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Introduction
“軽い”COコアを持つ大質量星の進化

off centerでのNe, O, Si燃焼

吉田敬　2015年2月11日@コンパクト連星合体からの重力波・電磁波放射とその周辺領域

Feコア形成

重力崩壊に至るがより重い星とはいくらか異なる進化

MCO ~ 1.38 - 2 M    (MMS ~ 10 - 12 M  )

electron capture超新星
(e.g., Nomoto 1984; Takahashi, TY, Umeda 2013; Jones et al. 2013)

The Astrophysical Journal, 771:28 (13pp), 2013 July 1 Takahashi, Yoshida, & Umeda
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Figure 3. Evolution of ∼11 M" models in the H-R diagram.
(A color version of this figure is available in the online journal.)

at the edge of the core, defined to be a constant. Since the edge
structure is extremely steep, this approximation would not affect
the later core evolution, especially at the central region.

At the H/He boundary, merging of convective regions, or
the dredge-out episode named by Iben et al. (1997), takes
place in our calculations (Section 3.1.3.). Due to an extended
convective region in the helium layer, two convective regions
in the hydrogen and helium layers merge together. Some
envelope hydrogen is mixed into the base of the helium burning
shell (HeBS), resulting in H burning with significant energy
production. As described in Poelarends et al. (2008), this energy
production makes numerical convergence difficult, and requires
a scheme which can simultaneously solve for mixing and
reactions. Our code is not equipped with such a scheme at
present. Next, the star enters a thermal pulse phase, if stationary
H burning is given as a solution for the hydrogen mixing
problem. In order to treat growth of the core mass in more
sophisticated way, a large number of thermal pulses should be
calculated. This requires an expensive calculation and a full
simulation of the phase is difficult.

The approximation of a constant core mass growth is valid.
Because of the large number of pulses, it will be plausible to
consider the discrete growths as a time-averaged continuous
effect. Also, the relaxation time from the rapid H mixing to the
stationary burning is too short to influence error in the core mass
growth.

Under these assumptions, three rates, 1.0 × 10−5 M" yr−1,
1.0 × 10−6 M" yr−1, and 1.0 × 10−7 M" yr−1 are taken as
the core growth rate. The middle one is the most likely rate
for core growth from shell He burning. This rate is consistent
with the work by Nomoto (1987) in which steady He burning is
assumed, and with recent studies by Siess (2010) and Poelarends
et al. (2008) in which the thermal pulse phase is calculated. The
results shown in Section 3 are cases using this likely rate.

2.6. Late Phase of Core Evolution

When the timescale of core evolution becomes shorter than
that of convection, the well-known mixing length theory (Böhm-
Vitense 1958), which assumes stationary convection, becomes
invalid. In order to determine the temperature gradient in such
cases, the time-dependent mixing length theory formulated by
Unno (1967) is adopted in our calculation. In this scheme,
two time differential equations for convective velocity vcv and
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Figure 4. Evolution of ∼11 M" models in the central density–temperature
plane.
(A color version of this figure is available in the online journal.)

temperature fluctuation ∆T are given as
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where ∇ − ∇ad represents the excess of temperature gradi-
ent compared with the adiabatic gradient. Following Nomoto
(1984), we take the length scale of time-dependent mixing lcv to
be shorter than radial distance. The convective energy flux Fcv
is written as

Fcv = cP ρ∆T vcv, (24)

where cP is the specific heat at constant pressure. Then, identical
to the mixing length theory, equations of total luminosity

Lr = Lrad + 4πr2Fcv, (25)

Lrad = 16πacGMrT
4

3κP
∇ (26)

are solved to obtain the temperature gradient.
As the timescale of evolution decreases and becomes com-

parable with the free-fall timescale, the assumption of hydro-
static structure becomes invalid. In this work, an inertia term
is included in the equation of motion and also in the radiative
temperature gradient (Heger et al. 2000) as

dP

dMr

= −GMr

4πr4

[
1 +
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∂2r

∂t2

]
, (27)
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16πacGMrT 4

[
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r2

GMr

∂2r

∂t2

]−1

. (28)

3. RESULTS

We calculated the evolution of 10.4–11.2 M" stars with a
metallicity of Z = 0.02, from ZAMS to O+Ne deflagration
for 10.4–10.8 M" models and from ZAMS to off-center Ne
ignition for 11.0 and 11.2 M" models. Figures 3 and 4 show
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(Takahashi, TY, Umeda 2013)

(e.g., Woosley et al. 1986; Nomoto & Hashimoto 1988; Umeda, TY, Takahashi 2012)

32 Theory of supernovae 

not appear and neon ignites at the center. Therefore, the critical main-sequence mass that discriminates 
between off-center and central ignition of neon is Mms ~ 13 M o. 

