## The r-process nucleosynthesis

### Shinya Wanajo (RIKEN iTHES)

with Y. Sekiguchi (YITP), N. Nishimura (Keele Univ.), K. Kiuchi (YITP), K. Kyutoku (RIKEN), M. Shibata (YITP)

コンパクト連星合体からの重力波・電磁波放射とその周辺領域 2014年2月12-14日,京大基研





### origin of gold (r-process elements) is still unknown...



www.cartier.jp

### r-process: the last mystery of nucleosynthesis



r-process (rapid neutron capture nucleosynthesis)

- astrophysical sources are unidentified
- nuclear physics is poorly understood

## "universality" of the r-process



surviving old stars record nucleosynthesis memories in the early universe

- r-process enhanced stars show constant abundance patterns
- the r-process should be "universal", always having solar-like abundance patterns

## "weak" r-process?



## what is "true" r-process ?

Siqueira Mello+...+ Wanajo 2014



VLT observations give tight constraint for light-to-heavy r-abundances  $[light-r/heavy-r] \ge -0.3;$  no stars below this constraint

\* "the true r-process" must make lighter r-elements with at least half of the solar r-ratio

## where do we have neutrons?



core-collapse supernovae (since Burbidge+1957; Cameron 1957)

- n-rich ejecta nearby proto-NS
- not promising according to recent studies <sup>基研研究会</sup>

neutron-star mergers (since Lattimer+1974; Symbalisty+1982)

- n-rich ejecta from coalescing NS-NS or BH-NS
- few nucleosynthesis studies

## **2D SN simulations with v-transport**







27  $M_{\odot}$  CCSN



- a number of selfconsistent SN
- models with v-
- transport are now available (at MPA)
- very first result of
   SN nucleosynthesis
   with such models
- can we confirm production of light trans-iron nuclei (and beyond) ?

# $8.8\,M_{\odot}\,\,{\rm self-consistently\,exploding}\\ {\rm ONeMg\,\,core\,\,supernova}$

simulation by Bernhard Müller



## 27 M<sub>O</sub> self-consistently exploding Fe core

simulation by Bernhard Müller



## neutron-richness in the ejecta



 $Y_{\rm e}$  distribution in the innermost ejecta (~ 0.01  $M_{\odot}$  )

- lighter SNe have more n-rich ejecta due to rapid expansions (less v-processed)
- more massive SNe have more p-rich ejecta due to slow expansions (more v-processed)

## elemental abundances for each SN



nucelosynthesis in the innermost ejecta  $(M_{\rm ej} \sim 0.01 \, M_{\odot})$ 

- light SNe have
   NSE-like features
   (intermediate light transiron more produced)
- massive SNe have QSElike features (Zn and Zr more produced)

## supernovae at the low-mass end



## SN neutrino wind: not so neutron-rich

- $\mathbf{*} Y_{e}$  is determined by
  - $v_e + n \rightarrow p + e^ \overline{v}_e + p \rightarrow n + e^+$
- equilibrium value is

$$Y_{\rm e} \sim \left[ 1 + \frac{L_{\overline{\nu}{\rm e}}}{L_{\nu \rm e}} \frac{\varepsilon_{\overline{\nu}{\rm e}} - 2\Delta}{\varepsilon_{\nu \rm e} + 2\Delta} \right]^{-1},$$
$$\Delta = M_{\rm n} - M_{\rm p} \approx 1.29 \text{ MeV}$$

for 
$$Y_e < 0.5$$
 (i.e., n-rich)
  $\varepsilon_{\overline{v}e} - \varepsilon_{ve} > 4\Delta \sim 5$  MeV
 if  $L_{\overline{v}e} \approx L_{ve}$ 
 基研研究会



## "history" of Y<sub>e</sub> evolutions: who is right?



## is the answer blowing in the wind?



- ♦ only extremely massive proto-NSs (> 2.2 M<sub>☉</sub>) can make the heavy r-elements
- typical proto-NSs (< 2.0  $M_{\odot}$ ) probably make weak r-elements (A ~ 90 – 130)

## **NS merger scenario: most promising?**



- coalescence of binary NSs expected ~ 10 - 100 per Myr in the Galaxy (also possible sources of short GRB)
- first ~ 0.1 seconds dynamical ejection of n-rich matter up to  $M_{\rm ei} \simeq 10^{-2} M_{\odot}$
- next ~ 1 second neutrino or viscously driven wind from the BH accretion torus up to  $M_{\rm ei} \simeq 10^{-2} M_{\odot}$  ??

