution equations for the constraints show that the constraints are "preserved" or "satisfied" , if
- They are satisfied initially ($C_{H}=C_{M}=0$)
- The evolution equation is solved correctly ($\left.F_{a b}=0\right)$

Coordinate-basis vectors

- Let us choose the coordinate basis vectors
- First, we choose the evolution timelike vector t^{a} as the time-basis vector : $t^{a}=\left(e_{0}\right)^{a}$
- The spatial basis vectors are chosen such that $\Omega_{a}\left(e_{i}\right)^{a}=0$
- The spatial basis vectors are Lie transported along t^{a} :

$$
L_{t}\left(e_{i}\right)^{a}=t^{b} \nabla_{b}\left(e_{i}\right)^{a}-\left(e_{i}\right)^{b} \nabla_{b} t^{a}=\left[t, e_{i}\right]^{a}=0
$$

- $\left(e_{i}\right)^{a}$ remains purely spatial because

$$
\begin{aligned}
\boldsymbol{L}_{t}\left(\Omega_{a}\left(e_{i}\right)^{a}\right) & =\left(\boldsymbol{L}_{t} \Omega_{a}\right)\left(e_{i}\right)^{a}-\Omega_{a} L_{t}\left(e_{i}\right)^{a}=\left(\boldsymbol{L}_{t} \Omega_{a}\right)\left(e_{i}\right)^{a} \\
& =\left(t^{b} \nabla_{b} \Omega_{a}+\Omega_{b} \nabla_{a} t^{b}\right)\left(e_{i}\right)^{a}=2 t^{b} \nabla_{[b} \Omega_{a]}\left(e_{i}\right)^{a}=0
\end{aligned}
$$

- $\left(\boldsymbol{e}_{\mu}\right)^{a}$ constitute the commutable coordinate basis
- Then $\boldsymbol{L}_{t}=\partial_{t}$
- We define the dual basis vectors by

$$
\left(\xi^{\mu}\right)_{a}:\left(\xi^{\mu}\right)_{a}\left(e_{\mu}\right)^{a}
$$

Components of geometrical quantities (1)

- Now we have set the coordinate basis we proceed to calculate the components of geometrical quantities
- Because the evolution time vector is the time-coordinate basis we have $t^{a}=t^{\mu}\left(e_{\mu}\right)^{a}=\left(e_{0}\right)^{a} \Rightarrow t^{\mu}=[1000]$
- From the property of the spatial basis, we have

$$
n_{i}=0, \because 0=\Omega_{a}\left(e_{i}\right)^{a}=\Omega_{\mu} \delta_{i}^{\mu}=\alpha n_{i}
$$

- Then, 0th contravariant components of spatial tensors vanish

$$
\beta^{\mu}=\left[\begin{array}{ll}
0 & \beta^{i}
\end{array}\right], \gamma^{\mu \nu}=\left[\begin{array}{cc}
0 & 0 \\
0 & \gamma^{i j}
\end{array}\right], \quad K^{\mu \nu}=\left[\begin{array}{cc}
0 & 0 \\
0 & K^{i j}
\end{array}\right]
$$

- From the definition of the time vector and normalization condition of n^{a}, we obtain

$$
\begin{aligned}
& t^{a}=\alpha n^{a}+\beta^{a} \Rightarrow n^{\mu}=\left[\begin{array}{lll}
\alpha^{-1} & -\alpha^{-1} \beta^{i}
\end{array}\right] \\
& \hline n^{a} n_{a}=-1 \Rightarrow n_{\mu}=\left[\begin{array}{llll}
-\alpha & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Components of geometrical quantities (2)

- From the definition of spatial metric, we have

$$
\begin{aligned}
& g^{a b}=\gamma^{a b}-n^{a} n^{b} \Rightarrow g^{\mu \nu}=\left[\begin{array}{cc}
-\alpha^{-2} & \alpha^{-2} \beta^{i} \\
\alpha^{-2} \beta^{i} & \gamma^{i j}-\alpha^{-2} \beta^{i} \beta^{j}
\end{array}\right] \\
& g_{a b}=\gamma_{a b}-n_{a} n_{b} \Rightarrow g_{i j}=\gamma_{i j}
\end{aligned}
$$

- We here note that from the spatial component of the following equation, we have

$$
\gamma^{\mu \sigma} g_{\sigma v}=\left(g^{\mu \sigma}+n^{\mu} n^{\sigma}\right) g_{\sigma v}=\delta_{v}^{\mu}+n^{\mu} \delta_{v}^{0} \Rightarrow \gamma^{i k} \gamma_{k j}=\delta_{j}^{i}
$$

- This means that the indices of spatial tensors can be lowered and raised by the spatial metric
- Then, from the inverse of $g^{a b}$, we obtain

$$
g_{\mu \nu}=\left[\begin{array}{cc}
-\alpha^{2}+\beta_{k} \beta^{k} & \beta_{i} \\
\beta_{i} & \gamma_{i j}
\end{array}\right], \quad d s^{2}=-\alpha^{2} d t^{2}+\gamma_{i j}\left(d x^{i}+\beta^{i} d t\right)\left(d x^{j}+\beta^{j} d t\right)
$$

An intuitive interpretation

Conformal decomposition

- The importance of the conformal decomposition in the time evolution problem was first noted by York (PRL 26, 1656 (1971); PRL 28, 1082 (1972))
- He showed that the two degrees of freedom of the gravitational field are carried by the conformal equivalence classes of 3-metric, which are related each other by the conformal transformation:

$$
\gamma_{i j}=\psi^{4} \tilde{\gamma}_{i j}
$$

- In the initial data problems, the conformal decomposition is a powerful tool to solve the constraint equations, as studied by York and O'Murchadha (J. Math. Phys. 14, 456 (1973); PRD 10, 428 (1974)) (see for reviews, e.g., Cook, G.B., Living Rev. Rel. 3, 5 (2000); Pfeiffer, H. P. gr-qc/0412002)
- In the following, we shall derive conformal decomposition of Einstein's equations

"Conformal" decomposition of Ricci tensor (1)

- The covariant derivative associated with the conformal metric is characterized by

$$
\tilde{D}_{c} \tilde{\gamma}_{a b}=0
$$

- The two covariant derivatives are related by (e.g. Wald)

$$
D_{k} T_{j}^{i}=\tilde{D} T_{j}^{i}+C_{k l}^{i} T_{j}^{l}-C_{k j}^{l} T_{l}^{i}
$$

- where $C_{j k}^{i}$ is a tensor defined by difference of Christoffel symbols

$$
\begin{aligned}
C^{k}{ }_{i j} & \equiv \Gamma^{k}{ }_{i j}-\widetilde{\Gamma}^{k}{ }_{i j}=\frac{1}{2} \gamma^{k l}\left(\tilde{D}_{i} \gamma_{l j}+\tilde{D}_{j} \gamma_{i l}-\tilde{D}_{l} \gamma_{i j}\right) \\
& =2\left(\delta_{i}^{k} D_{j} \ln \psi+\delta_{j}^{k} D_{i} \ln \psi-\tilde{\gamma}_{i j} \widetilde{D}^{k} \ln \psi\right)
\end{aligned}
$$

- By a straightforward calculation, we can show (e.g Wald)

$$
\begin{aligned}
R_{i j} v^{j} & =\left(D_{j} D_{i}-D_{i} D_{j}\right) v^{j}=\left(\tilde{D}_{j} \tilde{D}_{i}-\tilde{D}_{i} \tilde{D}_{j}\right) v^{j}+\left(\widetilde{D}_{k} C_{i j}^{k}-\widetilde{D}_{i} C_{k j}^{k}+C_{l k}^{l} C_{i j}^{k}-C_{i l}^{k} C_{k j}^{l}\right) v^{j} \\
& =\widetilde{R}_{i j} v^{j}+\left(\widetilde{D}_{k} C_{i j}^{k}-\widetilde{D}_{i} C_{k j}^{k}+C_{l k}^{l} C_{i j}^{k}-C_{i l}^{k} C_{k j}^{l}\right) v^{j}
\end{aligned}
$$

"Conformal" decomposition of Ricci tensor (2)

- Thus the Ricci tensor is decomposed into two parts, one which is the Ricci tensor associated with the conformal metric and one which contains the conformal factor ψ
- More explicitly one can show (see e.g. Wald (1984))

$$
\begin{aligned}
R_{i j}= & \tilde{R}_{i j}-2 \tilde{D}_{i} \tilde{D}_{j} \ln \psi-2 \tilde{\gamma}_{i j} \tilde{D}_{k} \tilde{D}^{k} \ln \psi \\
& +4\left(\tilde{D}_{i} \ln \psi\right)\left(\tilde{D}_{j} \ln \psi\right)-4 \tilde{\gamma}_{i j}\left(\tilde{D}_{k} \ln \psi\right)\left(\tilde{D}^{k} \ln \psi\right) \\
\equiv \tilde{R}_{i j} & +R_{i j}^{\phi}
\end{aligned}
$$

- Then, the Ricci scalar is decomposed as

$$
\begin{aligned}
R & =\psi^{-4}\left[\tilde{R}-8\left(\tilde{D}_{k} \tilde{D}^{k} \ln \psi+\left(\tilde{D}_{k} \ln \psi\right)\left(\tilde{D}^{k} \ln \psi\right)\right)\right] \\
& =\psi^{-4} \tilde{R}-8 \psi^{-5} \tilde{D}_{k} \tilde{D}^{k} \psi
\end{aligned}
$$

Conformal decomposition of extrinsic curvature

- The first step is to decompose $\boldsymbol{K}_{\boldsymbol{i j}}$ into trace (K) and traceless ($A_{i j}$) parts as

$$
K_{i j}=A_{i j}+\frac{1}{3} \gamma_{i j} K, \quad K^{i j}=A^{i j}+\frac{1}{3} \gamma^{i j} K
$$

- Then, we perform the conformal decomposition of the traceless part as

$$
A_{i j}=\psi^{4} \widetilde{A}_{i j}, \quad A^{i j}=\gamma^{i k} \gamma^{j l} A_{k l}=\psi^{-4} \tilde{A}_{i j}
$$

- Under these conformal decompositions of the spatial metric and the extrinsic curvature, let us consider the conformal decomposition of Einstein's equation

"Conformal" decomposition of the evolution equations (0) - an additional constraint

