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The Goal 
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 The main goal that we are aiming at: 

 

   “To Derive Einstein’s equations in BSSN formalism”  



Notation and Convention 
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 The signature of the metric: ( - + + + ) 

 (We will use the abstract index notation) 

 e.g. Wald (1984);  see also Penrose, R. and Rindler, W.  Spinors and spacetime  vol.1, 

Cambridge Univ. Press (1987) 

 Geometrical unit c=G=1 

 symmetric and anti-symmetric notations 
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Solving Einstein’s equations on computers 
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 Einstein’s equations in full covariant form are a set of 
coupled partial differential equations 
 The solution, metric g

ab
, is not a dynamical object and 

represents the full geometry of the spacetime just as the 
metric of a two-sphere does 

 To reveal the dynamical nature of Einstein’s equations, we must 
break the 4D covariance and exploit the special nature of time 

 One method is 3+1 decomposition in which spacetime 
manifold and its geometry (graviational fields) are divided 
into a sequence of ‘instants’ of time 

 Then, Einstein’s equations are posed as a Cauchy problem 
which can be solved numerically on computers 



3+1 decomposition of spacetime manifold 

 Let us start to introduce foliation or slicing in the 
spacetime manifold M 

 Foliation {S } of M is a family of slices (spacelike 
hypersurfaces) which do not intersect each other and fill 
the whole of M 

 In a globally hyperbolic spacetime, 

   each S is a Cauchy surface which is 

   parameterized by a global time  

   function, t , as St  

 Foliation is characterized by 
   the gradient one-form 
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The lapse function 
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 The norm of a is related to a function called “lapse 
function”, a(xa) , as : 

 

 As we shall see later, the lapse function characterize the 
proper time between the slices 

 Also let us introduce the normalized one-form : 
 

 
 the negative sign is introduced so that the direction of n 

corresponds to the direction to which t  increases  

  na  is the unit normal vector to S 
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The spatial metric of S : gab 
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 The spatial metric gab induced by gab onto S is defined by  

 

 
 Using this ‘induced’ metric, a tensor on M is decomposed 

into two parts: components tangent and normal to S 

 The tangent-projection operator is defined as 

 
 The normal-projection operator is 

 Then, projection of a tensor into S is defined by 

 

 It is easy to check  
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Covariant derivative associated with gab 
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 Covariant derivative acting on spatial tensors  is defined by 

 

 

 The covariant derivative must satisfy the following conditions 

 It is a linear operator : (obviously holds from linearity of ∇) 

 Torsion free : DaDb f = DbDa f , (easy to check by direct calculation) 

 Compatible with the metric : Dc gab=0 , (easy to check also) 

 Leibnitz’s rule holds :  
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Intrinsic and extrinsic curvature for S 
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 The Riemann tensor for the slice S is defined by 

 

 An other curvature tensor, the extrinsic curvature for S is 

defined by 
 

 extrinsic curvature provides information on how much the 
normal direction changes and hence, how S is curved  
 

 the antisymmetric part vanish 
    due to Frobenius’s theorem :  
    “For unit normal na to a slice 
                          ” 

d

abcdcabba RvvDDDD   )( -

S-   tonormalunit  :     , )(

a

baab nnK

S
bx

bb xx  +

)( ba xn
)(  

bba xxn +

parallel 
transported b

aba xKn    -

0][  cba nn

][][ )(3 0 cbcba

a nnnn -



The other expressions of Kab 
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 First, note that 

 

 

 where ab is the acceleration of nb which is purely spatial 

 

 Because the extrinsic curvature is symmetric, we have 

 

 where L n is the Lie derivative with respect to n 

 Also, we simply have 
 

 Thus the extrinsic curvature is related to the “velocity” of 
the spatial metric gab 
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3+1 decomposition of 4D Riemann tensor  
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 Geometry of a slice S is described by gab and Kab 
 gab and Kab represent the “instantaneous” gravitational fields in S 

 In order that the foliation {S} to “fits” the spacetime 
manifold, gab and Kab must satisfy certain conditions known 
as Gauss, Codazzi, and Ricci relations 

 They are related to 3+1 decomposition  
    of Einstein’s equations 

 These equations are obtained by  
    taking the projections of the  
    4D Riemann tensor 
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Gauss relation: spatial projection to S 
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 Let us calculate the spatial Riemann tensor 

 

 

 
 where we used (also note that n vanishes if n is uncontracted) 

 

 Then we obtain the Gauss relation 

 

 

 The contracted Gauss relations are 
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Codazzi relation : mixed projection to S and n 

July 28-August 3, 2011 APCTP International school on NR and GW 16 

 Next, let us consider the “mixed” projection  

 

  where the right hand side is calculated as 

 

 

