

連星中性子星合体

NR simulations, mass ejection, and EM counterparts

Yuichiro Sekiguchi (YITP)

重力波天文学に向けて...

KAGRA

Advanced LIGO

Advanced Virgo

有望な波源 コンパクト天体連星の合体

- Expected event rate ~ a few ~ 10 / yr
- ▶ 理論波形との matched filtering 解析
 - ▶ 膨大なパラメータ空間
- ▶ 電磁波対応天体の観測
 - ▶ パラメータ空間の縮減(実効的にS/N向上)
 - ▶ 発生時刻·位置(母銀河)決定
 - 電磁波観測を trigger とした解析
 - Multi-messenger confirmation
- ▶ 連星合体の観測がもたしうる情報
 - ▶ 高エネルギー天体現象との関連
 - 元素の起源、銀河の化学進化
 - 中性子星内部状態
 - ▶ 強重力場におけるGRテスト, ... etc

Density contour Animation by Hotokezaka

T=0 ms

25

20

15

10

5

o

Possible EM counterparts : Similarities to SNe

<u>Supernovae</u>

- Long GRBs
 - Prompt (γ), afterglow (X to Radio)

Supernova remnants

- Synchrotron: Ejecta-ISM interaction
- Activities Powered by Pulsar
- Radioactive decay of ⁵⁶Ni
 - produced in the explosive ejecta
 - Optical
- Classification by spectra
- Shock breakout
 - UV ~ X. (e.g. Tominaga+ 2009)

Merger of NS-NS, BH-NS

- Short GRBs
 - Prompt (γ), afterglow (X to radio)

Merger remnants

- Radio Flare: Ejecta-ISM interaction
- Powered by Massive NS ? (Zhang 2013)
- Decay of r-process elements
 - Proceeds in the n-rich ejecta
 - Macronova / Kilonova / r-process nova
- Classification by spectra ???
- Merger Shock breakout
 - X-ray : Kyutoku et al. (2012)

Shibata et al. 2005,2006 Sekiguchi et al, 2011 Hotokezaka et al. 2013

Evolution of NS-NS mergers

x (km)

Kiuchi et al. PRL (2010); Hotokezaka et al. (2013)

Messengers of NS-NS mergers

Possible EM counterparts : Similarities to SNe

<u>Supernovae</u>

- Long GRBs
 - Prompt (γ), afterglow (X to Radio)

Supernova remnants

- Synchrotron: Ejecta-ISM interaction
- Activities Powered by Pulsar
- Radioactive decay of ⁵⁶Ni
 - produced in the explosive ejecta
 - Optical
- Classification by spectra
- Shock breakout
 - UV ~ X. (e.g. Tominaga+ 2009)

Merger of NS-NS, BH-NS

- Short GRBs
 - Prompt (γ), afterglow (X to radio)

Merger remnants

- Radio Flare: Ejecta-ISM interaction
- Powered by Massive NS ? (Zhang 2013)
- Decay of r-process elements
 - Proceeds in the n-rich ejecta
 - Macronova / Kilonova / r-process nova
- Classification by spectra ???
- Merger Shock breakout
 - X-ray : Kyutoku et al. (2012)

Importance of magnetic fields

- Inspiral phase : dynamically not important
- After the merger : play a role if large (~ 10^{14-15} G) B-fields exist
- Amplification mechanism of B-field
 - Kelvin-Helmholtz instability ???

- Magneto-rotational instability ?
 - Balbus & Howley 1998

$$\lambda_{\rm MRI}^{\rm max} \sim 1.6 \, \rm{km} \left(\frac{\rho}{10^{12} \, g \, / \, \rm{cm}^3}\right)^{-1/2} \left(\frac{B}{10^{15} G}\right) \left(\frac{\Omega}{10^4 \, \rm{rad/s}}\right)^{-1}$$

Needs high-resolution studies

Evolution of B-field energies

Kiuchi et al. (2014)

Multi Messengers ad GW counterpart

Jets of short GRBs might be collimated in general

- SGRB111020A : $\theta_j \sim 3-8^\circ$ (Fong et al. 2012)
- SGRB051121A : $\theta_i \sim 7^\circ$ (Burrows et al. 2006)
- Most of GRB Jets are expected to be Off-Axis \Rightarrow **very faint**
- Emission from cocoon ??
- We need 4π emission events
 - Associated with 4π ejecta
 - Merger shock breakout
 - Dynamical ejecta
 - neutrino-driven/MHD winds
 - Late-time disk dissolution
 - □ Fernandez & Metzger 2013
 - Quests for 4π EM counterparts