- In the following, with BSSN reformulation in mind, we set the determinant of the conformal metric to be unity:

$$
\tilde{\gamma}=\operatorname{det} \tilde{\gamma}_{i j}=1
$$

- with this setting, the conformal factor becomes

$$
\ln \psi=\frac{1}{12} \ln \gamma
$$

- In the BSSN formulation, the conformal factor is defined by $\phi=\ln \psi$ so that $\phi=\ln \gamma / 12$
- In the case that we do not impose the above condition to the background conformal metric, the equations derived in the following are modified slightly (for this, see Gourgoulhon, E., gr-qc/0703035)

"Conformal" decomposition of the evolution equations (1) : the conformal factor

- Let us start from the evolution equation of the spatial metric $\gamma_{i j}$:

$$
\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \gamma_{a b}=\boldsymbol{L}_{\alpha n} \gamma_{a b}=-2 \alpha K_{a b}
$$

- Taking the trace of this equation, we have

$$
\gamma^{a b} \boldsymbol{L}_{a n} \gamma_{a b}=-2 \alpha K
$$

- Now we use an identity for any matrix A: $\operatorname{det}[\exp A]=\exp [\operatorname{tr} A]$
- By setting $\gamma_{i j}=\exp A$ and taking the Lie derivative, we obtain

$$
\boldsymbol{L}_{\alpha n} \gamma=\exp \left[\operatorname{tr}\left(\ln \gamma_{i j}\right)\right] \boldsymbol{L}_{\alpha n}\left(\operatorname{tr}\left(\ln \gamma_{i j}\right)\right)=\gamma \gamma^{i j} \boldsymbol{L}_{\alpha n} \gamma_{i j}
$$

- Now we can derive the evolution equation for the conformal factor:

$$
\begin{aligned}
& \gamma^{i j} \boldsymbol{L}_{\alpha n} \gamma_{i j}=\boldsymbol{L}_{\alpha n} \ln \gamma=12 \boldsymbol{L}_{\alpha n} \ln \psi=-2 \alpha K \\
& \left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \ln \psi=-\frac{1}{6} \alpha K
\end{aligned}
$$

"Conformal" decomposition of the evolution equations (2) : the conformal metric

- Again, we start from the evolution equation for $\gamma_{i j}$:

$$
\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \gamma_{a b}=\boldsymbol{L}_{a n} \gamma_{a b}=-2 \alpha K_{a b}
$$

- Substituting the decomposition of $\gamma_{i j}$ and $\boldsymbol{K}_{i j}$, we obtain

$$
\begin{aligned}
& \psi^{4}\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \tilde{\gamma}_{i j}+4 \psi^{3} \tilde{\gamma}_{i j}\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \psi=-2 \alpha\left(\psi^{4} \tilde{A}_{i j}+\frac{1}{3} \psi^{4} \tilde{\gamma}_{i j} K\right) \\
& \left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \tilde{\gamma}_{i j}+4 \tilde{\gamma}_{i j}\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \ln \psi=-2 \alpha\left(\tilde{A}_{i j}+\frac{1}{3} \tilde{\gamma}_{i j} K\right)
\end{aligned}
$$

- Now, we shall use the evolution equation for the conformal factor, and finally, we get

$$
\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \tilde{\gamma}_{i j}=-2 \alpha \tilde{A}_{i j}
$$

"Conformal" decomposition of the evolution equations (3) : the inverse conformal metric

- For the later purpose, let us derive the evolution equation for the inverse of the conformal metric
- It is easily obtained from the evolution equation for the conformal metric, as

$$
\begin{aligned}
& \tilde{\gamma}^{i k} \tilde{\gamma}^{j l}\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \tilde{\gamma}_{k l}=-2 \alpha \tilde{A}^{i j} \\
& \tilde{\gamma}^{i k}\left[\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \delta_{k}^{j}-\tilde{\gamma}_{k l}\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \tilde{\gamma}^{j l}\right]=-2 \alpha \tilde{A}^{i j} \\
& \left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta} \tilde{\gamma}^{i j}=2 \alpha \tilde{A}^{i j}\right.
\end{aligned}
$$

"Conformal" decomposition of the evolution equations (4a) : the trace of the extrinsic curvature

- We start from the evolution equation for $K_{i j}$:

$$
L_{\alpha n} K_{i j}=-D_{i} D_{j} \alpha+\alpha\left[R_{i j}+K K_{i j}-2 K_{i k} K_{j}^{k}\right]+4 \pi \alpha\left(\gamma_{i j}(S-E)-2 S_{i j}\right)
$$

- We first simply take the trace of this equation

$$
\boldsymbol{L}_{\alpha n} K-K_{i j} \boldsymbol{L}_{\alpha n} \gamma^{i j}=-D_{i} D^{i} \alpha+\alpha\left[R+K^{2}-2 K_{i j} K^{i j}\right]+4 \pi \alpha(3(S-E)-2 S)
$$

- Here, let make use of the evolution equation for the inverse of the spatial metric,

$$
\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \gamma^{a b}=2 \alpha K^{a b}
$$

then we obtain

$$
L_{o n} K=-D_{i} D^{i} \alpha+\alpha\left[R+K^{2}\right]+4 \pi \alpha(S-3 E)
$$

- Finally, using the Hamiltonian constraint, we obtain

$$
\frac{\left(L_{t}-L_{\beta}\right) K=-D_{i} D^{i} \alpha+\alpha\left[K_{i j} K^{i j}+4 \pi(E+S)\right]}{R+K^{2}-K_{a b} K^{a b}=16 \pi E}
$$

"Conformal" decomposition of the evolution equations (4b) : the trace of the extrinsic curvature

- For convenience, let us express the right-hand-side in terms of the conformal quantities, as well as give a suggestion how to evaluate the derivative term :

$$
D_{k} D^{k} \alpha=\frac{1}{\sqrt{\gamma}} \partial_{k}\left(\sqrt{\gamma} D^{k} \alpha\right)=\psi^{-6} \partial_{k}\left(\psi^{6} \gamma^{j k} D_{j} \alpha\right)=\psi^{-6} \partial_{k}\left(\psi^{2} \tilde{\gamma}^{j k} \partial_{j} \alpha\right)
$$

$$
K_{i j} K^{i j}=A_{i j} A^{i j}+\frac{1}{3} K^{2}=\tilde{A}_{i j} \tilde{A}^{i j}+\frac{1}{3} K^{2}
$$

"Conformal" decomposition of the evolution

 equations (5a) : the traceless part of the extrinsic curvature- We start from the Lie derivative of $\boldsymbol{K}_{i j}$:

$$
\boldsymbol{L}_{\alpha n} K_{i j}=\boldsymbol{L}_{\alpha n} A_{i j}+\frac{1}{3} \gamma_{i j} \boldsymbol{L}_{\alpha n} K+\frac{1}{3} K \boldsymbol{L}_{\alpha n} \gamma_{i j}
$$

- Substituting the following equations into this yields

$$
\begin{array}{|l|}
\hline L_{\alpha n} K_{i j}=-D_{i} D_{j} \alpha+\alpha\left[R_{i j}+K K_{i j}-2 K_{i k} K_{j}^{k}\right]+4 \pi \alpha\left(\gamma_{i j}(S-E)-2 S_{i j}\right) \\
L_{\alpha n} K=-D_{i} D^{i} \alpha+\alpha\left[R+K^{2}\right]+4 \pi \alpha(S-3 E) \\
L_{\alpha n} \gamma_{i j}=-2 \alpha K_{i j} \\
\hline
\end{array}
$$

$$
L_{\alpha n} A_{i j}=-\left(D_{i} D_{j} \alpha\right)^{\mathrm{TF}}+\alpha\left(R_{i j}^{\mathrm{TF}}-8 \pi S_{i j}^{T F}\right)+\alpha\left[\frac{5}{3} K K_{i j}-2 K_{i k} K_{j}^{k}-\frac{1}{3} K^{2} \gamma_{i j}\right]
$$

- where TF denotes the trace free part: $T_{i j}{ }^{\mathrm{TF}}=T_{i j}$ - $(1 / 3) \gamma_{i j}(\operatorname{tr} T)$
- The terms that involve K in the right-hand-side can be written as

$$
\frac{5}{3} K K_{i j}-2 K_{i k} K_{j}^{k}-\frac{1}{3} K^{2} \gamma_{i j}=\frac{1}{3} K A_{i j}-2 A_{i k} A_{j}^{k}=\psi^{4}\left[\frac{1}{3} K \tilde{A}_{i j}-2 \tilde{A}_{i k} \tilde{A}_{j}^{k}\right]
$$

"Conformal" decomposition of the evolution

 equations (5b) : the traceless part of the extrinsic curvature- We further proceed to decompose the left-hand-side:

$$
L_{o n} A_{i j}=\psi^{4}\left[L_{a n} \tilde{A}_{i j}+4 \tilde{A}_{i j} \boldsymbol{L}_{\alpha n} \ln \psi\right]=\psi^{4}\left[\boldsymbol{L}_{o n} \tilde{A}_{i j}-\frac{2}{3} \alpha K \tilde{A}_{i j}\right]
$$

- Combining all of the result, we finally reach

$$
\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \tilde{A}_{i j}=\psi^{-4}\left[-\left(D_{i} D_{j} \alpha\right)^{\mathrm{TF}}+\alpha\left(R_{i j}{ }^{\mathrm{TF}}-8 \pi S_{i j}{ }^{T F}\right)\right]+\alpha\left[K \tilde{A}_{i j}-2 \tilde{A}_{i k} \tilde{A}_{j}^{k}\right]
$$

- We here note that the second-order covariant derivative of the lapse function may be calculated as

$$
\begin{aligned}
D_{i} D_{j} \alpha & =D_{i} \partial_{j} \alpha=\tilde{D}_{i} \partial_{j} \alpha-C_{i j}^{k} \partial_{k} \alpha \\
& =\left[\partial_{i} \partial_{j} \alpha-\tilde{\Gamma}_{i j}^{k} \partial_{k} \alpha\right]-2\left[2 \partial_{(i} \ln \psi \partial_{j)} \alpha-\tilde{\gamma}_{i j} \tilde{\gamma}^{k l} \partial_{k} \ln \psi \partial_{l} \alpha\right]
\end{aligned}
$$

- NOTE: there is the same $2^{\text {nd }}$ order derivative in $R_{i j}{ }^{\phi}$