 Then we obtain the Codazzi relation 

 

 The contracted Codazzi relation is 
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Gauss and Codazzi relations 
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 Note that the Gauss and Codazzi relations depend only on 
the spatial metric gab, the extrinsic curvature Kab, and 
their spatial derivatives 

 This implies that the Gauss-Codazzi relations represent 
integrability conditions that gab and Kab must satisfy for 
any slice to be embedded in the spacetime manifold 

 The Gauss-Codazzi relations are directly associated with 
the constraint equations of Einstein’s equation 



Ricci relation (1) 
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 Let us start from the following equation 

 

 

 

 

 

 The Lie derivative of Kac is  

 

 Then we obtain the Ricci relation 
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Ricci relation (2) 
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 Note that the Lie derivative of K
ab

 is purely spatial, as 

 

 Thus the Ricci relation is 
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Ricci relation (3) 
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 The acceleration ab is related to the lapse function a, as 

 

 

 where we have used the fact that  is closed one-form 

 Then the Ricci relation can be written as  
 
 
 

 Furthermore, using the contracted Gauss relation 
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“Evolution vector” and a na 
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 What is the natural “evolution” vector ? 

 As stated before, the foliation is characterized by the closed one-

form  

 Dual vectors ta to  will be the evolution vector : ata =1 

 One simple candidate is ta=ana 

 Note that na is not the natural evolution vector because 

 

 

 This means that the Lie derivative with respect to na of a tensor 

tangent to S is NOT a tensor tangent to S 

 On the other hand,                 and any tensor field tangent to S is 
Lie transported by ana to a tensor field tangent to S 
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The shift vector 
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 We have a degree of freedom to add any spatial vector, 
called “shift vector”, b a to ana because ab a = 0 

 Therefore the general evolution vector is : ta=ana+b a 

 This freedom in the definition of the evolution time vector 

stems from the general covariance of Einstein’s equations 

 

 It is convenient to rewrite the Ricci relation in terms of 
the Lie derivative of the evolution time vector, as 

 

 

 where we have used 
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3+1 decomposition of Einstein’s equations (1) 
- Decomposition of Tab 
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 Now we proceed 3+1 decomposition of  Einstein’s equations 

 

   using the Gauss, Codazzi, and Ricci relations 

 To do it, let us decompose the stress-energy tensor as 

 
 where                                                             are the energy 

density, momentum density/momentum flux, and stress tensor 
of the source field measured by the Eulerian observer  

 the trace is  

 We shall also use Einstein’s equations in the form of 
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3+1 decomposition of Einstein’s equations (2) 
- Hamiltonian constraint 
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 We first project Einstein’s equation into the direction 
perpendicular to S to obtain  

 

 

 For the left-hand-side, we use the contracted Gauss relation 

 

 We finally obtain the Hamiltonian constraint 

 

 This is a single elliptic equation which must be satisfied 
everywhere on the slice 
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3+1 decomposition of Einstein’s equations (3) 
- Momentum constraint 
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 Similary, “mixed” projection of Einstein’s equations gives 

 

 Using the contracted Codazzi relation 

 

 We reach the momentum constraint 
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3+1 decomposition of Einstein’s equations (4) 
- Evolution equations  
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 The evolution part of Einstein’s equations is given by the full 
projection onto S of Einstein’s equations : 
 
 
 Using a version of the Ricci relation 

 
 

 We obtain the evolution equation for Kab 

 

 

 The evolution equation for gab is given by an expression of Kab 









--








++--+ )(

2

1
8)(

2

1
)(

2

1
28 )(

4 ESSESnnESPnSR ababbaabbaabab gg

b

cabacaccaactac KKKKRDDKR 2
1

)(
1

  

4 -++--- a
aa

bLL









----++-- )(

2

1
8]2)(  ESSKKKKRDDK abab

c

bacababbaabt gaaabLL

ababt K 2)( agb --LL



Summary of 3+1 decomposition 
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 Einstein’s equations are 3+1 decomposed as follows 
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Evolution of constraints 
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 It can be shown that the “evolution” equations for the 
Hamiltonian (CH) and Momentum (CM) constraints becomes 

 

 

 
 Where Fij is the spatial projection : the evolution equation  

 

 

 The evolution equations for the constraints show that the 
constraints are “preserved” or “satisfied” , if 
 They are satisfied initially (CH = CM = 0) 

 The evolution equation is solved correctly (Fab=0) 
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Coordinate-basis vectors 
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 Let us choose the coordinate basis vectors 

 First, we choose the evolution timelike vector t 
a as the 

time-basis vector : 

 The spatial basis vectors are chosen such that 

 The spatial basis vectors are Lie transported along t 
a : 

 

 ( e i )
a remains purely spatial because 

 