Hotokezaka & Piran (2015)

Radio flare from Ejecta-ISM interaction

- External shock with inter stellar matter (ISM) : a 4π emission
- Synchrotron radiation becomes most luminous when ejecta mass = swept-up ISM mass: for typical values (Nakar & Piran 2011)

$$t_{\text{peak}} \sim 4 \text{ yrs} \left(\frac{E_{\text{ejecta}}}{10^{50} \text{ ergs}}\right)^{1/3} \left(\frac{n_{\text{ISM}}}{1 \text{ cm}^{-3}}\right)^{-1/3} \left(\frac{v_{\text{ejecta}}}{0.2c}\right)^{-5/3}$$

$$F_{\nu} \sim 0.1 \,\mathrm{mJy} \,\left(\frac{E_{\mathrm{ejecta}}}{10^{50} \mathrm{ergs}}\right) \left(\frac{n_{\mathrm{ISM}}}{1 \,\mathrm{cm}^{-3}}\right)^{0.9} \left(\frac{\nu_{\mathrm{ejecta}}}{0.2c}\right)^{2.8} \left(\frac{D}{200 \,\mathrm{Mpc}}\right)^{-2} \left(\frac{\nu_{\mathrm{obs}}}{1.4 \,\mathrm{GHz}}\right)^{-0.75}$$

ISM density may be much smaller : according to recent SGRB obs.

- $n_{ISM} \sim 0.01-0.1 \text{ cm}^{-3}$ for SGRB 111020A (Fong et al. 2012)
- $n_{IMS} \sim 0.0001-1 \text{ cm}^{-3}$ for SGRB 111117A (Margutti et al. 2012)
- Radio flare may be less bright and shine in a very late time : Not very suited as EM counterparts of GWs

Radio emissions : 150MHz @200Mpc

Radio emissions : 1.4GHz @200Mpc

Rotation powered activities ? might be promising for low-mass binary

- If a stable massive NS is survived, additional EM emissions powered by NS-rotation may be expected (Metzger et al. 2011; Zhang 2013; Gao et al. 2013)
 - ▶ Compared to normal pulsars, rapid rotation (P~ms), strong B-fields (B~10¹⁵ G)

However, such additional emissions may not be very frequent :

- Nuclear theory : might hard to make such a very stiff EoS with Mmax > 2.4Msolar
 - For canonical mass binary : otherwise need low mass binary
- SGRB : if central engine of SGRB be BH + Disk, frequent formation of the massive NS means that there are much more mergers

- ~1/3 of SGBRs may have late-time activity
 - which could be originated in the massive SN
- Most of them are short duration < O(100s)</p>
 - Collapse to a BH ?
 - shorter than the spin down timescale > 1000s

NS mass/radius measurements

- The measurement of flux and temperature yields an apparent angular size (pseudo-BB) $\frac{R_{\infty}}{D} = \frac{R}{D} \frac{1}{\sqrt{1 - GM / Rc^2}}$ $F \propto T_{\text{eff}}^4 \frac{R_{\infty}^2}{D^2}$
 - Many uncertainties : redshift, distance, interstellar absorption, atmospheric composition
- Good Targets:
 - Quiescent X-ray binaries in globular clusters
 - Bursting sources with peak flux close to Eddington limit
- Imply rather small radius
 - If true, maximum mass may not be much greater than 2Msun

Kilonova/Macronova/r-process nova/巨新星

- Merger ejecta will be very neutron rich: rapid neutron capture (r-process) proceeds (Lattimer & Schramm 1974): n + (Z,N) ⇒ (Z,N+1)
- Competition with the β -decay : (Z,N+1) \Rightarrow (Z+1,N) + e + \overline{v}_e
 - The r-process is very sensitive to how much neutrons are there, that is, to the electron fraction Ye (= Yp = 1 – Yn) : we need michrophysics !
- Then, EM transients powered by radioactivity of the r-process elements were expected (Li & Paczynski 1998)

$$\begin{aligned} t_{\text{peak}} \sim 1 \, \text{days} \left(\frac{v}{0.3c} \right)^{-1/2} \left(\frac{M}{0.01M_{\text{solar}}} \right)^{1/2} \left(\frac{\kappa}{0.1 \, \text{cm}^2 \, / \, g} \right)^{1/2} \\ L_{\text{peak}} \sim 10^{42} \, \text{erg/s} \, \left(\frac{f}{10^{-6}} \right) \left(\frac{v}{0.3c} \right)^{1/2} \left(\frac{M}{0.01M_{\text{solar}}} \right)^{1/2} \left(\frac{\kappa}{0.1 \, \text{cm}^2 \, / \, g} \right)^{-1/2} \\ T_{\text{peak}}^{\text{eff}} \sim 10^4 \, \text{K} \, \left(\frac{f}{10^{-6}} \right)^{1/4} \left(\frac{v}{0.3c} \right)^{-1/8} \left(\frac{M}{0.01M_{\text{solar}}} \right)^{-1/8} \left(\frac{\kappa}{0.1 \, \text{cm}^2 \, / \, g} \right)^{-3/8} \end{aligned}$$