## previous works: too neutron-rich ?

Goriely+2011 (also similar results by Korobkin+2011; Rosswog+2013)  $10^{\circ}$ 1.35–1.35M<sub>o</sub> NS 1.35-1.35M NS Solar of 10-1 1.20-1.50M NS  $10^{-2}$ Mass fraction  $10^{-3}$ mass fraction 10  $10^{-6}$  $10^{-7}$ 50 100 150 200 250 A strong r-process leading to fission recycling 0.015 0.021 0.027 0.033 0.039 0.045 0.051  $Y_{\rm e}$ severe problem: only A > 120; tidal (or weakly shocked) ejection another source is needed for of "pure" n-matter with  $Y_{e} < 0.1$ the lighter counterpart

## first simulation with full-GR and $\nu$

- Approximate solution by Thorne's Moment scheme with a closure relation
- Leakage + Neutrino heating (absorption on proton/neutron) included



## $1.3+1.3 M_{\odot}$ neutron star merger with full-GR and neutrino transport (SFHo)

simulation by Yuichiro Sekiguchi



## neutrino properties (Steiner's EOS)



mass ejection before (40%) and after (60%) HMNS formation; 70% ejecta reside near orbital

neutrino luminosities similar between  $v_{\rm e}$  and anti- $v_{\rm e}$ 

neutrino mean energies similar between  $v_{\rho}$  and anti- $v_{\rho}$ 

## nucleosynthesis in the NS ejecta



- higher and wider range of Y<sub>e</sub> (~ 0.1-0.5) in contrast to previous cases Y<sub>e</sub> ( = 0.01-0.05)
- values do not fully asymptote to Y<sub>e</sub> ~ 0.5 because of v/c ~ 0.1-0.3
- higher and wider range of entropy per baryon (= 0-50) in contrast to previous cases (= 0-3)

## post-process nucleosynthesis



 $Y_{e} = 0.09$ 



## mass-integrated abundances



reasonable agreement with full solar r-process range for A = 90-240

基研研究会

## comparison for different mass models

for neutron star mergers in Wanajo+2014; without fission



✤ large differences between FRDM (1992, not 2012!) and HFB-21

### slide by Y. Sekiguchi Dynamical mass ejection mechanism & EOS

- <u>'Stiffer EOS'</u>
  - TM1, TMA
  - R<sub>NS</sub> : lager
  - Tidal-driven dominant
  - Ejecta consist of low T & Ye
     NS matter
- <u>'Intermediate EOS'</u>
  - ► **DD2**
- <u>'Softer EOS'</u>
  - ► SFHo, IUFSU
  - ► R<sub>NS</sub> : smaller
  - Tidal-driven less dominant
  - Shock-driven dominant
  - Ye can change via weak processes



See also, Bauswein et al. (2013); Just et al. (2014)



### slide by Y. Sekiguchi

### Effects of neutrino heating





## 2D (orbital pl.) vs 3D



full 3D nucleosynthesis predicts smaller heavy r-process products

## effect of neutrinos



neutrino absorption leads to less heavy r-process products

## dependence on EOSs

#### adopting nucleosynthesis of Wanajo+2014



- softer EOS predicts less heavy r-process products, but
- effects of EOSs are not large (good for the universality?)

#### slide by Y. Sekiguchi

### Unequal mass NS-NS system: SFHo1.25-1.45

- Orbital plane : Tidal effects play a role, ejecta is neutron rich
- Meridian plane : shock + neutrinos play roles, ejecta less neutron rich



## dependence on the NS mass ratio



small asymmetry predicts less heavy r-process products
moderate asymmetry is the best? (e.g., 1.3+1.4)

## summary and outlook



- NS mergers: very promising site of r-process
  - GR and weak interactions play crucial roles
- still many things yet to be answered...
  - dependence on NS masses, EOSs, and nuclear masses?
  - how the subsequent BH-tori contribute to the r-abundances?
  - how do they shine as electro-magnetic transients?
  - can mergers be the origin of r-process elements in the Galaxy? 基研研究会 Wanajo