 

 ( em )
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Components of geometrical quantities (1) 
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 Now we have set the coordinate basis we proceed to 
calculate the components of geometrical quantities 

 Because the evolution time vector is the time-coordinate 
basis we have 

 From the property of the spatial basis, we have 

 

 Then, 0th contravariant components of spatial tensors vanish 

 

 

 From the definition of the time vector and normalization 
condition of na, we obtain 
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Components of geometrical quantities (2) 
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 From the definition of spatial metric, we have 

 

 

 

 We here note that from the spatial component of the 
following equation, we have  

 

 This means that the indices of spatial tensors can be 
lowered and raised by the spatial metric 

 Then, from the inverse of gab, we obtain 
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An intuitive interpretation  
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an

ana

dti
b

idx

at dtdx ii
b+

))(( 22 dtdxdtdxdtds jjii

ij bbga +++- 

tS

dtt+S

 The lapse function 
measures proper 
time between two 
adjacent slices 

 

 The shift vector 
gives relation of 
the spatial origin 
between slices 



Conformal decomposition 
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 The importance of the conformal decomposition in the time 
evolution problem was first noted by York (PRL 26, 1656 (1971); PRL 

28, 1082 (1972)) 
 He showed that the two degrees of freedom of the gravitational 

field are carried by the conformal equivalence classes of 3-metric, 
which are related each other by the conformal transformation : 

 

 

 In the initial data problems, the conformal decomposition is a 
powerful tool to solve the constraint equations, as studied by York 
and O’Murchadha (J. Math. Phys. 14, 456 (1973); PRD 10, 428 (1974)) (see for 
reviews , e.g., Cook, G.B., Living Rev. Rel. 3, 5 (2000); Pfeiffer, H. P. gr-qc/0412002) 

 In the following, we shall derive conformal decomposition of 
Einstein’s equations 
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“Conformal” decomposition of Ricci tensor (1) 
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 The covariant derivative associated with the conformal 
metric is characterized by 

 

 The two covariant derivatives are related by (e.g. Wald ) 

 

 where Ci
jk is a tensor defined by difference of Christoffel symbols 

 

 

 

 By a straightforward calculation, we can show (e.g Wald ) 
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“Conformal” decomposition of Ricci tensor (2) 

July 28-August 3, 2011 APCTP International school on NR and GW 36 

 Thus the Ricci tensor is decomposed into two parts, one 
which is the Ricci tensor associated with the conformal 
metric and one which contains the conformal factor    

 More explicitly one can show (see e.g. Wald (1984)) 

 

 

 

 

 Then, the Ricci scalar is decomposed as 

 