6.3. Propagation of neon-oxygen-burning layer 

When neon ignites off-center, shell burning is unstable to a flash due to electron degeneracy. The 
flash increases the temperature up to as high as 2 × 10 9 K and forms a sharp temperature jump as seen 
in fig. 27. Subsequently the neon-burning shell propagates inward. An important question is whether or 
not the burning shell reaches the center. If not, a degenerate O + Ne + Mg core is left unburned [2, 44]. 
This is crucial in determining the final fate of stars. 

Figure 28 shows the propagation of the neon-burning layer for M s = 3.0 M o. As the burning front 
moves to the higher-density layers, the temperature increases to 2.0-2.5 x 109K. At such high 
temperatures, oxygen burns to synthesize silicon and sulfur. The composition profile during the 
propagation is shown in fig. 29. The burning front propagates all the way to the center. Since the 
density at the neon-burning front does not become so high (p < 108 g cm -3) and also neon ignites layer 
by layer, the released energy in a O-Ne flash is too small to induce major dynamical effects. 

For a slightly smaller mass of M =2.8 Mo, on the other hand, the neon-burning front reaches 
densities as high as p > 108 g cm -3. Then the neon shell flashes become so explosive that a dynamical 
event, such as ejection of a helium layer, is expected. Therefore, it is crucial whether the neon-burning 
front can reach high densities or is quenched by neutrino cooling at an earlier stage. 

The propagation mode of the neon-burning front is not heat conduction but compressional heating 
due to gravitational contraction of the oxygen-neon core. This can be seen from the increase in density 
after neon ignition in fig. 26. For model 3.0, it takes only 2 yr for the burning front to propagate to the 
center. This is much faster than conduction. In order to sustain the propagating front, compressional 
heating should dominate neutrino cooling. In other words, the core mass interior to the helium-burning 
shell should be sufficiently large to keep Cg < 0 until T c reaches the neon ignition temperature. If the 
core mass is too small relative to the Chandrasekhar mass, the electron degeneracy would change the 
sign of the gravothermal specific heat of the core and then the temperature would start to decrease. 

In order to clarify this point, simple neon star models have been calculated with neon burning 
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Fig. 28. Propagation of the neon-burning layer for M. = 3.0 M o. 3M  He星; off center Ne/O燃焼
(Nomoto & Hashimoto 1988)

MCO ~ 1.38 M

ECSN progenitor



Introduction
“軽い”COコアを持つ超新星progenitor
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小さいcompactness parameter
(e.g., Ugliano et al. 2012; Nakamura et al. 2014)

ECSN progenitor 1D超新星モデルでも爆発
(Kitaura et al. 2006)

~ 11M  progenitor 短時間でshockが伝播
(e.g., Nakamura et al. 2014; Suwa et al. 2014)
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Figure 3. Top left: average shock radii (thick solid lines) and mass accretion rate of the collapsing stellar core at 500 km (thin dashed
lines) for some selected models. Bottom left: compactness parameters ξM defined in Equation (1) as a function of the ZAMS mass. The
compactness parameters estimated at M = 1.5 M! at core bounce (ξ1.5,cb, thin line with points) and at M = 2.5 M! (ξ2.5 enhanced
by a factor of three, thick line) are shown. To guide eyes, arrows are inserted in the bottom panel using the same color as in the other
panels. Right: diagnostic energy (top) and mass of protoneutron star (bottom) of the same models as in the top-left panel as a function
of post-bounce time.

the radial velocity vR there is very small (e.g., for s15.0
model R = 1.7 × 109 cm and vR = −6.8 × 106cm s−1).
Actually ξ2.5 of s15.0 model in our definition is 0.145,
which is very close to the value (0.150) estimated by
O’Connor & Ott (2011) at bounce.