"Conformal" decomposition of the constraint equations

- Let us turn now to consider the conformal decomposition of the constraint equations
- Hamiltonian constraint

$$
R+K^{2}-K_{a b} K^{a b}=16 \pi E
$$

$K_{i j} K^{i j}=\tilde{A}_{i j} \tilde{A}^{i j}+K^{2} / 3$
$R=\psi^{-4} \widetilde{R}-8 \psi^{-5} \widetilde{D}_{k} \widetilde{D}^{k} \psi$

$$
\widetilde{D}_{i} \widetilde{D}^{i} \psi-\frac{1}{8} \widetilde{R} \psi+\left(\frac{1}{8} \widetilde{A}_{i j} \widetilde{A}^{i j}-\frac{1}{12} K^{2}+2 \pi E\right) \psi^{5}=0
$$

- Momentum constraint

$D_{b} K^{a b}-D^{a} K=8 \pi P^{a}$	$D_{j} K^{i j}=D_{j} A^{i j}+D^{i} K / 3$
	$D_{j} A^{i j}=\tilde{D}_{j} A^{i j}+C_{j k}^{i} A^{k j}+C_{j k}^{j} A^{i k}$
$\widetilde{D}_{j} \widetilde{A}^{i j}+6 \widetilde{A}^{i j} \widetilde{D}_{j} \ln \psi-\frac{2}{3} \widetilde{D}^{i} K=8 \pi \psi^{4} P^{i}$	$\begin{aligned} & =\widetilde{D} A^{i j}+10 A^{i j} \tilde{D}_{j} \ln \psi \\ & =\psi^{-4}\left[\tilde{D}_{j} \tilde{A}^{i j}+6 \widetilde{A}^{i j} \tilde{D}_{j} \ln \psi\right] \end{aligned}$

Summary of conformal decomposition

- With the conformal decomposition defined by

$$
\gamma_{i j}=\psi^{4} \tilde{\gamma}_{i j} \quad K_{i j}=\psi^{4} A_{i j}+\frac{1}{3} \gamma_{i j} K \quad \tilde{\gamma}=\operatorname{det} \tilde{\gamma}_{i j}=1
$$

- The 3+1 decomposition (ADM formulation) of Einstein's equations becomes

Constraint equations

Evolution equations

$\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \ln \psi=-\frac{1}{6} \alpha K$

$$
\widetilde{D}_{i} \widetilde{D}^{i} \psi-\frac{1}{8} \tilde{R} \psi+\left(\frac{1}{8} \widetilde{A}_{i j} \widetilde{A}^{i j}-\frac{1}{12} K^{2}+2 \pi E\right) \psi^{5}=0
$$

$$
\widetilde{D}_{j} \tilde{A}^{i j}+6 \widetilde{A}^{i j} \widetilde{D}_{j} \ln \psi-\frac{2}{3} \widetilde{D}^{i} K=8 \pi \psi^{4} P^{i}
$$

$\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \tilde{\gamma}_{i j}=-2 \alpha \tilde{A}_{i j}$
$\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) K=-D_{i} D^{i} \alpha+\alpha\left[K_{i j} K^{i j}+4 \pi(E+S)\right]$
$\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \tilde{A}_{i j}=\psi^{-4}\left[-\left(D_{i} D_{j} \alpha\right)^{\mathrm{TF}}+\alpha\left(R_{i j}^{\mathrm{TF}}-8 \pi S_{i j}^{T F}\right)\right]+\alpha\left[K \tilde{A}_{i j}-2 \tilde{A}_{i k} \tilde{A}_{j}^{k}\right]$

Lie derivatives of tensor density

- A tensor density of weight w is a object which is a tensor times $\gamma^{w / 2}: \mathrm{T}_{i j}=\gamma^{w / 2} T_{i j}$
- One should be careful because the Lie derivative of a tensor density is different from that of a tensor, as

$$
\begin{aligned}
\boldsymbol{L}_{\beta} \mathrm{T}_{b_{1} \ldots b_{r}}^{a_{1} \ldots a_{s}} & =\left[\beta^{c} \partial_{c} \mathbf{T}_{b_{1} \ldots b_{r}}^{a_{1} \ldots a_{s}}-\sum_{i=1}^{s} \mathrm{~T}_{b_{1} \ldots b_{r}}^{a_{1} \ldots . a_{s}} \partial_{c} \beta^{a_{i}}-\sum_{i=1}^{r} \mathrm{~T}_{b_{1} \ldots . . . b_{r}}^{a_{1} \ldots a_{s}} \partial_{b_{i}} \beta^{c}\right]+w \mathbf{T}_{b_{1} \ldots b_{r}}^{a_{1} \ldots a_{s}} \partial_{k} \beta^{k} \\
& =\left[\boldsymbol{L}_{\beta} \mathbf{T}_{b_{1} \ldots b_{r}}^{a_{1} \ldots a_{s}}\right]_{w=0}+w \mathbf{T}_{b_{1} \ldots b_{r}}^{a_{1} \ldots a_{s}} \partial_{k} \beta^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{L}_{\beta} \boldsymbol{T}_{j}^{i}=\boldsymbol{L}_{\beta}\left(\gamma^{w / 2} T_{j}^{i}\right)=\gamma^{w / 2}\left[\beta^{k} \partial_{k} T_{j}^{i}-T_{j}^{k} \partial_{k} \beta^{i}+T_{k}^{i} \partial_{j} \beta^{k}\right]+T_{j}^{i}(w / 2) \gamma^{w / 2-1} \boldsymbol{L}_{\beta} \gamma \\
&=\left[\beta^{k} \partial_{k}\left(\gamma^{w / 2} T_{j}^{i}\right)-T_{j}^{i} \beta^{k} \partial_{k} \gamma^{w / 2}-\mathrm{T}_{j}^{k} \partial_{k} \beta^{i}+\mathrm{T}_{k}^{i} \partial_{j} \beta^{k}\right]+T_{j}^{i}(w / 2) \gamma^{w / 2-1}\left[\gamma \gamma^{i j} L_{\beta} \gamma_{i j}\right] \\
&=\left[\beta^{k} \partial_{k} T_{j}^{i}-T_{j}^{i} w \gamma^{(w-1) / 2} \beta^{k} \partial_{k} \gamma^{1 / 2}-\mathrm{T}_{j}^{k} \partial_{k} \beta^{i}+\mathrm{T}_{k}^{i} \partial_{j} \beta^{k}\right]+T_{j}^{i} w \gamma^{w / 2} D_{k} \beta^{k} \\
&=\left[\beta^{k} \partial_{k} T_{j}^{i}-T_{j}^{i} w \gamma^{(w-1) / 2} \beta^{k} \partial_{k} \gamma^{1 / 2}-\mathrm{T}_{j}^{k} \partial_{k} \beta^{i}+\mathrm{T}_{k}^{i} \partial_{j} \beta^{k}\right]+T_{j}^{i} w \gamma^{w / 2}\left[\gamma^{-1 / 2} \partial_{k}\left(\gamma^{1 / 2} \beta^{k}\right)\right] \\
&=\left[\beta^{k} \partial_{k} T_{j}^{i}-\mathrm{T}_{j}^{k} \partial_{k} \beta^{i}+\mathrm{T}_{k}^{i} \partial_{j} \beta^{k}\right]+w T_{j}^{i} \gamma^{w / 2} \partial_{k} \beta^{k} \\
& \hline
\end{aligned}
$$

Lie derivatives in conformal decomposition

- The weight factor of the conformal factor $\psi=\gamma^{1 / 22}$ is $1 / 6$
- Thus the weight factor of the conformal metric and the conformal extrinsic curvature is $-2 / 3$, so that
- Note that the Lie derivative along t^{a} is equivalent to the partial derivative along the time direction
- Thus

$$
\begin{aligned}
& \left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \ln \psi=\left(\partial_{t}-\beta^{k} \partial_{k}\right) \ln \psi-\frac{1}{6} \partial_{k} \beta^{k} \\
& \left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \tilde{\gamma}_{i j}=\left(\partial_{t}-\beta^{k} \partial_{k}\right) \tilde{\gamma}_{i j}-\tilde{\gamma}_{i k} \partial_{j} \beta^{k}-\tilde{\gamma}_{j k} \partial_{i} \beta^{k}+\frac{2}{3} \tilde{\gamma}_{i j} \partial_{k} \beta^{k} \\
& \left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \tilde{A}_{i j}=\left(\partial_{t}-\beta^{k} \partial_{k}\right) \tilde{A}_{i j}-\tilde{A}_{i k} \partial_{j} \beta^{k}-\tilde{A}_{j k} \partial_{i} \beta^{k}+\frac{2}{3} \tilde{A}_{i j} \partial_{k} \beta^{k}
\end{aligned}
$$

Evolution of constraints

- It can be shown that the "evolution" equations for the Hamiltonian $\left(C_{H}\right)$ and Momentum (C_{M}) constraints becomes

$$
\begin{aligned}
& \left(\partial_{t}-L_{\beta}\right) C_{H}=-D_{k}\left(\alpha C_{M}^{k}\right)-C_{M}^{k} D_{k} \alpha+\alpha K\left(2 C_{H}-F\right)+\alpha K^{i j} F_{i j} \\
& \left(\partial_{t}-L_{\beta}\right) C_{M}^{i}=-D_{j}\left(\alpha F^{i j}\right)+2 \alpha K_{j}^{i} C_{M}^{j}+\alpha K C_{M}^{i}+\alpha D^{k}\left(F-C_{H}\right)+(F-2 H) D^{i} \alpha
\end{aligned}
$$

- Where $F_{i j}$ is the spatial projection of the evolution equation

$$
F_{a b} \equiv \perp\left[{ }^{4} R_{a b}-8 \pi\left(T_{a b}-\frac{1}{2} T g_{a b}\right)\right]
$$

- The evolution equations for the constraints show that the constraints are "preserved" or "satisfied" , if
- They are satisfied initially ($C_{H}=C_{M}=0$)
- The evolution equation is solved correctly ($F_{a b}=0$)

Numerical-relativity simulations based on the $3+1$ decomposition is unstable !!

- It is known that simulations based on the $3+1$ decomposition (ADM formulation), unfortunately crash in a rather short time
- This crucial limitation may be captured in terms of notions of hyperbolicity (e.g. see textbook by Alcubierre (2008))
- Consider the following first-order system
- The system is called

$$
\partial_{t} \boldsymbol{U}+\boldsymbol{A}^{i} \cdot \partial_{i} \boldsymbol{U}=0
$$

Strongly Hyperbolic, if a matrix representation of \boldsymbol{A} has real eigenvalues and complete set of eigenvectors

- Weakly Hyperbolic, if A has real eigenvalues but not a complete set of eigenvectors
- The key property of strongly and weakly hyperbolic systems : Strongly hyperbolic system is well-posed, and hence, the solution for the finite-time evolution is bounded
- Weakly hyperbolic system is ill-posed and the solution can be unbounded

Numerical-relativity simulations based on the $3+1$ decomposition is unstable !!