g

g

ijij

k

kijji

k

kijjiijij

RR

DDDD

DDDDRR

+

-+

--

~
     

)ln
~

)(ln
~

(~4)ln
~

)(ln
~

(4             

ln
~~~2ln

~~
2

~





k

k

k

k

k

k

DDR

DDDDRR
~~

8
~

   

))]ln
~

)(ln
~

(ln
~~

(8
~

[

--

-

-

+-



Conformal decomposition of extrinsic curvature 
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 The first step is to decompose Kij into trace (K) and 
traceless (Aij) parts as  

 

 

 Then, we perform the conformal decomposition of the 
traceless part as  

 

 

 Under these conformal decompositions of the spatial 
metric and the extrinsic curvature, let us consider the 
conformal decomposition of Einstein’s equation 
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“Conformal” decomposition of the evolution 
equations (0) – an additional constraint 
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 In the following, with BSSN reformulation in mind, we set 
the determinant of the conformal metric to be unity: 

 

 with this setting, the conformal factor becomes 

 

 

 In the BSSN formulation, the conformal factor is defined by  
 = ln so that  = lng/12 

 In the case that we do not impose the above condition to the 

background conformal metric, the equations derived in the 
following are modified slightly (for this, see Gourgoulhon, E.,    

gr-qc/0703035) 
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“Conformal” decomposition of the evolution 
equations (1) : the conformal factor 
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 Let us start from the evolution equation of the spatial 
metric g

ij
 : 

 

 Taking the trace of this equation, we have 

 

 Now we use an identity for any matrix A :  

 By setting gij = exp A and taking the Lie derivative, we obtain 

 

 Now we can derive the evolution equation for the 
conformal factor : 
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 Again, we start from the evolution equation for g
ij
 : 

 

 Substituting the decomposition of gij and Kij,  we obtain 

 

 

 

 

 Now, we shall use the evolution equation for the conformal 
factor, and finally, we get 

 

“Conformal” decomposition of the evolution 
equations (2) : the conformal metric 
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 For the later purpose, let us derive the evolution 
equation for the inverse of the conformal metric 

 It is easily obtained from the evolution equation for the 
conformal metric, as 

“Conformal” decomposition of the evolution 
equations (3) : the inverse conformal metric 
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 We start from the evolution equation for Kij : 

 

 We first simply take the trace of this equation  

 

 Here, let make use of the evolution equation for the 
inverse of the spatial metric, 

 

    then we obtain 
 

 Finally,  using the Hamiltonian constraint, we obtain 

“Conformal” decomposition of the evolution 
equations (4a) : the trace of the extrinsic curvature 
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 For convenience, let us express the right-hand-side in 
terms of the conformal quantities, as well as give a 
suggestion how to evaluate the derivative term :  

“Conformal” decomposition of the evolution 
equations (4b) : the trace of the extrinsic curvature 
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 We start from the Lie derivative of Kij  : 

 

 

 Substituting the following equations into this yields 

 

 

 

 
 where TF denotes the trace free part : Tij

TF = Tij - (1/3)gij(trT) 

 The terms that involve K in the right-hand-side can be written as 

“Conformal” decomposition of the evolution 
equations (5a) : the traceless part of the extrinsic curvature 

)2)((4]2 ijij

k

jikijijjiijn SESKKKKRDDK --+-++- gaaaaL

ijnnijijnijn KKAK gg aaaa LLLL
3

1

3

1
++

)3(4]2 ESKRDDK i

in -+++- aaaaL ijijn K 2aga -L









--+-+- ij

k

jikij

TF

ijijjiijn KKKKKSRDDA gaaaa
2TFTF

3

1
2

3

5
)8()(  L









----  k

jikij

k

jikijij

k

jikij AAAKAAKAKKKKK
~~

2
~

3

1
    2

3

1
  

3

1
2

3

5 2 g



July 28-August 3, 2011 APCTP International school on NR and GW 45 

 We further proceed to decompose the left-hand-side : 

 

 

 Combining all of the result, we finally reach 

 

 

 We here note that the second-order covariant derivative of 
the lapse function may be calculated as  

 

 

 

 NOTE: there is the same 2nd order derivative in Rij
 

“Conformal” decomposition of the evolution 
equations (5b) : the traceless part of the extrinsic curvature 

  







-+ ijijnnijijnijn AKAAAA

~

3

2~
ln

~
4

~ 44 a aaaa LLLL

   k

jikij

TF

ijijjiijt AAAKSRDDA
~~

2
~

)8()(
~

)(  

TFTF4 -+-+-- - aaabLL

   aggaaa

aaaa

lk

kl

ijjik

k

ijji

k

k

ijjijiji CDDDD

---

-

  ln~~ln22
~

           

~

)(



 Let us turn now to consider the conformal decomposition 
of the constraint equations 

 Hamiltonian constraint 
 
 
 
 

 Momentum constraint 

“Conformal” decomposition of the constraint 

equations 
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Summary of conformal decomposition 
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 With the conformal decomposition defined by  

 

 The 3+1 decomposition (ADM formulation) of Einstein’s 
equations becomes 
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Lie derivatives of tensor density 
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 A tensor density of weight w is a object which is a tensor 
times gw/2 : 

 One should be careful because the Lie derivative of a tensor 
density is different from that of a tensor, as 
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Lie derivatives in conformal decomposition 
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 The weight factor of the conformal factor  = g1/12 is 1/6 

 Thus the weight factor of the conformal metric and the 
conformal extrinsic curvature is -2/3, so that 

 Note that the Lie derivative along t 