Kilonova/Macronova/r-process nova/巨新星

- Merger ejecta will be very neutron rich: rapid neutron capture (r-process) proceeds (Lattimer & Schramm 1974): n + (Z,N) ⇒ (Z,N+1)
- Competition with the β -decay : (Z,N+1) \Rightarrow (Z+1,N) + e + \overline{v}_e
 - The r-process is very sensitive to how much neutrons are there, that is, to the electron fraction Ye (= Yp = 1 – Yn) : we need michrophysics !
- Recent critical update : Opacities are dominated by lanthanoids : orders of magnitude (~100) larger (Kasen e al. 2013; Tanaka & Hotokezaka 2013)

$$I_{\text{peak}} \sim 10 \text{ days} \left(\frac{v}{0.3c}\right)^{-1/2} \left(\frac{M}{0.01M_{\text{solar}}}\right)^{1/2} \left(\frac{\kappa}{10 \text{ cm}^2/g}\right)^{1/2} \qquad 1 \text{ day} \Rightarrow 10 \text{ days}$$

$$L_{\text{peak}} \sim 10^{41} \text{erg/s} \left(\frac{f}{10^{-6}}\right) \left(\frac{v}{0.3c}\right)^{1/2} \left(\frac{M}{0.01M_{\text{solar}}}\right)^{1/2} \left(\frac{\kappa}{10 \text{ cm}^2/g}\right)^{-1/2} \qquad 1/10 \text{ dimmer}$$

$$T_{\text{peak}}^{\text{eff}} \sim 2 \times 10^3 \text{ K} \left(\frac{f}{10^{-6}}\right)^{1/4} \left(\frac{v}{0.3c}\right)^{-1/8} \left(\frac{M}{0.01M_{\text{solar}}}\right)^{-1/8} \left(\frac{\kappa}{10 \text{ cm}^2/g}\right)^{-3/8} \qquad \text{Opt-UV} \Rightarrow \text{NIR}$$

Neutron capture processes

large neutron densities

Can synthesize all heavy nuclei

moderate neutron densities

- does not synthesize all heavy nuclei
- terminates at Pb, Bi

s-process / r-process path

The r-process: a observational request

- Many r-rich, low metallicity halo stars show remarkable agreement with solar pattern
 - R-process must occur in the early Galaxies
 - Astrophysical events must reproduce this common pattern (Z>40, A>90)
- suggests existence of "main" r-process sites producing the solar-like common pattern

Conditions for 'main' r-process nucleosynthesis

- Neutron capture : packing neutrons into 'seed' nuclei n + (Z,N) ⇒ (Z,N+1)
 - Large #neutron/#seed ratio is required
 - ► A(gold) A (seed) ~ 100

Low electron fraction Ye

• To have a large number of free neutrons

Higher entropy per baryon

• To slow the seed nuclei production

Short expansion timescale

 To freeze seed production with rapid decrease of temperature

Supernova (SN) explosion (+ PNS v-driven wind) :

Burbidge et al. 1957; Cameron 1957

- n-rich ejecta nearby proto-NS
- Not promising according to recent studies (e.g. Roverts et al. (2012); Wanajo (2013))
- 和南城さん's talk

NS-NS/BH binary merger: (Lattimer & Schramm 1974; Symbalisty 1982)

- n-rich ejecta from coalescence of NS-NS/BH
- Not studied in detail
- Chemical evolution ? (青木さん、石丸さん, 辻本さん、平居さん、etc)

NS-NS merger ejecta: too neutron-rich ?