- It is known that the ADM formulation is only weakly hyperbolic (Alcubierre (2008))
- Consequently, the ADM formulation is ill-posed and the numerical solution can be unbounded, leading to termination of the simulation
- We need formulations for the Einstein's equation which is (at least) strongly hyperbolic
- Let us consider Maxwell's equations in flat spacetime to capture what we should do to obtain a more stable system

$$
\begin{aligned}
& \partial_{i} E^{i}=4 \pi \rho_{e} \\
& \partial_{i} B^{i}=0 \\
& \partial_{t} E_{i}=\varepsilon_{i j k} \partial^{j} B^{k}-4 \pi j_{i} \\
& \partial_{t} B_{i}=-\varepsilon_{i j k} \partial^{j} E^{k}
\end{aligned}
$$

Note the similarity of these equations to those in the ADM formulation

Consideration in Maxwell's equations

- First of all, let us note the similarity of the Maxwell's equations with the ADM equations (for simplicity in vacuum)

$$
\begin{aligned}
& \partial_{i} E^{i}=0 \text { (constraint eq.) } \\
& \partial_{t} E_{i}=D_{i} D^{j} A_{j}-D^{j} D_{j} A_{i} \\
& \partial_{t} A_{i}=-E_{i}-D_{i} \Phi
\end{aligned}
$$

(constraint eqs.)

$$
\left.\begin{array}{rl}
2 \boldsymbol{L}_{\alpha n} K_{i j} & =-2 \alpha R_{i j}+\cdots \cdots \\
& =\alpha\left(\gamma^{k l} \partial_{l} \partial_{i} \gamma_{k j}+\gamma^{k l} \partial_{j} \partial_{k} \gamma_{i l}-\gamma^{k l} \partial_{k} \partial_{l} \gamma_{i j}\right.
\end{array}\right)+\cdots \cdots .
$$

- Second, the Maxwell's equations are 'almost' wave equation

$$
-\partial_{t}^{2} A_{i}+D^{k} D_{k} A_{i}-D_{i} D^{j} A_{j}=D_{i} \partial_{t} \Phi
$$

- Recall that in the Coulomb gauge $D_{j} A^{j=0}$, the longitudinal part (associated with divergence part) of the electric field E does not obey a wave equation but is described by a Poisson equation (see a standard textbook, e.g., Jakson)

Reformulating Maxwell's equations (1)

- Introducing auxiliary variables
- A simple but viable approach is to introduce independent auxiliary variables to the system
- Let us introduce a new independent variable defined by

$$
F=D^{k} A_{k}
$$

- The evolution equation for this is

$$
\partial_{t} F=\partial_{t} D^{k} A_{k}=-D^{i} E_{i}-D_{k} D^{k} \Phi
$$

- Then, the Maxwell's equations for the vector potential become a wave equation in the form :

$$
-\partial_{t}^{2} A_{i}+D^{k} D_{k} A_{i}=D_{i} \partial_{t} \Phi+D_{i} F
$$

Reformulating Maxwell's equations (2)

- Imposing a better gauge
- A second approach is to impose a good gauge condition
- In the Lorenz gauge, the Maxwell's equations in the flat spacetime are wave equations

$$
\partial_{\mu} \partial^{\mu} A_{\nu}=0
$$

- Alternatively, by introducing a source function, one may "generalize" the Coulomb gauge condition so that Poissonlike equations do not appear

$$
D^{k} A_{k}=H\left(x^{\mu}\right)
$$

- Recall again, that in the Coulomb gauge $D_{f} \boldsymbol{A}^{j}=0$, the longitudinal part (associated with divergence part) of the electric field E is described by a Poisson-type equation

Reformulating Maxwell's equations (3)

- Using the constraint equations
- A third approach is to use the constraint equations
- To see this, let us back to the example considered in "introducing auxiliary variables"

$D_{i} E^{i}=4 \pi \rho_{e}-----$	
$\partial_{t} E_{i}=D_{i} F-D^{k} D_{k} A_{i}-4 \pi j_{i}$	
$\partial_{t} A_{i}=-E_{i}-D_{i} \Phi$	
$\partial_{t} F=D^{i} E_{i}-D_{k} D^{k} \Phi$	

- The constraint equation can be used to rewrite the evolution equation for the auxiliary variable
- Seen as the first-order system, the hyperbolic properties of the two system is different: the hyperbolicity could be changed!
- It is important and sometimes even crucial to use the constraint equations to change the hyperbolic properties of the system

Reformulating Einstein's equations

- The lessons learned from the Maxwell's equations are
- Introducing new, independent variables
- BSSN (Shibata \& Nakamura PRD 52, 5428 (1995);

Baumgarte \& Shapiro PRD 59, 024007 (1999))
\square see also Nakamura et al. Prog. Theor. Phys. Suppl. 90, 1 (1987)
, Kidder-Scheel-Teukolsky (Kidder et al. PRD 64, 064017 (2001))
b Bona-Masso (Bona et al. PRD 56, 3405 (1997))
, Nagy-Ortiz-Reula (Nagy et al. PRD 70, 044012 (2004))

- Choosing a better gauge
, Generalized harmonic gauge (Pretorius, CQG 22, 425 (2005))
, Z4 formalism (Bona et al. PRD 67, 104005 (2003))
- Using the constraint equations to improve the hyperbolicity
- adjusted ADM/BSSN (Shinkai \& Yoneda, gr-qc/0209111)
- BSSN outperforms (Alcubierre (2008))!
- Exact reason is not clear

BSSN formalism (1)

- Let first analyze the conformal Ricci tensor
- By noting that $2 \widetilde{\Gamma}_{i k}^{k}=\partial_{i} \ln \tilde{\gamma}=0$ the conformal Ricci tensor is

$$
\begin{aligned}
\widetilde{R}_{i j} & =\partial_{k} \tilde{\Gamma}_{i j}^{k}-\partial_{j} \tilde{\Gamma}_{i k}^{k}+\tilde{\Gamma}_{i j}^{k} \tilde{\Gamma}_{k l}^{l}-\tilde{\Gamma}_{i l}^{k} \tilde{\Gamma}_{k j}^{l} \\
& =-\frac{1}{2}\left[\tilde{\gamma}^{k l}\left(\partial_{k} \partial_{l} \tilde{\gamma}_{i j}-\partial_{i} \partial_{l} \tilde{\gamma}_{j k}-\partial_{j} \partial_{l} \tilde{\gamma}_{i k}\right)+(\text { terms with } \partial \gamma \partial \gamma)\right.
\end{aligned}
$$

- If we divide the conformal metric formally as $\tilde{\gamma}^{i j}=\delta^{i j}+f^{i j}$, we have

$$
W_{i j}=\partial_{k} \partial^{k} \tilde{\gamma}_{i j}-\left(\partial_{i} \partial^{k} \gamma_{k j}+\partial_{j} \partial^{k} \gamma_{k i}\right)+(\text { terms with } f \partial f)
$$

- Thus we can eliminate the "mixed derivative" terms by introducing new auxiliary variable (Shibata \& Nakamura (1995))

$$
\begin{gathered}
F_{i} \equiv \delta^{j k} \partial_{k} \tilde{\gamma}_{i j}=\partial^{j} \tilde{\gamma}_{i j} \\
W_{i j}=\partial_{k} \partial^{k} \tilde{\gamma}_{i j}-\left(\partial_{i} F_{j}+\partial_{j} F_{i}\right)+(\text { terms with } f \partial f)
\end{gathered}
$$

BSSN formalism (2)

- Baumgarte and Shapiro introduced the slightly different auxiliary variables

$$
\Gamma^{i}=-\partial_{j} \tilde{\gamma}^{i j}
$$

- In this case, the mixed-second-derivative terms are encompassed as

$$
\tilde{R}_{i j}=-\frac{1}{2}\left(\tilde{\gamma}^{k} \partial_{k} \partial_{i} \tilde{\gamma}_{i j}-\tilde{\gamma}_{i k} \partial_{j} \Gamma^{k}-\tilde{\gamma}_{j k} \partial_{i} \Gamma^{k}\right)+(\text { terms with } \partial \gamma \partial \gamma)
$$

- In linear regime, SN and BS are equivalent

BSSN formalism (3)

- Finally let us consider the evolution equation for the auxiliary variables (giving only a rough sketch of derivation)
- Let us start from the momentum constraint equation

$$
\begin{array}{|l|}
\hline \widetilde{D}_{k}\left(\tilde{\gamma}^{j k} \tilde{A}_{i j}\right)+6 \tilde{A}_{i j} \tilde{\gamma}^{j k} \tilde{D}_{k} \ln \psi-\frac{2}{3} \tilde{D}_{i} K=8 \pi \psi^{4} P_{i} \\
\hline \tilde{D}_{j} \tilde{A}^{i j}+6 \tilde{A}^{j j} \tilde{D}_{j} \ln \psi-\frac{2}{3} \widetilde{D}^{i} K=8 \pi \psi^{4} P^{i} \\
\hline
\end{array}
$$

- Substituting the evolution equation for the conformal extrinsic curvature

$$
\begin{aligned}
& \left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \tilde{\gamma}_{i j}=-2 \alpha \tilde{A}_{i j} \\
& \left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) \widetilde{\gamma}^{i j}=2 \alpha \widetilde{A}^{i j}
\end{aligned}
$$

- We obtain the evolution equations for F_{i} and Γ^{i}, respectively
- It can be seen from the above sketch of derivation, the evolution equation for Γ^{i} is slightly simpler

BSSN formalism (4)