a is equivalent to the 

partial derivative along the time direction 

 Thus 
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Evolution of constraints 
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 It can be shown that the “evolution” equations for the 
Hamiltonian (CH) and Momentum (CM) constraints becomes 

 

 

 
 Where Fij is the spatial projection of the evolution equation  

 

 

 The evolution equations for the constraints show that the 
constraints are “preserved” or “satisfied” , if 
 They are satisfied initially (CH = CM = 0) 

 The evolution equation is solved correctly (Fab=0) 
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Numerical-relativity simulations based on 

the 3+1 decomposition is unstable !! 
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 It is known that simulations based on the 3+1 decomposition 
(ADM formulation), unfortunately crash in a rather short time 

 This crucial limitation may be captured in terms of notions of 
hyperbolicity (e.g. see textbook by Alcubierre (2008) ) 
 Consider the following first-order system 
 The system is called  

 Strongly Hyperbolic ,if a matrix representation of A has real 
eigenvalues and complete set of eigenvectors 

 Weakly Hyperbolic , if A has real eigenvalues but not a complete 
set of eigenvectors 

 The key property of strongly and weakly hyperbolic systems : 
 Strongly hyperbolic system is well-posed, and hence, the solution 

for the finite-time evolution is bounded 

 Weakly hyperbolic system is ill-posed and the solution can be 
unbounded  
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Numerical-relativity simulations based on 

the 3+1 decomposition is unstable !! 
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 It is known that the ADM formulation is only weakly hyperbolic 
( Alcubierre (2008) ) 

 Consequently, the ADM formulation is ill-posed and the numerical 
solution can be unbounded, leading to termination of the simulation 

 We need formulations for the Einstein’s equation which is (at 
least) strongly hyperbolic 

 Let us consider Maxwell’s equations in flat spacetime to capture 
what we should do to obtain a more stable system  
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Note the similarity of these equations 
to those in the ADM formulation 



Consideration in Maxwell’s equations 
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 First of all, let us note the similarity of the Maxwell’s 
equations with the ADM equations (for simplicity in vacuum) 

 

 

 

 

 Second, the Maxwell’s equations are ‘almost’ wave equation 

 

 Recall that in the Coulomb gauge DjA
j=0, the longitudinal part 

(associated with divergence part) of the electric field E does not 

obey a wave equation but is described by a Poisson equation         

(see a standard textbook,  e.g., Jakson) 
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Reformulating Maxwell’s equations (1)  
- Introducing auxiliary variables 
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 A simple but viable approach is to introduce independent 
auxiliary variables to the system  

 Let us introduce a new independent variable defined by 

 

 The evolution equation for this is  

 

 Then, the Maxwell’s equations for the vector potential 
become a wave equation in the form : 
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 A second approach is to impose a good gauge condition 

 In the Lorenz gauge, the Maxwell’s equations in the flat 
spacetime are wave equations 

 

 Alternatively, by introducing a source function, one may 
“generalize” the Coulomb gauge condition so that Poisson-
like equations do not appear 

 

 

  Recall again, that in the Coulomb gauge DjA
j=0, the longitudinal 

part (associated with divergence part) of the electric field E is 

described by a Poisson-type equation 

 

Reformulating Maxwell’s equations (2)  
- Imposing a better gauge 
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 A third approach is to use the constraint equations 

 To see this, let us back to the example considered in 
“introducing auxiliary variables” 

 

 

 

 

 The constraint equation can be used to rewrite the evolution 
equation for the auxiliary variable 

 Seen as the first-order system, the hyperbolic properties of the 
two system is different: the hyperbolicity could be changed ! 

 It is important and sometimes even crucial to use the constraint 
equations to change the hyperbolic properties of the system  

Reformulating Maxwell’s equations (3)  
- Using the constraint equations 
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Reformulating Einstein’s equations 
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 The lessons learned from the Maxwell’s equations are 
 Introducing new, independent variables 

 BSSN ( Shibata & Nakamura PRD 52, 5428 (1995);                                       

                    Baumgarte & Shapiro PRD 59, 024007 (1999) ) 

 see also Nakamura et al. Prog. Theor. Phys. Suppl. 90, 1 (1987) 

 Kidder-Scheel-Teukolsky ( Kidder et al. PRD 64, 064017 (2001) ) 

 Bona-Masso ( Bona et al. PRD 56, 3405 (1997) ) 

 Nagy-Ortiz-Reula ( Nagy et al. PRD 70, 044012 (2004) ) 

 Choosing a better gauge 
 Generalized harmonic gauge ( Pretorius, CQG 22, 425 (2005) ) 

 Z4 formalism ( Bona et al. PRD 67, 104005 (2003) ) 

 Using the constraint equations to improve the hyperbolicity 
 adjusted ADM/BSSN ( Shinkai & Yoneda, gr-qc/0209111 ) 

 BSSN outperforms ( Alcubierre (2008) ) ! 
 Exact reason is not clear 



BSSN formalism (1) 
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 Let first analyze the conformal Ricci tensor 

 By noting that                            the conformal Ricci tensor is 

 

 

 

 If we divide the conformal metric formally as                    , we have 

 

 Thus we can eliminate the “mixed derivative” terms by 
introducing new auxiliary variable ( Shibata & Nakamura (1995) ) 