3. RESULTS

For all the employed 101 models, the bounce shock
stalls in a spherically symmetric manner and only after
that, we observe a clear diversity of the multi-D hydro-
dynamics evolution in the postbounce (pb) phase. Fig-
ures 1 and 2 show a snapshot of entropy distribution for
selected 18 models at tpb = 400 ms. For some less mas-
sive progenitors (e.g., model s11.2 in Figure 1(a)), the
shock is reaching close to the outer boundary of the com-
putational domain with developing pronounced unipolar
and dipolar shock deformations. At this time, the shock
of the most massive progenitor (s75.0 in Figure 2(i)) is
reaching an average radius of 〈r〉 ∼ 1000 km, whereas the
shock of s24.0 (in Figure 1i) still wobbles around at 〈r〉 ∼
200 km. This demonstrates that the ZAMS mass is not
a good criterion to diagnose the possibility of explosion.
This is more clearly visualized in the top left panel

of Figure 3. Taking six models as an example in the
mass range between 19.2 M" and 24.0 M", the shock
revival is shown to occur earlier for s20.0 (red line) and
s22.0 (blue line) compared to the lighter progenitor s19.2
(green line). Comparing with the bottom left panel of
Figure 3, it can be seen that the compactness parame-
ter (Equation (1)) is smaller for s20.0 (labeled by red
arrow) and s22.0 (by blue arrow) in the chosen mass

range above5. The smaller compactness is translated
into smaller mass accretion rate onto the stalled bounce
shock. For model s20.0 (red line in the top panel), the
relatively earlier shock revival (∼ 100 ms postbounce)
coincides with the sharp decline of the accretion rate
(dashed red line). After that, the accretion rate gradu-
ally decreases to ∼ 0.1 M" s−1 till t400 = 420 ms at this
time the revived shock has expanded to an average radius
of 〈r〉 = 400 km. Here t400 is a useful measure to qualify
the vigor of the shock revival (e.g., Hanke et al. 2012).
On the other hand, high compactness (model s21.0, black
arrow in the bottom panel) leads to the high accretion
rate (black dashed line in the top panel) and it takes ∼
500 ms for the sloshing shock (black line in the top panel)
to gradually turn into a pronounced expansion later on
(t400 = 700 ms). The growing diagnostic explosion en-
ergy6 (top right panel) and the almost converged mass
of PNS (bottom right) are also shown as a function of
post-bounce time. The PNS mass has a clear correlation
with ξ2.5. Regarding the diagnostic energy, the increas-
ing rate (Edia/(tfin−t400) in unit of 1051 erg s−1) tends to
become higher for models with high ξ2.5 (0.754, 1.12, and
1.44, for s22.0, s23.0 and s24.0, respectively). This also
indicates that the diagnostic energy of the high-ξ mod-
els might become higher later on. Note that in previous
1D studies with simplified neutrino heating and cooling
scheme (O’Connor & Ott 2011) or with the excision in-

5 Note in Figure 3 that the correlation between the compactness
and t400 is rather weak, which is more clearly seen in Figure 5(c).

6 Following Suwa et al. (2010) and Nakamura et al. (2014), we
define the diagnostic energy that refers to the integral of the energy
over all outward moving zones that have a positive sum of the
specific internal, kinetic, and gravitational energy.

2

Figure 1. Entropy distribution in unit of kB per baryon for se-
lected nine models at tpb = 400 ms. Shown are models s11.2 (a)
to s24.0 (i), from top-left to bottom-right. Note that each model
presents a different scale as shown in the panel.

port scheme), but to study the systematic dependence
of the progenitors’ structure on the shock revival time,
diagnostic explosion energy, mass of remnant object, and
nucleosynthetic yields. To this end, this study is the first
attempt in the multi-D context.