- The explicit forms of the evolution equations are

$$
\begin{aligned}
\left(\partial_{t}-\beta^{k} \partial_{k}\right) F_{i}= & -16 \pi \alpha P_{i}+2 \alpha\left[f^{j k} \partial_{k} \tilde{A}_{i j}+\tilde{A}_{i j} \partial_{k} \tilde{\gamma}^{j k}-\frac{1}{2} \widetilde{A}^{j k} \partial_{i} \tilde{\gamma}_{j k}+6 \tilde{A}_{i}^{j} \partial_{j} \ln \psi-\frac{2}{3} \partial_{i} K\right] \\
& +\delta^{j k}\left[-2 \tilde{A}_{i j} \partial_{k} \alpha+\left(\partial_{k} \beta^{l}\right)\left(\partial_{l} \tilde{\gamma}_{i j}\right)+\partial_{k}\left(\tilde{\gamma}_{i l} \partial_{j} \beta^{l}+\tilde{\gamma}_{j l} \partial_{i} \beta^{l}-\frac{2}{3} \tilde{\gamma}_{i j} \partial_{l} \beta^{l}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\left(\partial_{t}-\beta^{k} \partial_{k}\right) \Gamma^{i}= & -16 \pi \alpha P^{i}+2 \alpha\left[\widetilde{\Gamma}_{j k}^{i} \tilde{A}^{j k}+6 \widetilde{A}^{i j} \partial_{j} \ln \psi-\frac{2}{3} \widetilde{\gamma}^{i j} \partial_{j} K\right]-2 \widetilde{A}^{i j} \partial_{j} \alpha \\
& +\beta^{j} \partial_{j} \Gamma^{i}-\Gamma^{j} \partial_{j} \beta^{i}+\frac{2}{3} \Gamma^{i} \partial_{j} \beta^{j}+\frac{1}{3} \widetilde{\gamma}^{i j} \partial_{j} \partial_{k} \beta^{k}+\tilde{\gamma}^{j k} \partial_{j} \partial_{k} \beta^{i}
\end{aligned}
$$

BSSN formalism : summary (1)

$$
\begin{aligned}
& \tilde{D}_{i} \tilde{D}^{i} \psi-\frac{1}{8} \tilde{R} \psi+\left(\frac{1}{8} \tilde{A}_{i j} \tilde{A}^{i j}-\frac{1}{12} K^{2}+2 \pi E\right) \psi^{5}=0 \\
& \tilde{D}_{j} \tilde{A}^{j j}+6 \tilde{A}^{j} \tilde{D}_{j} \ln \psi-\frac{2}{3} \tilde{D}^{i} K=8 \pi \psi^{4} P^{i}
\end{aligned}
$$

$$
\left(\partial_{t}-\beta^{k} \partial_{k}\right) \ln \psi=-\frac{1}{6} \alpha K+\frac{1}{6} \partial_{k} \beta^{k}
$$

$$
\left(\partial_{t}-\beta^{k} \partial_{k}\right) \tilde{\gamma}_{i j}=-2 \alpha \tilde{A}_{i j}+\tilde{\gamma}_{i k} \partial_{j} \beta^{k}+\tilde{\gamma}_{j k} \partial_{i} \beta^{k}-\frac{2}{3} \tilde{\gamma}_{i j} \partial_{k} \beta^{k}
$$

$$
\left(\partial_{t}-\beta^{k} \partial_{k}\right) K=-D_{i} D^{i} \alpha+\alpha\left[K_{i j} K^{i j}+4 \pi(E+S)\right]
$$

Hamiltonian

 constraint is used$$
\left(\partial_{t}-\beta^{k} \partial_{k}\right) \tilde{A}_{i j}=\psi^{-4}\left[-\left(D_{i} D_{j} \alpha\right)^{\mathrm{TF}}+\alpha\left(R_{i j}^{\mathrm{TF}}-8 \pi S_{i j}^{T F}\right)\right]+\alpha\left[K \tilde{A}_{i j}-2 \tilde{A}_{i k} \tilde{A}_{j}^{k}\right]
$$

$$
+\tilde{A}_{i k} \partial_{j} \beta^{k}+\tilde{A}_{j k} \partial_{i} \beta^{k}-\frac{2}{3} \tilde{A}_{i j} \partial_{k} \beta^{k}
$$

BSSN formalism : summary (2)

$$
\begin{aligned}
\left(\partial_{t}-\beta^{k} \partial_{k}\right) F_{i}= & -16 \pi \alpha P_{i}+2 \alpha\left[f^{j k} \partial_{k} \tilde{A}_{i j}+\tilde{A}_{i j} \partial_{k} \tilde{\gamma}^{j k}-\frac{1}{2} \tilde{A}^{j k} \partial_{i} \tilde{\gamma}_{j k}+6 \tilde{A}_{i}^{j} \partial_{j} \ln \psi-\frac{2}{3} \partial_{i} K\right] \\
& +\delta^{j k}\left[-2 \tilde{A}_{i j} \partial_{k} \alpha+\left(\partial_{k} \beta^{l}\right)\left(\partial_{y} \tilde{\gamma}_{i j}\right)+\partial_{k}\left(\tilde{\gamma}_{i l} \partial_{j} \beta^{l}+\tilde{\gamma}_{j l} \partial_{i} \beta^{l}-\frac{2}{3} \tilde{\gamma}_{i j} \partial_{l} \beta^{l}\right)\right] \\
\left(\partial_{t}-\beta^{k} \partial_{k}\right) \Gamma^{i}= & -16 \pi \alpha P^{i}+2 \alpha\left[\tilde{\Gamma}_{j k}^{i} \tilde{A}^{j k}+6 \tilde{A}^{i j} \partial_{j} \ln \psi-\frac{2}{3} \tilde{\gamma}^{i j} \partial_{j} K\right]-2 \tilde{A}^{i j} \partial_{j} \alpha \\
& +\beta^{j} \partial_{j} \Gamma^{i}-\Gamma^{j} \partial_{j} \beta^{i}+\frac{2}{3} \Gamma^{i} \partial_{j} \beta^{j}+\frac{1}{3} \tilde{\gamma}^{i j} \partial_{j} \partial_{k} \beta^{k}+\tilde{\gamma}^{j k} \partial_{j} \partial_{k} \beta^{i}
\end{aligned}
$$

Overview of numerical relativity

Gauge conditions

- Associated directly with the general covariance in general relativity, there are degrees of freedom in choosing coordinates (gauge freedom)
- Slicing condition is a prescription of choosing the lapse function - Shift condition is that of choosing the shift vector
- Einstein's equations say nothing about how the gauge conditions should be imposed
- As we have seen in the reformulation of the ADM system, choosing "good" gauge conditions are very important to achieve stable and robust numerical simulations
- An improper slicing conditions in a stellar-collapse problem will lead to appearance of (coordinate and physical) singularities
- Also, the shift vector is important in resolving the frame dragging effect in simulations of e.g. compact binary merger

Preliminary

- decomposition of covariant derivative of n^{a} -
- The covariant derivative of a timelike unit vector z^{a} can be decomposed as

$$
\nabla_{a} z_{b}=\omega_{a b}+\sigma_{a b}+\frac{1}{3} h_{a b} \theta-z_{a} \zeta_{b}
$$

- Where, the deformation of the congruence of the timelike vector is characterized by these tensors

$h_{a b} \equiv g_{a b}+z_{a} z_{b}$,	(induced metric)
$\omega_{a b} \equiv \perp \nabla_{[a} z_{b]}$,	(twist)
$\sigma_{a b} \equiv \perp \nabla_{(a} z_{b)}{ }^{\text {TF }}$,	(shear)
$\theta \equiv \nabla_{c} z^{c}$,	(expansion)
$\zeta^{a} \equiv z^{c} \nabla_{c} z^{a}$,	(acceleration)

- For the unit normal vector to Σ, n^{a} we have
- The expansion is $-K$
- The shear is $-A_{a b}$
- The twist vanishes

$$
\nabla_{a} n_{b}=-A_{a b}-\frac{1}{3} \gamma_{a b} K-n_{a} a_{b}
$$

Geodesic slicing $\alpha=1, \quad \beta^{\mathrm{i}}=0$

- In the geodesic slicing, the evolution equation of the trace of the extrinsic curvature is $\partial_{t} K=K_{i j} K^{i j}+4 \pi(E+3 S)$
- For normal matter (which satisfies the strong energy condition), the right-hand-side is positive
- Thus the expansion of time coordinate ($-K$) decreases monotonically in time
- In terms of the volume element $\gamma^{1 / 2}$, this means that the volume element goes to zero, as

$$
\partial_{t} \ln \gamma^{1 / 2}=\frac{1}{2} \gamma^{i j} \partial_{t} \gamma_{i j}=-\alpha K+D_{k} \beta^{k} \Rightarrow-K
$$

- This behavior results in a coordinate singularity
- As can be seen in this example, how to impose a slicing condition is closely related to the trace of the extrinsic curvature

Maximal slicing

- Because the decrease in time of the volume element results in a coordinate singularity, let us maximize the volume element
- We take the volume of a 3D-domain $S: V[S]=\int_{S} \sqrt{\gamma} d^{3} x$ and consider a variation along the time vector $t^{a}=\alpha n^{a}+\beta^{a}$
- At the boundary of S, we set $\alpha=1, \beta^{i=0}$

$$
L_{t} V[S]=\int_{S} d^{3} x\left[-\alpha K \sqrt{\gamma}+\partial_{i}\left(\sqrt{\gamma} \beta^{i}\right)\right]=-\int_{S} \alpha K \sqrt{\gamma} d^{3} x
$$

- Thus if $K=0$ on a slice, the volume is extremal (maximal)
- We shall demand that this maximal slicing condition holds for all slices and set $0=\left(\boldsymbol{L}_{t}-\boldsymbol{L}_{\beta}\right) K=-D_{i} D^{i} \alpha+\alpha\left[K_{i j} K^{i j}+4 \pi(E+S)\right]$
- The maximal slicing has a strong singularity avoidance property (E.g. Estabrook \& Wahlquist PRD 7, 2814 (1973); Smarr \& York, PRD 17, 1945/2529 (1978))
- However this is a elliptic equation and is computationally expensive

(K-driver) / (approximate maximal) condition

- As a generalization of the maximal slicing condition, let us consider the following condition with a positive constant c

$$
\partial_{t} K=-c K
$$

- This (elliptic) condition drives \boldsymbol{K} back to zero even when \boldsymbol{K} deviates from zero due to some error or insufficient convergence
- Balakrishna et al. (CQG 13, L135 (1996)) and Shibata (Prog. Theor. Phys. 101, 251 (1999)) converted this equation into a parabolic one by adding a "time" derivative of the lapse:

$$
\partial_{\lambda} \alpha=D_{i} D^{i} \alpha-\alpha\left[K_{i j} K^{i j}+4 \pi(E+S)\right]-\beta^{i} D_{i} K+c K
$$

- If a certain degree of the "convergence" is achieved and the lapse relaxes to a "stationary state", it suggests $\partial_{t} K=-c K$
- This condition is called K-driver or approximate maximal slicing condition

$$
\partial_{t} \alpha=-\varepsilon\left(\partial_{t} K+c K\right), \quad \lambda=\varepsilon t
$$