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BSSN formalism (2) 
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 Baumgarte and Shapiro introduced the slightly different 
auxiliary variables 

 

 In this case,  the mixed-second-derivative terms are 
encompassed as  

 

 

 In linear regime, SN and BS are equivalent 
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BSSN formalism (3) 
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 Finally let us consider the evolution equation for the auxiliary 
variables (giving only a rough sketch of derivation) 
 Let us start from the momentum constraint equation 

 

 

 

 Substituting the evolution equation for the conformal extrinsic 
curvature 

 

 
 We obtain the evolution equations for Fi and i, respectively 

 It can be seen from the above sketch of derivation, the evolution 
equation for i is slightly simpler 
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BSSN formalism (4) 
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 The explicit forms of the evolution equations are 
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BSSN formalism : summary (1) 
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Momentum 

constraint is used 
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BSSN formalism : summary (2) 



Overview of numerical relativity 

Setting ‘realistic’ or 
‘physically motivated’ 

initial conditions 

Locating BH  
(solving AH finder ) 

Extracting GWs 

Solving Einstein’s equations 

Solving source 
filed equations 

Solving gauge 
conditions 

Main loop 

BH excision 

Solving the 
constraint 
equations 

GR-HD 
GR-MHD 
 
GR-Rad(M)HD 
 
Microphysics  
• EOS 

• weak processes 
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Gauge conditions 
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 Associated directly with the general covariance in general 
relativity, there are degrees of freedom in choosing 
coordinates (gauge freedom) 
 Slicing condition is a prescription of choosing the lapse function 

 Shift condition is that of choosing the shift vector 

 Einstein’s equations say nothing about how the gauge 
conditions should be imposed 

 As we have seen in the reformulation of the ADM system, 
choosing “good” gauge conditions are very important to 
achieve stable and robust numerical simulations 
 An improper slicing conditions in a stellar-collapse problem will 

lead to appearance of (coordinate and physical) singularities  

 Also, the shift vector is important in resolving the frame dragging 

effect in simulations of e.g. compact binary merger 



Preliminary  
– decomposition of covariant derivative of na – 
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 The covariant derivative of a timelike unit vector za can 
be decomposed as 

 

 

 

 Where, the deformation of the  

    congruence of the timelike vector 

    is characterized by these tensors  

 

 
 For the unit normal vector to S, na  we have 

 The expansion is –K 

 The shear is –Aab 

 The twist vanishes 
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Geodesic slicing a=1,  bi=0 
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 In the geodesic slicing, the evolution equation of the trace 
of the extrinsic curvature is 

 For normal matter (which satisfies the strong energy condition), 

the right-hand-side is positive  

 Thus the expansion of time coordinate ( -K ) decreases 
monotonically in time  

 In terms of the volume element g1/2 , this means that the 
volume element goes to zero, as 
 

 

 This behavior results in a coordinate singularity 

 As can be seen in this example, how to impose a slicing condition is 
closely related to the trace of the extrinsic curvature 
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Maximal slicing 
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 Because the decrease in time of the volume element results in a 
coordinate singularity, let us maximize the volume element 

 We take the volume of a 3D-domain S : 
   and consider a variation along the time vector 

 At the boundary of S, we set a=1, b i=0 

 

 Thus if K=0 on a slice, the volume is extremal (maximal)  

 We shall demand that this maximal slicing condition holds for 
all slices and set  

 

 The maximal slicing has a strong singularity avoidance property  
(E.g. Estabrook & Wahlquist PRD 7, 2814 (1973); Smarr & York, PRD 17, 1945/2529 (1978) ) 

 However this is a elliptic equation and is computationally expensive 


S

xdSV 3][ g
aaa nt ba +

   -+-
SS

i

it xdKKxdSV 33 )(][ gabggaL

)](4)(0 SEKKDDK ij

ij

i

it +++-- aabLL



(K-driver)/(approximate maximal) condition 
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 As a generalization of the maximal slicing condition, let us 
consider the following condition with a positive constant c  

 
 This (elliptic) condition drives K back to zero even when K 

deviates from zero due to some error or insufficient convergence 

 Balakrishna et al. ( CQG 13, L135 (1996) ) and Shibata ( Prog. Theor. 

Phys. 101, 251 (1999) ) converted this equation into a parabolic 
one by adding a “time” derivative of the lapse :  

 

 If a certain degree of the “convergence” is achieved and the lapse 

relaxes to a “stationary state”, it suggests 

 This condition is called K-driver or approximate maximal 
slicing condition 
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Harmonic slicing 
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 The harmonic gauge condition                  have played an 
important role in theoretical developments (Choquet-Bruhat’s textbook) 

 Existence and uniqueness of the solution of the Cauchy problem of 

Einstein’s equations (somewhat similar to Lorenz gauge in EM) 

 The harmonic slicing condition is defined by  

 

 Note that                     

 The harmonic slicing condition can be written as 

 

 This is an evolution equation 