Goriely et al. 2011; Korobkin et al. 2012; Rosswog et al. 2013

- tidal mass ejection of 'pure' neutron star matter (very n-rich) with Ye < 0.1</p>
- strong r-process with fission recycling only 2nd (A~130; N=82) and 3rd (A~195; N=126) peaks are produced
- the resulting abundance pattern is far from the common solar-like pattern
- They adopted only one 'stiff' EoS (Shen EoS) : dependence on EoS is not explored
- Newtonian SPH simulation or no neutrino heating: GR and weak-interaction effects are not included

Dynamical mass ejection from BNS merger

Two components
 + (neutrino-heated component (Perego et al. (2014); Just et al. (2014))

Importance of Ye in the r-process

Electron fraction (Ye) is the key parameter : Ye ~ 0.25 is critical threshold

- Ye < 0.25 : strong r-process \Rightarrow nuclei with A>130
- Ye > 0.25 : weak r-process ⇒ nuclei with A< 130 (for larger Ye, nuclei with smaller A)</p>
- Different nuclei : different opacity (Smaller opacity for smllaer A? Grossman et al. 2013)

Korobkin et al. 2012

Recent result with finite-temperature EOS

- Multi-EOS study (Thanks to <u>M. Hempel</u>)
- GR approximate v-rad 3.0 J1614-2230 hydro simulation Steiner et al. LS180 Adopted EOS LS220 STOS 14.5km TM1 (Shen EOS) HS(FSUgold) HS(TMA) Gravitational Mass — HS(TM1) TMA • • HS(NL3) 1.5 13.2km HS(DD2) **DD2** HS(IUFSU) **IUFSU** -- SFHo 1.0 SFHx 11.8km **SFHo** 0.5 **Consistent with** NS radius estimation Chiral effective theory 0.0 10 12 17 19 9 11 13 14 15 16 18 Radius R [km]

Dynamical mass ejection mechanism & EOS

- <u>'Stiffer EOS'</u>
 - TM1, TMA
 - R_{NS} : lager
 - Tidal-driven dominant
 - Ejecta consist of low T & Ye
 NS matter
- <u>'Intermediate EOS'</u>
 - **DD2**
- <u>'Softer EOS'</u>
 - SFHo, IUFSU
 - R_{NS} : smaller
 - Tidal-driven less dominant
 - Shock-driven dominant
 - Ye can change via weak processes

See also, Bauswein et al. (2013); Just et al. (2014)

Entropy/baryon : DD2

Ye:DD2

Entropy/baryon : SFHo

Ye : SFHo (Softer)

See also, Hotokezaka et al. (2013); Bauswein et al. (2013); Just et al. (2014)

SFHo vs. Shen: Ejecta temperature

- SFHo: temperature of unbound ejecta is higher (as 1MeV) due to the shock heating, and produce copious positrons
- Shen: temperature is much lower 0.1 <u>SFHo (smaller R_{NS})</u> 1000km Shen (larger R_{NS})

Higher T : more e^+ Shock heating more positron capture Lower T : less *e*⁺ Mass ejection mainly driven by tidal effects 10

SFHo vs. Shen: Ejecta temperature

- SFHo: temperature of unbound ejacta is higher (as 1MeV) due to the shock heating, and produce copious positrons
- Shen: temperature is much lower 0.1 10 <u>SFHo (smaller R_{NS})</u> 1000km Shen (larger R_{NS}) $n + e^+ \rightarrow p + \overline{\nu}$ Lower T : less e^+ Higher T : more e⁺ Mass ejection mainly Shock heating driven by tidal effects more positron capture

SFHo vs. Shen: \overline{v}_e emissivity

SFHo vs. Shen: Ejecta Ye

- SFHo: In the shocked regions, Ye increases to be >> 0.2 by weak processes
- Shen: Ye is low as < 0.2 (only strong r-process expected)</p>

Effects of neutrino heating

On robustness of common pattern

- Rough expectation based on limited information currently available
 - Ye < 0.2 is responsible to the 3rd peak
 - Ye ~ 0.2-0.25 is responsible to the 2^{nd} peak
 - Ye > 0.3 is responsible to the 1st peak
- For fixed mass fraction in Ye ~ 0.1 (fixed 3rd peak)
 - Factor of ~ 5 difference in Ye > 0.3 does not change 1st peak very much
 ⇒ enhancement (from flat distribution) in Ye > 0.3 would not be serious
 - Factor of ~ 10 difference in Ye ~ 0.2 reduces 2nd peak considerably
 ⇒ mass ratio between Ye ~ 0.1 and 0.2 may be important for 2nd and 3rd peaks

Unequal mass NS-NS system: SFHo1.25-1.45

Unequal mass NS-NS system: SFHo1.25-1.45

Unequal mass NS-NS system: SFHo1.25-1.45

- Orbital plane : Tidal effects play a role, ejecta is neutron rich
- Meridian plane : shock + neutrinos play roles, ejecta less neutron rich