Harmonic slicing

- The harmonic gauge condition $\nabla_{C} \nabla^{c} x^{a}=0$ have played an important role in theoretical developments (Choquet-Bruhat's textbook)
- Existence and uniqueness of the solution of the Cauchy problem of Einstein's equations (somewhat similar to Lorenz gauge in EM)
- The harmonic slicing condition is defined by

$$
\nabla_{c} \nabla^{c} t=0 \Leftrightarrow \partial_{\mu}\left(\sqrt{-g} g^{\mu 0}\right)=0
$$

- Note that $\sqrt{-g}=\alpha \sqrt{\gamma}$
- The harmonic slicing condition can be written as

$$
\left(\partial_{t}-\partial_{k} \beta^{k}\right) \alpha=-\alpha^{2} K
$$

- This is an evolution equation
- It is known that the harmonic slicing condition has some singularity avoidance property, although weaker than that of the maximal slicing (e.g. Cook \& Scheel PRD 56, 4775 (1997), Alcubierre's textbook)

Generalized harmonic slicing

- Bona et al. (PRL 75, 600 (1995)) generalized the harmonic slicing condition to

$$
\left(\partial_{t}-\partial_{k} \beta^{k}\right) \alpha=-\alpha^{2} f(\alpha) K
$$

- This family of slicing includes the geodesic slicing $(f=0)$, the harmonic slicing ($f=1$), and formally the maximal slicing ($f=\infty$)
- The choice $f(\alpha)=2 / \alpha$, which is called $1+\log$ slicing , has stronger singularity avoidance properties than the harmonic slicing (Anninos et al. PRD 52, 2059 (1995))
- The $1+\log$ slicing has been widely used and has proven to be a successful and robust slicing condition

Minimal distortion (shift) condition

- Smarr and York (PRD 17, 1945/2529 (1978)) proposed a well motivated shift condition called the minimal distortion condition
- As seen in the preliminary, the "distortion" part of the congruence is contained in the shear tensor
- They define a distortion functional by $I \equiv \int \Sigma_{a b} \Sigma^{a b} \sqrt{\gamma} d x^{3}$ and take a variation in terms of the shift
- here the distortion tensor is defined by

$$
\Sigma_{a b} \equiv \frac{1}{2} \perp \boldsymbol{L}_{t} \gamma_{a b}{ }^{\mathrm{TF}} \sim-K_{a b}{ }^{\mathrm{TF}}=\perp \nabla_{(a} n_{b)}{ }^{\mathrm{TF}}
$$

- The resulting shift condition is $D_{a} \Sigma^{a b}=0$
- Beautiful and physical but vector elliptic equations (computationally expensive)

$$
D_{c} D^{c} \beta^{a}+D_{a} D_{c} \beta^{c}+R_{a b} \beta^{b}=D^{b}\left[2 \alpha A_{a b}\right]=2 A^{a b} D_{b} \alpha+\alpha\left(\frac{4}{3} \gamma^{a b} D_{b} K+16 \pi P_{a}\right)
$$

Γ-Freezing and approximate minimal condition

- With some calculations, one can show that the minimal distortion condition is written as - The conformal factor is coupled!

$$
\tilde{D}^{j}\left(\psi^{6} \partial_{t} \tilde{\gamma}_{i j}\right)=0
$$

- Modifications of the minimal distortion condition are proposed by Nakamura et al. (Prog. Theor. Phys. Suppl. 128, 183 (1997)) and Shibata (Prog. Theor. Phys. 101, 1199 (1999))
- E.g., Nakamura et al. proposed instead to solve the decoupled pseudominimal distortion condition:

$$
\tilde{D}^{j}\left(\partial_{t} \tilde{\gamma}_{i j}\right)=0
$$

- Alcubierre and Brugmann (PRD 63, 104006 (2001)) proposed an approximate minimal distortion condition called GammaFreezing:

$$
\tilde{D}_{j}\left(\partial_{t} \tilde{\gamma}^{i j}\right)=\partial_{t} \Gamma^{i}=0
$$

- Anyway, these conditions are elliptic-type!

Γ-Driver condition

- Alcubierre and Brugmann (PRD 63, 104006 (2001)) converted the Гfreezing elliptic condition into a parabolic one by adding a time derivative of the shift (somewhat similar to the K -driver)

$$
\partial_{t} \beta^{u}=k \partial_{t}{ }^{i}
$$

- Alcubierre et al. (PRD 67, 084023 (2003)) and others (Lindblom \& Scheel PRD 67, 124005 (2003); Bona et al. PRD 72, 104009 (2005)) extended the Γ freezing condition to hyperbolic conditions $\begin{aligned} & \text { - There are several alternative conditions }\end{aligned} \begin{array}{ll}\partial_{t} \beta^{i}=k B^{i} \\ \partial_{t} B^{i}=\partial_{t} \Gamma^{i}-\eta B^{i}\end{array}$
- Shibata (ApJ 595, 992 (2003)) proposed a hyperbolic shift condition

$$
\partial_{t} \beta^{i}=\tilde{\gamma}^{i j}\left(F_{i}+\Delta t_{\text {step }} \partial_{t} F_{i}\right), \quad \Delta t_{\text {step }} \text { : time - step used in simulation }
$$

- To date, the above two families of shift conditions are known to be robust

Overview of numerical relativity

$3+1$ decomposition of $\nabla_{a} T^{a b}=0$

- Energy Conservation Equation (1)

- First, substitute the 3+1 decomposition of $T_{a b}$ to obtain

$$
\begin{aligned}
0 & =\nabla_{b} T_{a}^{b}=\nabla_{b}\left(E n^{b} n_{a}+P^{b} n_{a}+P_{a} n^{b}+S_{a}^{b}\right) \\
& =n_{a} n^{b} \nabla_{b} E+E a_{a}-K E n_{a}-P^{b} K_{b a}+n_{a} \nabla_{b} P^{b}+n^{b} \nabla_{b} P_{a}-K P_{a}+\nabla_{b} S_{a}^{b}
\end{aligned}
$$

- Then, let us project it onto normal direction to Σ. Noting that $\boldsymbol{P}^{a}, \boldsymbol{K}^{a b}$, and \boldsymbol{a}^{b} is purely spatial, we obtain

$$
-n^{b} \nabla_{b} E+K E-\nabla_{a} P^{a}+n^{a} n^{b} \nabla_{b} P_{a}+n^{a} \nabla_{b} S_{a}^{b}=0
$$

- Because $\boldsymbol{n}^{a} \boldsymbol{S}_{a b}=0$, we have

$$
n^{a} \nabla_{b} S_{a}^{b}=-S_{a}^{b} \nabla_{b} n^{a}=S_{a}^{b}\left(K_{b}^{a}+n_{b} a^{a}\right)=S^{a b} K_{a b}
$$

- Similarly,

$$
n^{a} n^{b} \nabla_{b} P_{a}=-P_{a} n^{b} \nabla_{b} n^{a}=-P_{b} a^{b}
$$

- The divergence term of P^{a} is

$$
D_{a} P^{a}=\perp_{a}^{b} \nabla_{b} P^{a}=\left(\delta_{a}^{b}+n_{a} n^{b}\right) \nabla_{b} P^{a}=\nabla_{a} P^{a}-P_{a} a^{a}
$$

$3+1$ decomposition of $\nabla_{a} T^{a b}=0$

- Energy Conservation Equation (2)
- Combining altogether, we reach the energy conservation equation

$$
\begin{aligned}
& n^{b} \nabla_{b} E+D_{b} P^{b}+2 P^{b} a_{b}-K E-K_{a b} S^{a b}=0 \\
& \left(\partial_{t}-\beta^{k} D_{k}\right) E+\alpha\left[D_{b} P^{b}-K E-K_{a b} S^{a b}\right]+2 P^{b} D_{b} \alpha=0 \\
& \partial_{t} E+D_{k}\left(\alpha P^{k}-E \beta^{k}\right)+E\left(D_{k} \beta^{k}-\alpha K\right)-\alpha K_{a b} S^{a b}+P^{b} D_{b} \alpha=0
\end{aligned}
$$

- where we have used

$$
\begin{aligned}
& n^{b} \nabla_{b} E=L_{n} E=\alpha^{-1}\left(L_{t}-L_{\beta}\right) E=\alpha^{-1}\left(\partial_{t}-\beta^{k} D_{k}\right) E \\
& a_{b}=D_{b} \ln \alpha
\end{aligned}
$$

- The last equation will be used to derive the conservative forms of the energy equation

$3+1$ decomposition of $\nabla_{a} T^{a b}=0$

- Momentum Conservation Equation (1)
- To this turn, let us project the equation onto Σ to obtain

$$
E a_{a}-P^{b} K_{b a}+\perp_{a}^{c} n^{b} \nabla_{b} P_{c}-K P_{a}+\perp_{a}^{c} \nabla_{b} S_{c}^{b}=0
$$

- The spacetime-divergence term of $\boldsymbol{S}_{c}{ }_{c}$ can be replaced by the spatial-divergence by

$$
D_{b} S_{c}^{b}=\perp_{b}^{d} \perp_{c}^{e} \nabla_{d} S_{e}^{b}=\perp_{c}^{e}\left(\delta_{b}^{d}+n_{b} n^{d}\right) \nabla_{d} S_{e}^{b}=\perp_{c}^{e} \nabla_{b} S_{e}^{b}-S_{c}^{d} a_{d}
$$

- The projection term with the covariant derivative of $\boldsymbol{P}_{\boldsymbol{c}}$ is

$$
\perp_{a}^{c} n^{b} \nabla_{b} P_{c}=\alpha^{-1} \perp_{a}^{c}\left(\alpha n^{b}\right) \nabla_{b} P_{c}=\alpha^{-1} \perp_{a}^{c}\left(\mathrm{~L}_{\alpha n} P_{c}-P_{d} \nabla_{c}\left(\alpha n^{d}\right)\right)
$$

- Note that (αn)-Lie derivative of any spatial tensor is spatial, and

$$
\nabla_{b}\left(\alpha n^{a}\right)=n^{a} \nabla_{b} \alpha+\alpha \nabla_{b} n^{a}=n^{a} \nabla_{b} \alpha-\alpha\left(K_{b}^{a}+n_{b} a^{a}\right)
$$

