東京大学における 突発天体の 光赤外フォローアップ体制

本原顕太郎、土居守、酒向重行 他

(東京大学天文学教育研究センター)

Observations of Outburst Objects by Opt/NIR

- Novae, Supernovae : Discovery and position ID in Opt/IR
- Gamma-ray bursts : Discovery in Gamma-ray, position ID in X-ray, detail observation in Opt/IR
- Counterpart objects for GW sources : Discovery in GW, position ID in Opt/IR
- An outburst phenomenon requires prompt and sensitive Opt/IR observations to understand its physics, as well as the discovery and position ID.

Necessity of NIR Follow-up

Barrier for Identification : Dust Obscuration

- Core collapse SNe explosion :
 - ✓ SF Region embedded in dust clouds / $A_V = 0 5$ mag typ.
- Galactic Objects:
 - ✓ Galactic Plane, especially toward Galactic Center, is hidden by interstellar dust clouds

NIR follow-up is also necessary

Especially for Kilonovae

SED is expected to peak @ NIR

Kilonovae Identification/Study Strategy : 2015

GW (e.g. KAGURA)

Optical ID @ KISO/

KWFC

Spectroscopy / IR imaging With OISTER framework miniTAO, Nayuta, Hiroshima...

Detailed Study with Large Telescopes e.g. Subaru

Opt/IR Facilities at IoA, Univ. Tokyo

Basic Strategy :

Optical Discovery / Identification by Kiso 1m Telescope

- ✓ Optical Wide-Field Imager
- ✓ KWFC in Operation

✓ Tomoe in Design Phase

• Optical/NIR Follow-up by Atacama and Other Observatories

 miniTAO 1.0m Telescope (Atacama, Chile) in Operation with ANIR for NIR imaging

LISS optical spectrograph at Nishiharima Observatory

Detailed study with Large telescopes

✓ Subaru 8.2m

✓ TAO 6.5m Telescope (Atacama, Chile) under construction

Kiso Observatory

1.0m Schmidt Telescope at Kiso, Nagano

Current Instrument : KWFC

✓ Wide-field Imager (2.2x2.2 degree FoV)

✓ Eight 2kx4k CCDs

✓ See Tanaka-san's presentation for current surveys

miniTAO 1m Telescope

1.05m Infrared Telescope

Summit of Co. Chajnantor / Northern Chile ✓ 5640m altitude

Excellent conditions
 High clear fraction(82% photometric)
 Good seeing(median 0.69" @ V-band)
 Extremely dry(PWV:0.85mm median)

ANIR : NIR Camera for miniTAO

•5x5 arcmin² FoV

•0.9-2.5 μm Imaging : Y, J, H, Ks and NBFs

• Simultaneous optical observation possible : B, V, R, I and slitless grism $(\lambda/\Delta\lambda^{\sim}10)$

 Remotely Operated from Base Facility @ San Pedro de Atacama, 2500m

An Example of GRB follow-up

•GRB091018

✓ z=0.971 burst

✓~5min exposure

 $\checkmark \sim \nu^{-0.76}$ power law SED

 Comparable or higher sensitivity than GROND, thanks to the good seeing

Current Status of miniTAO/ANIR

- •~FY2013 : operated only a limited period : ~30nights per year
- FY2014 : operation suspended due to shortage in resouces
- FY2015 : operation will be resumed

If you are interested in observing at miniTAO/ANIR, please let us know!

LISS : Line Imager and Slit Spectrograph

High sensitivity optical spectrograph, installed on Nayuta 2m telescope (Hashiba+14)

- ✓ Very low resolution grism (λ/Δλ~100)
- Hamamatsu high depletion CCD

Currently, the most sensitive optical spectrograph in Japan

Available as a PI instrument at Nishiharima Observatory

OISTER: Follow-up Framework in Japan

Optical and **I**nfrared **S**ynergetic **T**elescopes for **E**ducation and **R**esearch

Collaboration Small to Medium size telescopes mainly in Japan

	機関	サイト	望遠鏡
主体機関	北海道大学	名寄(北海道)	1.6 m ピリカ
(10機関)	埼玉大学	埼玉	0.55 m
	東京大学	木曽(長野)	1.05 m 木曽シュミット
		アタカマ(チリ)	1.04 m miniTAO
	東京工業大学	明野 (山梨)	0.5 m MITSuME
	名古屋大学	サザーランド(南ア)	1.4 m IRSF
	京都大学	京都	0.4 m
	兵庫県立大学	西はりま (兵庫)	2.0 m なゆた
	国立天文台	岡山	1.88 m
			0.5m MITSuME
	広島大学	東広島	1.5 m かなた
	鹿児島大学	入来(鹿児島)	1.0 m
	国立天文台	石垣島 (沖縄)	
協力機関	群馬県	ぐんま天文台	1.5m
(2#郷月月)			
(317戌(天))	京都産業大学	神山 (京都)	1.3m 荒木

Future Plan

• Tomoe : Upgrade of Kiso 1m Schimidt Telescope

• TAO 6.5m : New 6.5m Infrared Telescope at Co. Chajnantor

Tomoe : Next Generation WFC at Kiso Observatory

Specifications of Tomoe

• Telescope: Kiso 105 cm Schmidt

• Field of view : 20 deg² in ϕ 9 deg

 Sensor: 1k x 2k CMOS sensor at ambient temperature

•# of CMOS: 84

- Pixel scale : 1.2 arcsec/pix
- Frame rate : 2 frames/sec (max)

• Filter : SDSS-g+r, SDSS-g, SDSS-r , be exchanged manually

Numbers in the circles indicate limiting magnitudes.

TAO 6.5m Telescope

To construct a 6.5m infrared-optimized telescope at the summit of Co. Chajnantor, next to miniTAO

- Design Based on Magellan 6.5m Telescopes
- Utilize the excellent condition of Co. Chajnantor
 ✓ Clear fraction, seeing, IR transparency

Current Status of Construction

- Major components now under construction
 - ✓ Primary, secondary, and tertiary mirrors
 - ✓ Telescope structure
 - ✓ Upper dome structure
 - ✓ Instruments
 - ✓ Fabrication of parts completed by the end of FY2014

TAO 6.5-m mirror on LOG during front surface generating.

TAO 6.5-m mirror with front surface generated with 100 mesh metal bond cup wheel.

Instruments for TAO

- Two Instruments under development
 - \checkmark SWIMS : NIR (0.9-2.5 μm) MOS Spectrograph with 9.6 arcmin FoV
 - ✓ MIMIZUKU : MIR (2-38µm) Imager/Spectrograph
 - ⇒Best infrared-wavelength coverage among ground-based telescope
- U-band optimized optical spectrograph under consideration
- Quick switching between instruments be done by rotating tertiary mirror

MIMIZUKU

Kilonovae Identification/Study Strategy : Update

GW (e.g. KAGURA)

Optical ID @ KISO/

Tomo-e

Spectroscopy / IR imaging With OISTER framework miniTAO, Nayuta, Hiroshima...

Schedule

FY2017 : Engineering First Light

FY2018 : Science First Light with SWIMS

Summary

 IoA, University of Tokyo has been developing a follow-up framework of outburst objects, consisting of

- ✓ KWFC / KISO 1m telescope
- ✓ ANIR / miniTAO 1m @ Chile
- ✓LISS / Nayuta 2m

within the network of OISTER framework.

Also, we have been developing a new instrument / facilities

✓ Tomoe at Kiso 1m telescope, coveing 9deg FoV

✓ TAO 6.5m telescope optimized for infrared observations

Both expected to be commissioned at 2017-2018.