EM counterparts associated with winds

- Extrapolation from an estimate for v-driven ejecta (Ye ~ 0.3; Mej ~ 0.01Msun)
 - Higher Ye : Distribution of r-process nuclei will be different
 - Opacity may be smaller (Grossman et al. 2013, Kasen et al. 2014 : $\kappa = 1 \text{ cm}^2/\text{g}$)
 - More bright EM counterpart in Opt. band ??? ⇒ need self-consistent studies
 - EM counterpart may be more than 10 times brighter than the previous estimate
 - Direction dependence (Kasen et al 2014) ? : face on (higher Ye) vs. edge on (lower Ye)

Summary

▶ EM Counterparts to GWs (安東さん) from NS-NS mergers (BH-NS: 木内さん)

- Many channels
 - ▶ 河合さん、木阪さん、岩崎さん
- Similarities to SNe
 - ▶ 前田さん、藤本さん、藤林さん
- Kilonova seems to be still one of the most promising EM counterpart
 - ▶ 田中さん、本原さん
- Also interesting in terms of the origin of heavy elements
 - ▶ 和南城さん、石丸さん、青木さん、辻本さん、平居さん etc.
- Importance of GR, EoS and neutrinos in r-process and kilonova
 - A wide Ye distribution due to weak processes
 - Only soft EOS like SFHo can achieve Mej~0.01Msun
 - Dependence on binary parameter (mass ratio) :
 - Tidal (low Ye) component increases for unequal mass binary

Shibata et al. 2006; Sekiguchi et al, 2011; Hotokezaka et al. 2013; Kepran et al 2014

Maximum mass of HMNS

$$M_{\rm crit} \approx M_{\rm max, sph. cold. NS} + \Delta M_{\rm rot}^{\rm rigid} + \Delta M_{\rm rot}^{\rm diff} + \Delta M_{\rm thermal}^{\rm diff}$$

- $M_{\text{max,sph.cold.Ns}}$: maximum mass of spherical NS at T = 0, depends on EOS
 - Most massive NS accurately observed : 1.97 Msolar (Demorest et al. 2010)
- $\Delta M_{\rm rot}^{\rm rigid}$: effects of rigid rotation ~ O(10%)
- $\Delta M_{\rm rot}^{\rm diff}$: effects of differential rotation typically ~ O(10%)
- $\Delta M_{\text{thermal}}$: effects of finite temperature ~ O(10%)
 - HMNS formed after the merger is very hot as $T \sim O(10 MeV)$
- The enhancement parameter : k $M_{crit} \approx k M_{max,sph.cold.NS}$
 - 1.4 < k < 1.7 (depend strongly on EOS and weakly on mass ratio)</p>

Importance of T and microphysics

- High density (>10¹² g/cc) and T (>1-10 MeV) regions
 - $\lambda_{\nu} >> \lambda_{\gamma}, \lambda_{e} \Rightarrow$ neutrinos drive the thermal / chemical evolution
 - > 99% of energy released *in stellar core collapse* is carried away by neutrinos
 - Neutrino : Weak interactions should be taken into account
 - Strong dependences of weak rates on $T \Rightarrow \underline{Finite temperature EOS}$
- ▶ NS-NS, BH-NS mergers (*T* can be > 50 MeV)
 - Inspiral : NS is cold ($k_BT/E_F \ll 1$) \Rightarrow zero T EOS
 - Meger : Compression, shock heating $(k_BT/E_F \sim O(0.1)) \Rightarrow$ finite T EOS
 - Prompt BH formation \Rightarrow hot region quickly swallowed by BH
 - Effects of finite temperature would be miner
 - **HMNS**, late time BH, and massive disk formation (more likely)
 - Shock heating, neutrino cooling, etc. are important

Importance of T and microphysics

- High density (>10¹² g/cc) and T (>1-10 MeV) regions
 - $\lambda_{\nu} >> \lambda_{\gamma}, \lambda_{e} \Rightarrow$ neutrinos drive the thermal / chemical evolution

Expected Light curves

Expected Light curves (off-axis)

SN ejecta: not so neutron-rich

SN ejecta: not so neutron-rich

- Neutrinos from PNS make the flow proton-rich via $n+v \rightarrow p+e$
- + Smaller entropy/per baryon than previously expected (e.g., Janka et al. 1997)
- ▶ \Rightarrow only weak r-process (up to 2nd peak, no 3rd peak!) (*Roverts et al. 2012; Wanajo 2013*)

More on r-process cite: main and weak

$$\log \varepsilon_{X} = \log(N_{X} / N_{H}) + 12$$

From W. Aoki @ INT workshop

Further evidence ???