- so that

$$
\perp_{a}^{c} n^{b} \nabla_{b} P_{c}=\alpha^{-1} L_{\alpha n} P_{a}+K_{a b} P^{b}
$$

$3+1$ decomposition of $\nabla_{a} T^{a b}=0$

- Momentum Conservation Equation (2)
- Combining altogether, we obtain the momentum conservation equation:

$$
\begin{aligned}
& \left(L_{t}-L_{\beta}\right) P_{a}+\alpha\left[D_{b} S_{a}^{b}+S_{a}^{b} a_{b}-K P_{a}+E a_{a}\right]=0 \\
& \left(\partial_{t}-L_{\beta}\right) P_{a}+\alpha\left[D_{b} S_{a}^{b}-K P_{a}\right]+S_{a}^{b} D_{b} \alpha+E D_{a} \alpha=0 \\
& \left(\partial_{t}-\beta^{c} D_{c}\right) P_{a}+\alpha D_{b} S_{a}^{b}+\left(D_{c} \beta^{c}-\alpha K\right) P_{a}+S_{a}^{b} D_{b} \alpha+E D_{a} \alpha=0 \\
& \partial_{t} P_{a}+D_{c}\left(\alpha S_{a}^{c}-\beta^{c} P_{c}\right)+\left(D_{c} \beta^{c}-\alpha K\right) P_{a}-P_{c} D_{a} \beta^{c}+E D_{a} \alpha=0
\end{aligned}
$$

- Where we have expressed the Lie derivative by spatial covariant derivative
- The last equation will be used in conservative reformulation
- NOTE: In York (1979), because he used $\boldsymbol{P}^{\boldsymbol{a}}$ instead of $\boldsymbol{P}_{\boldsymbol{a}}$, a extra term appear in the equation.

$3+1$ decomposition of $\nabla_{a} T^{a b}=0$

- Conservative Formulation (1)
- Now we will show the energy and momentum conservation equations can be recast to conservative form

$$
\begin{aligned}
& \partial_{t} E+D_{c}\left(\alpha P^{c}-E \beta^{c}\right)+\left(D_{c} \beta^{c}-\alpha K\right) E-\alpha K_{a b} S^{a b}+P^{b} D_{b} \alpha=0 \\
& \partial_{t} P_{a}+D_{c}\left(\alpha S_{a}^{c}-\beta^{c} P_{a}\right)+\left(D_{c} \beta^{c}-\alpha K\right) P_{a}-P_{c} D_{a} \beta^{c}+E D_{a} \alpha=0
\end{aligned}
$$

- First, by taking the trace of evolution eq. of $\gamma_{a b}$, we get

$$
\gamma^{a b}\left(\partial_{t} \gamma_{a b}-D_{a} \beta_{b}-D_{b} \beta_{a}\right)=-2 \alpha K \Rightarrow D_{a} \beta^{a}-\alpha K=\frac{1}{2} \gamma^{i j} \partial_{t} \gamma_{i j}=\frac{1}{\sqrt{\gamma}} \partial_{t} \sqrt{\gamma}
$$

- Second, note that for any rank-(1,1) spatial tensor,

$$
\begin{aligned}
D_{k} T_{i}^{k} & =\partial_{k} T_{i}^{k}+\Gamma_{j k}^{k} T_{i}^{j}-\Gamma_{i k}^{j} T_{j}^{k}=\partial_{k} T_{i}^{k}+\left(\partial_{j} \ln \sqrt{\gamma}\right) T_{i}^{j}-\Gamma_{i k}^{j} T_{j}^{k} \\
& =\frac{1}{\sqrt{\gamma}} \partial_{k}\left(\sqrt{\gamma} T_{i}^{k}\right)-\Gamma_{i k}^{j} T_{j}^{k}
\end{aligned}
$$

$3+1$ decomposition of $\nabla_{a} T^{a b}=0$

- Conservative Formulation (2)
- Using the equations derived the above, we can finally reach the conservative forms of the energy and momentum equations

$$
\begin{aligned}
& \partial_{t}(\sqrt{\gamma} E)+\partial_{k}\left(\sqrt{\gamma}\left(\alpha P^{k}-E \beta^{k}\right)\right)=\sqrt{\gamma}\left(\alpha K_{i j} S^{i j}-P^{k} D_{k} \alpha\right) \\
& \partial_{t}\left(\sqrt{\gamma} P_{i}\right)+\partial_{k}\left(\sqrt{\gamma}\left(\alpha S_{i}^{k}-\beta^{k} P_{i}\right)\right)=\sqrt{\gamma}\left[P_{k} D_{i} \beta^{k}-E D_{i} \alpha+\Gamma_{i j}^{k}\left(\alpha S_{k}^{j}-\beta^{j} P_{k}\right)\right]
\end{aligned}
$$

- For the perfect fluid, for instance, these equations may be solved by high resolution shock capturing schemes

Overview of numerical relativity

Locating the apparent horizon (1)

- Apparent horizon (e.g. Wald (1984)): the apparent horizon is the boundary of the (total) trapped region
- Trapped region: the trapped region is collections of points where the expansion of the null geodesics is negative or zero
- Thus, to locate the apparent horizon, we must calculate the expansion of the null geodesics and determine the points where the expansion vanishes
- Recall that the expansion is related to the trace of the extrinsic curvature : $K \Leftrightarrow$ expansion
- So that let us first define the extrinsic curvature of a null surface N generated by an outgoing null vector on a slice Σ :

Locating the apparent horizon (2)

- Let S to be an intersection of the slice Σ and the null surface \boldsymbol{N} - We denote the unit normal of $\operatorname{Sin} \Sigma$, as s^{a}
- Then the outgoing (\boldsymbol{k}^{a}) and ingoing (\boldsymbol{l}^{a}) null vectors on Sare
- Using k^{a} and l^{a}, the metric on $\operatorname{Sinduced}$ by $g_{a b}$ is given by

$$
\begin{aligned}
\chi_{a b} & =g_{a b}+k_{a} l_{b}+k_{b} l_{a} \\
& =g_{a b}+n_{a} n_{b}-s_{a} s_{b}
\end{aligned}
$$

- Thus we can define the projection operator to S :

$$
P_{b}^{a}=\delta_{b}^{a}+n^{a} n_{b}-s^{a} s_{b}
$$

$$
k^{a} \equiv \frac{1}{\sqrt{2}}\left(n^{a}+s^{a}\right), \quad l^{a} \equiv \frac{1}{\sqrt{2}}\left(n^{a}-s^{a}\right)
$$

Locating the apparent horizon (3)

- Using the projection operator, the extrinsic curvature for \mathbf{N} is defined by

$$
\kappa_{a b}=-P_{a}^{c} P_{b}^{d} \nabla_{(c} k_{d)}
$$

- Because \boldsymbol{k}^{a} is the outgoing null vector on S, the 2D-surface S is the apparent horizon if $\operatorname{tr}[\boldsymbol{K}]=\boldsymbol{K}_{\underline{a}}^{a}=\boldsymbol{K}=\mathbf{0}$
- This condition can be written in terms of s^{a} as

$$
D_{k} s^{k}-K+K_{i j} s^{i} s^{j}=0
$$

- This is a single equation for the three unknown "functions" s^{k} !
- However, the condition that S is closed 2 -sphere and that s^{a} is a unit normal vector bring two additional relation to s^{k}
- For detail, see (e.g. Bowen, J. M. \& York, J. W., PRD 21, 2047 (1980);

Gundlach, C. PRD 57, 863 (1998))

Energy and Momentums

Canonical formulation (1)

- The Lagrangian density of gravitational field in General Relativity is (e.g. Wald (1984))

$$
L_{G} \equiv \sqrt{-g}^{4} R
$$

- Because the 4D Ricci scalar is written as

$$
\begin{aligned}
{ }^{4} R & =2\left(G_{a b} a^{a} n^{b}-{ }^{4} R_{a b} a^{a} n^{b}\right) \\
& =\alpha \sqrt{\gamma}\left(R+K_{a b} K^{a b}-K^{2}\right)+(\text { Divergence terms })
\end{aligned}
$$

- Noting that the extrinsic curvature is

$$
K_{a b}=\frac{1}{2 \alpha}\left(\dot{\gamma}_{a b}-D_{a} \beta^{b}-D_{b} \beta^{a}\right)
$$

- The conjugate momentum $\pi^{a b}$ is defined by

$$
\pi^{a b} \equiv \frac{\partial L_{G}}{\partial \dot{\gamma}_{a b}}=\sqrt{\gamma}\left(K^{a b}-K \gamma^{a b}\right)
$$

Canonical Formulation (2)

- Now we obtain the Hamiltonian density as

$$
\begin{aligned}
H_{G} & \equiv \pi^{a b} \dot{\gamma}_{a b}-L_{G} \\
& =\sqrt{\gamma}\left[\frac{\alpha}{\gamma}\left(-\gamma R+\pi^{a b} \pi_{a b}-\frac{1}{2} \pi^{2}\right)-2 \beta_{b} D_{a}\left(\gamma^{-1 / 2} \pi^{a b}\right)\right]+(\text { Divergence terms })
\end{aligned}
$$

- The Hamiltonian is defined by

$$
H_{G} \equiv \int H_{G} d x^{3}
$$

- The constraint equations are derived by taking the variations with respect to the lapse and the shift, respectively, as

$$
\begin{array}{ll}
C_{H} \equiv-R+\gamma^{-1} \pi_{a b} \pi^{a b}-\frac{1}{2} \gamma^{-1} \pi^{2}=0 & : \text { Hamiltonian constraint } \\
C_{M}^{b} \equiv D_{a}\left(\gamma^{-1 / 2} \pi^{a b}\right)=0 & : \text { Momentumconstraint }
\end{array}
$$

where we have dropped the surface term

Canonical Formulation (3)

- The evolution equations are derived by taking the variations with respect to the canonical variables (e.g. Wald (1984)) :

$$
\begin{aligned}
\dot{\gamma}_{a b} \equiv \frac{\delta H_{G}}{\delta \pi^{a b}}= & 2 \alpha \gamma^{-1 / 2}\left[\pi_{a b}-\frac{1}{2} \gamma_{a b} \pi\right]+2 D_{(a} \beta_{b)} \equiv B_{a b} \\
\dot{\pi}^{a b} \equiv \frac{\delta H_{G}}{\delta \gamma_{\alpha \beta}} & =-\alpha \gamma^{1 / 2}\left[R-\frac{1}{2} R \gamma^{a b}\right]+\frac{1}{2} \alpha \gamma^{-1 / 2} \gamma^{a b}\left[\pi^{c d} \pi_{c d}-\frac{1}{2} \pi^{2}\right]-2 \alpha \gamma^{-1 / 2}\left[\pi^{a c} \pi_{c}^{b}-\frac{1}{2} \pi \pi^{a b}\right] \\
& +\gamma^{1 / 2}\left(D^{a} D^{b} \alpha-\gamma^{a b} D_{c} D^{c} \alpha\right)+\gamma^{1 / 2} D_{c}\left(\gamma^{-1 / 2} \beta^{c} \pi^{a b}\right)-2 \pi^{c(a} D_{c} \beta^{b)} \\
& \equiv A^{a b}
\end{aligned}
$$

- again, we here dropped the divergence terms

Energy for Asymptotically Flat spacetime (1)

- Let us consider the energy of gravitational field in the asymptotically flat spacetime
- Although there is no unique definition of 'local' gravitational energy in General Relativity, we can consider the total energy in the asymptotically flat spacetime
- Asymptotically flat spacetime represent ideally isolated spacetime, and hence, there will be the conserved energy
- A simple consideration based on the Hamiltonian density,

$$
H_{G}=\sqrt{\gamma}\left[\alpha C_{H}-2 \beta_{b} C_{M}^{b}\right]+(\text { Divergence terms })
$$

may lead to a conclusion that the energy of any spacetime is zero when the constraint equations are satisfied!