 It is known that the harmonic slicing condition has some 
singularity avoidance property, although weaker than that of the 
maximal slicing ( e.g. Cook & Scheel PRD 56, 4775 (1997), Alcubierre’s textbook ) 
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Generalized harmonic slicing  
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 Bona et al. ( PRL 75, 600 (1995) ) generalized the harmonic 
slicing condition to  

 

 This family of slicing includes the geodesic slicing ( f=0 ), the 

harmonic slicing ( f=1 ), and formally the maximal slicing ( f= ) 

 The choice f(a)=2/a , which is called 1+log slicing , has  
stronger singularity avoidance properties than the 
harmonic slicing ( Anninos et al. PRD 52, 2059 (1995) ) 

 The 1+log slicing has been widely used and has proven to be a 

successful and robust slicing condition 
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Minimal distortion (shift) condition 
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 Smarr and York (PRD 17, 1945/2529 (1978)) proposed a well motivated 
shift condition called the minimal distortion condition 

 As seen in the preliminary, the “distortion” part of the congruence 
is contained in the shear tensor 

 They define a distortion functional by 
    and take a variation in terms of the shift 

 here the distortion tensor is defined by 
 
 

 The resulting shift condition is 
 Beautiful and physical but vector elliptic equations  (computationally 

expensive) 
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-Freezing and  

approximate minimal condition 
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 With some calculations, one can show that the minimal 
distortion condition is written as 
 The conformal factor is coupled ! 

 Modifications of the minimal distortion condition are proposed 
by Nakamura et al. (Prog. Theor. Phys. Suppl. 128, 183 (1997)) and 
Shibata (Prog. Theor. Phys. 101, 1199 (1999)) 

 E.g., Nakamura et al. proposed instead to solve the decoupled  pseudo-

minimal distortion condition : 
 

 Alcubierre and Brugmann (PRD 63, 104006 (2001)) proposed an 
approximate minimal distortion condition called Gamma-
Freezing :  

 

 Anyway, these conditions are elliptic-type ! 
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-Driver condition 
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 Alcubierre and Brugmann (PRD 63, 104006 (2001)) converted the -
freezing elliptic condition into a parabolic one by adding a 
time derivative of the shift (somewhat similar to the K-driver) 

 

 Alcubierre et al. (PRD 67, 084023 (2003)) and others (Lindblom & Scheel 

PRD 67, 124005 (2003); Bona et al. PRD 72, 104009 (2005)) extended the -
freezing condition to hyperbolic conditions 

 There are several alternative conditions 

 

 Shibata (ApJ 595, 992 (2003)) proposed a hyperbolic shift condition  

 

 To date, the above two families of shift conditions are known 
to be robust 
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3+1 decomposition of                
- Energy Conservation Equation (1) 
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 First, substitute the 3+1 decomposition of Tab to obtain 

 

 

 Then, let us project it onto normal direction to S.                    

Noting that Pa, Kab, and ab is purely spatial, we obtain 

 

 Because naSab=0, we have 

 

 Similarly, 
 

 The divergence term of Pa is  
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 Combining altogether, we reach the energy conservation 
equation 

 

 

 

 where we have used 

 

 

 The last equation will be used to derive the conservative forms 

of the energy equation 

 

 

3+1 decomposition of                
- Energy Conservation Equation (2) 
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 To this turn, let us project the equation onto S to obtain 

 

 The spacetime-divergence term of Sb
c can be replaced by 

the spatial-divergence by 

 

 The projection term with the covariant derivative of P
c
 is 

 

 Note that (an)-Lie derivative of any spatial tensor is spatial, and  

 

 so that 

3+1 decomposition of                
- Momentum Conservation Equation (1) 
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 Combining altogether, we obtain the momentum 
conservation equation :  

 

 

 

 

 Where we have expressed the Lie derivative by spatial covariant 
derivative 

 The last equation will be used in conservative reformulation 

 NOTE: In York (1979), because he used Pa instead of Pa, a extra 

term appear in the equation. 

3+1 decomposition of                
- Momentum Conservation Equation (2) 
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 Now we will show the energy and momentum conservation 
equations can be recast to conservative form 

 

 

 First, by taking the trace of evolution eq. of gab, we get 

 

 Second, note that for any rank-(1,1) spatial tensor, 

 

3+1 decomposition of                
- Conservative Formulation (1) 
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 Using the equations derived the above, we can finally reach 
the conservative forms of the energy and momentum 
equations 

 

 

 

 

 For the perfect fluid, for instance, these equations may be 
solved by high resolution shock capturing schemes  

3+1 decomposition of                
- Conservative Formulation (2) 
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Locating the apparent horizon (1) 
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 Apparent horizon (e.g. Wald (1984)): the apparent horizon 
is the boundary of the (total) trapped region 

 Trapped region: the trapped region is collections of points where the 

expansion of the null geodesics is negative or zero 

 Thus, to locate the apparent horizon, we must calculate the 
expansion of the null geodesics and determine the points 
where the expansion vanishes 

 

 Recall that the expansion is related to the trace of the 