- **Observationally favored ?? (***Tsujimoto and Shigeyama. 2014***)**
 - No enrichment of Eu in ultra dwarf galaxies but Fe increases
 - ▶ No r-process events but a number of SNe (Fe个)
 - Enrichment of Eu in massive dwarfs
 - event rate is estimate as 1/1000 of SNe : suggests BNS merger
 - Higher velocities : ejecta spreads 1000 times farther than SNe
 - No over-enrichment as in Argast et al. 2004

Hotokezaka et al. (2013); Kyutoku et al. in prep.

Ejecta property depends on NS EOS

- Stiff EOS ⇒ large NS radius
 ⇒ tidal-driven
 - Cold, low Ye, along orbital plane
- Soft EOS ⇒ shock-driven
 - Hot, higher Ye, more isotropic
- Can we distinguish by Obs.?
 - Constraint on NS-EOS by Opt-UV Obs. ?

BH-NS vs. NS-NS

- BH-NS : (tidal) orbital plane
- NS-NS : (shock + tidal) isotropic
- NS EOS dependence is different
 - BH-NS prefers stiff EOS
 - NS-NS prefers soft EOS

Hotokezaka et al. (2013) Tanaka et al. (2014)

Kilonova modeling : NS-NS vs. BH-NS

Requirement based on Li & Paczynski (1998) : Mej > 0.01 Msun

Hotokezaka et al. (2013) Tanaka et al. (2014)

Kilonova modeling : NS-NS vs. BH-NS

Requirement based on Li & Paczynski (1998) : Mej > 0.01 Msun

NS-NS : Soft EOS is necessary (shocks play a role)

- Small diversity in conditions before merger, Mej ~ 0.01 Msun may be universal within the typical mass range of NS-NS
- BH-NS : Stiffer EOS is preferable (tidal component is dominant)
 - Iarge diversity is expected, because mass ejection (mostly tidal-driven) depends further on *mass and spin of BH* (need more observations !)

Hotokezaka et al. (2013) Tanaka et al. (2014)

Kilonova modeling : NS-NS vs. BH-NS

- Requirement based on Li & Paczynski (1998) : Mej > 0.01 Msun
- NS-NS : Soft EOS is necessary (shocks play a role)
 - Small diversity in conditions before merger, Mej ~ 0.01 Msun may be universal within the typical mass range of NS-NS
- BH-NS : Stiffer EOS is preferable (tidal component is dominant)
 - Iarge diversity is expected, because mass ejection (mostly tidal-driven) depends further on mass and spin of BH (need more observations !)

BH-NS merger: wind components may be important

BH-NS merger : test simulation (mass ratio 3:1, spin 0.75)

Expected Merger Rate

Author	NS-NS		BH-NS		Method
	LIGO	AdLIGO	LIGO	AdLIGO	
Kim et al. [143]	5e-3	27			Empirical
Nakar et al. [198] Guetta & Stella [128]	7.0e-3	~ 2 22	7.0e-2	$\begin{array}{c} \sim 20.0 \\ 220 \end{array}$	${ m SGRBs}$ ${ m SGRBs}$
Voss & Tauris [323] de Freitas Pacheco et al. [79]	6.0e-4 8.0e-4	$\begin{array}{c} 2.0 \\ 6.0 \end{array}$	1.2e-3	4.0	Pop. Synth. – SFR Pop. Synth. – SFR
Kalogera et al. [140] O'Shaughnessy et al. [218]	1.0e-2 1.0e-2	$\begin{array}{c} 35 \\ 10 \end{array}$	4.0e-3 1.0e-2	$\begin{array}{c} 20\\ 10 \end{array}$	Pop. Synth. – NS-NS Pop. Synth. – NS-NS

_ _ _ _ _ _

Further good news ?