- This "contradiction" stems from the wrong treatment of the divergence (surface) terms (which we have dropped)

Energy for Asymptotically Flat spacetime (2)

- The boundary conditions to be imposed are not fixed ones $\left.\delta Q\right|_{\text {boundary }}=0$ where Q denotes relevant geometrical variables, but the "asymptotic flatness" :

$$
\alpha=1+O\left(r^{-1}\right), \quad \beta^{i}=O\left(r^{-1}\right), \quad \gamma_{i j}-\delta_{i j}=O\left(r^{-1}\right), \quad \pi^{i j}=O\left(r^{-2}\right)
$$

- Keeping the divergence terms, the variation of the Hamiltonian now becomes (Regge \& Teitelboim, Ann. Phys 88.286 (1974))

$$
\begin{aligned}
\delta H_{G}= & -\oint M^{i j k l}\left[\alpha D_{k}\left(\delta \gamma_{i j}\right)-\left(D_{k} \alpha\right) \delta \gamma_{i j}\right] d \sigma_{l} \\
& -\oint\left[2 \beta_{k} \delta \pi^{k l}+\left(2 \beta^{k} \pi^{j l}-\beta^{l} \pi^{j k}\right) \delta \gamma_{j k}\right] d \sigma_{l}
\end{aligned}
$$

- where we have assumed that the constraint equations and the evolution equations are satisfied, $d \sigma_{l}$ is the volume element of the boundary sphere and $M^{i j k l}$ is defined as

$$
M^{i j k l} \equiv \frac{1}{2} \sqrt{\gamma}\left[\gamma^{i k} \gamma^{j l}+\gamma^{i l} \gamma^{j k}-2 \gamma^{i j} \gamma^{k l}\right]
$$

Energy for Asymptotically Flat spacetime (3)

- Under the boundary conditions of the asymptotic flatness, the non-zero contribution of the surface terms is,

$$
-\oint M^{i j l} D_{k}\left(\delta \gamma_{i j}\right) d \sigma_{l}=-\delta \oint \sqrt{\gamma} \gamma^{i j} \gamma^{k l}\left(\partial_{j} \gamma_{i k}-\partial_{k} \gamma_{i j}\right) d \sigma_{l}
$$

- Thus, we define the Hamiltonian of the asymptotically flat spacetime as

$$
\begin{aligned}
& H_{G}^{\text {asymp.fid }} \equiv H_{G}+16 \pi E_{G}\left[\gamma_{i j}\right] \\
& E_{G}\left[\gamma_{i j}\right] \equiv \frac{1}{16 \pi} \oint \sqrt{\gamma} \gamma^{i j} \gamma^{k l}\left(\partial_{j} \gamma_{i k}-\partial_{k} \gamma_{i j}\right) d \sigma_{l}
\end{aligned}
$$

- Then, the energy of the gravitational fields is not zero but $E\left[\gamma_{i j}\right]$
- The overall factor is determined by the requirement that the energy of an asymptotically flat spacetime is M

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(\delta_{i j}+\frac{2 M x_{i} x_{j}}{r^{3}}\right) d x^{i} d x^{j}
$$

Momentums for Asymptotically Flat spacetime (1)

- The action for the region $\mathrm{V}\left(t_{1}<t<t_{2}\right)$ is

$$
S_{G}=\int_{V} L_{G} d x^{4}=\int_{t_{1}}^{t_{2}} d t \int d^{3} x\left[\pi^{i j} \dot{\gamma}_{i j}-H_{G}\right]
$$

- Taking the variation, we obtain (Regge \& Teiteloim, Ann. Phys 88.286 (1974))

$$
\delta S_{G}=\int_{t_{1}}^{t_{2}} d t \frac{d}{d t} \int d^{3} x\left[\pi^{i j} \delta \gamma_{i j}+\text { terms vanishing by EOM }\right]
$$

- When there is a Killing vector ξ^{a}, the action is invariant under the Lie transport by ξ^{a}
- Making use of $\delta \gamma_{i j}=-L_{\xi} \gamma_{i j}=-\left(D_{i} \xi_{j}+D_{j} \xi_{i}\right)$, we obtain

$$
\delta_{\xi} S_{G}=\int_{t_{1}}^{t_{2}} d t \frac{d}{d t} \int d^{3} x\left[-D_{i}\left(2 \pi^{i j} \xi_{j}\right)+2 \xi_{i} D_{j} \pi^{i j}\right]=0
$$

- Note that the second term in the integrand vanished thanks to the momentum constraint

Momentums for Asymptotically Flat spacetime (2)

- Finally the variation of the action is reduced to

$$
\delta S_{G}=\left[\oint d \sigma_{l}\left(-2 \pi^{k l} \xi_{k}\right)\right]_{t_{1}}^{t_{2}}=0
$$

- Because the Killing vector approaches at the boundary (spacelike infinity) to a constant translation vector field τ_{a}, we have

$$
\tau_{k}\left[P_{G}^{k}\left(t_{2}\right)-P_{G}^{k}\left(t_{1}\right)\right]=0, \quad P_{G}^{k}\left[\gamma_{i j}\right] \equiv-\frac{1}{8 \pi} \oint d \sigma_{I} \pi^{k}
$$

- This equation means that $\underline{\boldsymbol{P}}_{\underline{G}}{ }^{k}$ represent the total linear momentum
- Similarly, the generator of the rotational Lie transport approaches $\varepsilon_{i j k} \varphi^{j} x^{k}$ (φ is a constant vector field, ε is the totally anti-symetric tensor), we may define the total angular momentum by

$$
\varphi^{k}\left[L_{k}^{G}\left(t_{2}\right)-L_{k}^{G}\left(t_{1}\right)\right]=0, \quad L_{k}^{G}\left[\gamma_{i j}\right] \equiv \frac{1}{8 \pi} \oint d \sigma_{l} \varepsilon_{i j k} \pi^{j l} x^{k}
$$

Energy and Momentums : summary

- To summarize, we define the energy, the linear momentum, and the angular momentum in the asymptotically flat spacetime by

$$
\begin{aligned}
& E_{G}\left[\gamma_{i j}\right] \equiv \frac{1}{16 \pi} \oint \sqrt{\gamma} \gamma^{i j} \gamma^{k l}\left(\partial_{j} \gamma_{i k}-\partial_{k} \gamma_{i j}\right) d \sigma_{l} \\
& P_{G}^{k}\left[\gamma_{i j}\right] \equiv-\frac{1}{8 \pi} \oint d \sigma_{l} \pi^{k l} \\
& L_{k}^{G}\left[\gamma_{i j}\right] \equiv \frac{1}{8 \pi} \oint d \sigma_{l} \varepsilon_{i j k} \pi^{j l} x^{k} \\
& \hline
\end{aligned}
$$

- A number of examples of the actual calculation will be found in a textbook (Baumgarte \& Shapiro (2010))

Overview of numerical relativity

References

- General Reference on General Relativity
- Wald R. M., General Relativiy, Chicago University Press (1984)
- The classics on the basis of Numerical Relativity
- Arnowitt R., Deser S., \& Misner C. W., The Dynamics of General Relativity, in Gravitation, ed. L. Witten, Wiley (1962), (Gen. Rel. Grav. 40, 1997 (2008))
- York J. W., Kinematics and dynamics of general relativity,
in Sources of Gravitational Radiation, ed. L. Smarr,
Cambridge University Press (1979)

References

- Recent Textbooks on Numerical Relativity
- Baumgarte T. \& Shapiro S. L., Numerical Relativity.

Cambridge University Press (2010)

- Results of Numerical Relativity Simulations
- Alcubierre M., Intrduction to 3+1 Numerical Relativity,

Oxford University Press (2008)

- Boundary Conditions

- Gourgoulhon E., 3+1 Formalism and Bases of Numerical Relativity, to be published in Lecture Notes in Physics, (gr-qc/0703035)
- Einstein's equations as the Cauchy Problem
- Choquet-Bruhat Y., General Relativity and Einstein Equations,

Oxford University Press (2009)

References

- Locating the Horizons
- Thornburg, J., Event and Apparent Horizon Finders for 3+1 Numerical Relativity, Living Rev. Relativ. 10, 3 (2007)
- ADM mass, and Some useful calculations
- Poisson E. , A Relativist's Toolkit, Cambridge University Press (2004)
- Initial Data Problems
- Cook, G. B. , Initial Data for Numerical Relativity, Living Rev. Relativ. 3, 5 (2000)
- Pfeiffer, H. P. , Initial value problem in numerical relativity, gr-qc/0412002

References

- General Relativistic Numerical Hydrodynamics
- Font, J. A. , Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity, Living Rev. Relativ. 11, 7 (2008)
- Marti, J. M. \& Muller, E. , Numerical Hydrodynamics in Special Relativity, Living Rev. Relativ. 6, 7(2003)

Thoro, E. F. , Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction , Springer (2009)

- Extracting Gravitational Waves
- Reisswig, C., Ott, C. D., Sperhake, \& U. \& Schnetter, E. , Gravitational wave extraction in simulations of rotating stellar core collapse, Phys. Rev. D 83, 064008 (2011)