extrinsic curvature : K  expansion 

 So that let us first define the extrinsic curvature of a null 
surface N generated by an outgoing null vector on a slice S:  

 

 



Locating the apparent horizon (2) 
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 Let S to be an intersection of the slice S and the null surface N 
 We denote the unit normal of S in S, as sa  

 Then the outgoing ( ka ) and ingoing ( la ) null vectors on S are 

 
 Using ka and la , the metric 
    on S induced by gab is given by 
 
 
 
 Thus we can define the  
    projection operator to S : 
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Locating the apparent horizon (3) 

July 28-August 3, 2011 APCTP International school on NR and GW 85 

 Using the projection operator, the extrinsic curvature for N 
is defined by 

 
 Because ka is the outgoing null vector on S, the 2D-surface S 

is the apparent horizon  if  tr[k] = ka
a = k = 0 

 This condition can be written in terms of sa as 

 

 
 This is a single equation for the three unknown “functions” sk ! 

 However,  the condition that S is closed 2-sphere and that sa 
is a unit normal vector bring two additional relation to sk 

 For detail, see ( e.g. Bowen, J. M. & York, J. W., PRD 21, 2047 (1980);  

Gundlach, C. PRD 57, 863 (1998) ) 
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Energy and Momentums 
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Canonical formulation (1) 
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 The Lagrangian density of gravitational field in General 
Relativity is (e.g. Wald (1984)) 

 

 Because the 4D Ricci scalar is written as 

 

 

 Noting that the extrinsic curvature is 

 

 The conjugate momentum ab is defined by 
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Canonical Formulation (2) 
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 Now we obtain the Hamiltonian density as 

 

 

 

 The Hamiltonian is defined by 
 

 The constraint equations are derived by taking the variations with 

respect to the lapse and the shift, respectively, as  

 

 

 

     where we have dropped the surface term 
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Canonical Formulation (3) 
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 The evolution equations are derived by taking the variations 
with respect to the canonical variables (e.g. Wald (1984)) : 

 

 

 

 

 

 again, we here dropped the divergence terms 
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Energy for Asymptotically Flat spacetime (1) 
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 Let us consider the energy of gravitational field in the 
asymptotically flat spacetime 
 Although there is no unique definition of ‘local’ gravitational 

energy in General Relativity, we can consider the total energy in 
the asymptotically flat spacetime 

 Asymptotically flat spacetime represent ideally isolated 
spacetime, and hence, there will be the conserved energy 

 A simple consideration based on the Hamiltonian density, 

 

   may lead to a conclusion that the energy of any spacetime 
is zero when the constraint equations are satisfied ! 

 This “contradiction” stems from the wrong treatment of 
the divergence (surface) terms (which we have dropped) 
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Energy for Asymptotically Flat spacetime (2) 
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 The boundary conditions to be imposed are not fixed ones 
Q|boundary = 0 where Q denotes relevant geometrical variables, 
but the “asymptotic flatness” : 

 

 Keeping the divergence terms, the variation of the 
Hamiltonian now becomes (Regge & Teitelboim, Ann. Phys 88. 286 (1974)) 

 

 

 where we have assumed that the constraint equations and the 
evolution equations are satisfied, dl is the volume element of the 

boundary sphere and Mijkl is defined as 
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Energy for Asymptotically Flat spacetime (3) 
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 Under the boundary conditions of the asymptotic flatness, 
the non-zero contribution of the surface terms is, 

 

 Thus, we define the Hamiltonian of the asymptotically flat 
spacetime as 

 

 

 
 Then, the energy of the gravitational fields is not zero but E[gij] 

 The overall factor is determined by the requirement that the 
energy of an asymptotically flat spacetime is M 
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Momentums for Asymptotically Flat spacetime (1)  
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 The action for the region V (t1<t<t2) is 

 

 

 Taking the variation, we obtain (Regge & Teitelboim, Ann. Phys 88. 286 (1974)) 

 

 

 When there is a Killing vector  a , the action is invariant 
under the Lie transport by  a  

 Making use of                                      , we obtain 

 

 

 Note that the second term in the integrand vanished thanks to the 

momentum constraint 
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 Finally the variation of the action is reduced to 

 

 
 Because the  Killing vector approaches at the boundary (spacelike 

infinity) to a constant translation vector field ta , we have 

 

 

 This equation means that PG
k represent the total linear momentum 

 Similarly, the generator of the rotational Lie transport approaches  
 ijk j j xk (j is a constant vector field,  is the totally anti-symetric 
tensor) , we may define the total angular momentum by 

Momentums for Asymptotically Flat spacetime (2)  
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 To summarize, we define the energy, the linear momentum, 
and the angular momentum in the asymptotically flat 
spacetime by 

 

 

 

 

 

 
 

 A number of examples of the actual calculation will be found in a 
textbook (Baumgarte & Shapiro (2010)) 

Energy and Momentums : summary 
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