- The central engine of SGRB is NS-NS or BH-NS mergers
 - Ojet ~< 10 degree ?</p>

- Jet collimation in SGRBs has been a long-standing problem
 - No matter above the pole regio

- Jet collimation in SGRBs has been a long-standing problem
 - No mass above the pole region in previous Newtonian simulations
- Latest NR simulations of NS-NS clarified that there is quasi-isotropic mass ejection driven by shocks (e.g., Hotokezaka et al. 2013)
 - Jet collimation may be achieved

- Jet collimation in SGRBs has been a long-standing problem
 - No mass above the pole region in previous Newtonian simulations
- Latest NR simulations of NS-NS clarified that there is quasi-isotropic mass ejection driven by shocks (e.g., Hotokezaka et al. 2013)
 - Jet collimation may be achieved
- How much mass is necessary? Jet simulation by Nagakura et al. (2014)
 - ~ 0.01 Msun is necessary to explain GRB130603B (a kilonova candidate)

- Jet collimation in SGRBs has been a long-standing problem
 - No mass above the pole region in previous Newtonian simulations
- Latest NR simulations of NS-NS clarified that there is quasi-isotropic mass ejection driven by shocks (e.g., Hotokezaka et al. 2013)
 - Jet collimation may be achieved
- How much mass is necessary? Jet simulation by Nagakura et al. (2014)
 - ~ 0.01 Msun is necessary to explain GRB130603B (a kilonova candidate)

Further good news ?

- The central engine of SGRB is NS-NS or BH-NS mergers
 - ▶ Øjet ~< 10 degree ?</p>
- EM transient associated with GRB130603B is powered by radioactive decay of r-process elements in <u>dynamical</u> ejecta
 - Mej ~ 0.01 Msun ?

Numerical Relativity simulation of magnetized BNS mergers (led by Kiuchi)

- High resolution $\Delta x = 70m$ (16,384 cores on K)
- Medium resolution $\Delta x = 110m$ (10,976 cores on K)
- Low resolution $\Delta x = 150m$ (XC30, FX10 etc.)
 - c.f. Radii of NS~10km, the highest resolution of the previous work is $\Delta x \approx 180m$ (Liu et al. 08, Giacomazzo et al. 11, Anderson et al. 08)

Fiducial model

- EOS : H4
 - Gledenning and Moszkoski 1991) $M_{max} \approx 2.03 M_{\odot}$
- ▶ Mass : 1.4-1.4 M_☉
- ▶ B-field : 10¹⁵G

B-field amplification by KH-instability

- The smaller Δx is, the higher growth rate is.
- The amplification factor does not depend on the initial field strength
- It is consistent with the amplification mechanism due to the KH instability. (Obergaulinger et al. 10, Zrake and MacFadyen 13)

Evolution of B-field energies

We do not observe Jet

- Ram pressure due to the fall back motion $\sim 10^{28}$ dyn/cm²
 - ▶ Need 10¹⁴⁻¹⁵G in the vicinity of the torus surface
- Weak poloidal motion to build global poloidal fields

Moment formalism

Definition of Moment

$$M_{(v)}^{a_1 \cdots a_k}(x^b) = \int \frac{f(x^b, p^b) \delta(v' - v)}{v'^{k-2}} p^{a_1} \cdots p^{a_k} dV_p$$

 $v = -u^a p_a$: energy seen by an arbitrary observer u^a $p^a = v(u^a + l^a)$: decomposition of momentum $l_a u^a = 0$, $l_a l^a = 1$

$$M_{(\nu)}^{a_{1}\cdots a_{k}}(x^{b}) = \nu^{3} \int f(\nu, \Omega)(u^{a_{1}} + l^{a_{1}}) \cdots (u^{a_{k}} + l^{a_{k}}) d\Omega$$

Boltzmann equation ⇔

$$\nabla_{b} M_{(v)}^{a_{1}\cdots a_{k}b} - \frac{\partial}{\partial v} \left(v M_{(v)}^{a_{1}\cdots a_{k}bc} \nabla_{c} u_{b} \right) - (k-1) M_{(v)}^{a_{1}\cdots a_{k}bc} \nabla_{c} u_{b} = S_{(v)}^{a_{1}\cdots a_{k}}$$

- Infinite hierarchy series
 - ⇒ need Truncation
- Source terms given in the fluid rest frame

Truncation at 1st order Moment

$$\nabla_{b} M^{ab}_{(\nu)} - \frac{\partial}{\partial \nu} \left(\nu M^{abc}_{(\nu)} \nabla_{c} u_{b} \right) = S^{a}_{(\nu)}$$

$$M^{ab}_{(\nu)} = J_{(\nu)}u^{a}u^{b} + H^{(a}_{(\nu)}u^{b)} + L^{ab}_{(\nu)}$$

$$M^{abc}_{(\nu)} = J_{(\nu)}u^{a}u^{b}u^{c} + H^{(a}_{(\nu)}u^{b}u^{c)} + L^{(ab}_{(\nu)}u^{c)} + N^{abc}_{(\nu)}$$

$$J \equiv \int v^{3}f(v,\Omega)dv\,d\Omega \qquad H^{a} \equiv \int v^{3}f(v,\Omega)\,l^{a}dv\,d\Omega$$

$$L^{ab} \equiv \int v^{3}f(v,\Omega)\,l^{a}l^{b}dv\,d\Omega \qquad N^{abc} \equiv \int v^{3}f(v,\Omega)\,l^{a}l^{b}l^{c}dv\,d\Omega$$

Energy Integration

$$\nabla_b M^{ab} = S^a$$

$$T_{ab}^{\nu} = M_{ab} = Ju_a u_b + H_a u_b + H_b u_a + L_{ab}$$
$$= En_a n_b + F_a n_b + F_b n_a + P_{ab}$$

- Only <u>Oth and 1st order moments</u> evolved
- Introduce <u>closure relation for 2nd (and 3rd)</u> <u>order moment</u>

Closure relation

Optically Thick

Þ

 Optically thick and thin regions are smoothly connected using variable Eddington factor (*Livermore* (1984))

$$P_{ab} = \gamma_a^c \gamma_b^d T_{cd}^{(\nu)} = \gamma_a^c \gamma_b^d \left(J u_c u_d + H_{(c} u_{d)} + L_{cd} \right)$$

Takahashi, Ohsuga, Sekiguchi, Inoue, & Tomida

- Optically Thin (Thanks to 村主)
- assume 'definite direction' of f(x,t) $f(v,\Omega,x^c) = 4\pi f_f(v,x^c)\delta(\Omega-\Omega_f)$ $J_{(\nu)} = 4\pi v^3 f_{\rm f}$ $L_{(v)}^{ab} = J_{(v)} \frac{H_{(v)}^{a} H_{(v)}^{b}}{|H_{(v)}^{c}|^{2}}$ $H^{a}_{(v)} = 4\pi v^{3} f_{f} l^{a}_{f}$ $L^{ab}_{(\nu)} = 4\pi \nu^3 f_{\rm f} l^a_{\rm f} l^b_{\rm f}$ $N_{(v)}^{abc} = 4\pi v^3 f_{\rm f} l_{\rm f}^a l_{\rm f}^b l_{\rm f}^c$ t = 0.0 [ps]1013 1014 Eddington app. 0.4 0.3 0.2 0.1 [비 아 0.4] M-1 closure 0.3 0.2 0.1 0.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 x [cm]

Source terms

- Leakage scheme (Sekiguchi 2010)
 - Source terms is given using diffusion time in optically thick region
 - Appropriate connection between diffusion and streaming limits
- Leakage scheme + absorption (Kuroda et al. 2012)
 - Neutrinos leak out from the core are absorbed in outer region (v-heating)

Implicit transfer

$$S = \dot{Q} \sim \frac{Q}{t_{\text{diff}}}, \ t_{\text{diff}} \sim \frac{L\tau}{c}$$

Leakage + Neutrino heating

- Neutrino burst emission can be followed
 - Lv calculated from neutrino radiation field
- Neutrino heating does occur (at least qualitatively)
 - Entropy increases in the gain region

0.6

0.5

0.4

0.3

0.2

Ye

Numerical Issues

- Recovery of diffusion limit
 - Godunov scheme may not provide correct diffusion flux (Sekora & Stone 2010)
 - Numerical fluxes are modified (Audit et al. 2002)
 - Adopted in MPA group (Obergalinger 2011), Caltech group (O'Connor & Ott 2012),..
 - Some group adopt flux-limited-diffusion-approximation-like procedure
- Coupling radiation with hydrodynamics
 - Hydro and radiation must be 'tuned' to achieve (beta-)equilibrium
 - ► Hydro ⇔ radiation interation may be required
 - Implicit-Explicit Runge-Kutta scheme is adopted (Pareschi & Russo 2005)
 - which may not provide exact equilibrium but is rather stable
 - □ Solving Einstein equation in spherical coordinate (MPA group)
 - □ GR Resistive MHD (Bucciantini & Del Zanna 2012; Dionysopoulou et al. 2012)
 - □ GR force-free (Alic et al. 2012)
 - □ GR RadiationHydro (Roedig et al. 2012)

Implicit transfer : Stellar core collapse

Implicit transfer : Stellar core collapse

- Qualitatively (or semi-quantitatively) reproduce results in 1D GR Boltzmann.
- Evolution scheme : implicit-explicit (IMEX) Runge-Kutta
 - Pareschi & Russo J. Sci. Comp. 25, 129 (2005)