2. NUMERICAL SETUP

The employed numerical methods are essentially the
same as those in Takiwaki et al. (2014). Our 2D mod-
els are computed on a spherical polar grid of 384 non-
equidistant radial zones from the center up to 5000 km
and 128 equidistant angular zones covering 0 ≤ θ ≤ π.
We employ the equation of state by Lattimer & Swesty
(1991) with a compressibility modulus of K = 220 MeV.
For the calculations presented here, self-gravity is com-
puted by a Newtonian monopole approximation and our
code is updated, from the ZEUS-MP (Hayes et al. 2006),
to use high-resolution shock capturing scheme with an
approximate Riemann solver of Einfeldt (1988). As de-
scribed in Nakamura et al. (2014), we take into account
explosive nucleosynthesis and the energy feedback into
hydrodynamics by solving a 13 α-nuclei network includ-
ing 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca,
44Ti, 48Cr, 52Fe, and 56Ni. The nuclear energy compen-
sates for energy loss via endothermic decomposition of
iron-like NSE nuclei to lighter elements (see Appendix of
Nakamura et al. (2014) for more details).
To solve spectral transport of electron- (νe) and anti-

electron neutrinos (ν̄e), we employ the isotropic diffusion
source approximation (IDSA, Liebendörfer et al. 2009).
We take a ray-by-ray approach, in which the neutrino
transport is solved along a given radial ray assuming that
the hydrodynamic medium for the direction is spheri-
cally symmetric (e.g., Buras et al. 2006). Although one
needs to deal with the lateral transport more appropri-

Figure 2. Same as Figure 1 but for models s25.0 (a) to s75.0 (i),
from top-left to bottom-right.

ately (e.g., Sumiyoshi et al. 2014; Dolence et al. 2014),
this approximation is useful because of the high computa-
tional efficiency in parallelization, which allows us to ex-
plore the more systematic progenitor survey based on the
radiation-hydrodynamics models than ever in this study.
Regarding heavy-lepton neutrinos (νx = νµ, ντ , ν̄µ, ν̄τ ),
we employ a leakage scheme to include the νx cooling
via pair, photo and plasma processes (see Takiwaki et al.
2014 for more details).
The investigated progenitors with iron cores

(Woosley et al. 2002) are given in 0.2 M! steps
between 10.8 M! (s10.8) and 28.2 M! (s28.2) and
further from 30 M! (s30) up to 75.0 M! (s75) in
1.0 M! steps. The structure of these stars, such as
density profiles and the pre-collapse masses have been
already described in Ugliano et al. (2012). To induce
non-spherical instability, we add initial seed perturba-
tions by zone-to-zone random density variations with an
amplitude less than 1%.
Following O’Connor & Ott (2011), we estimate the

compactness parameter as the ratio of mass M and the
enclosed radius R(M),

ξM ≡
M/M!

R(M)/1000km
. (1)

The previous studies used M = 2.5 M!

(O’Connor & Ott 2011; Ugliano et al. 2012) or 1.75 M!

(O’Connor & Ott 2013) and estimated ξ at the time of
core bounce. On the other hand, the outer radius of our
computational domain (5000 km) is too small to contain
2.5 M! for all models and even 1.75 M! for some
less massive models. In this Letter, we estimate ξ at
M = 2.5 M! (ξ = ξ2.5) directly from pre-collapse data.
It should be noted that our definition of ξ gives almost
the same compactness estimated at bounce, because the
radius R enclosing 2.5 M! is far from the center and

(Nakamura et al. 2014)
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normal Type Ic超新星

NS-NS連星との関連
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SN 1994I (Sasaki et al. 1994; Iwamoto et al. 1994; Nomoto et al. 2006) 

連星進化における大量の質量放出

超新星爆発時の連星系を保てるか？
弱い超新星爆発？

2.1M  CO星 (13-15M  主系列星)

研究目的
1.4 - 2 M  CO星の進化とprogenitor構造を調べる

星の構造と超新星爆発との関連の議論へ
今回の発表
1.45, 1.5, 1.6, 2, 2.6 M  CO星の進化

preliminaryな計算(粗いmesh間隔)



大質量星進化モデル
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300核種(n, H - Br)の核反応ネットワーク
元素合成とエネルギー生成

XC(C) = 0.33 - 0.36

CO星進化モデル

(TY & Umeda 2011; Takahashi, TY, Umeda 2013; TY, Okita, Umeda 2014)

∂r
∂Mr 4πr2ρ

1=

∂Mr

∂Lr = εnucl - εν + εgrav

min(∇ad, ∇rad)∂ ln T
∂ ln P =

∂P
∂Mr

GMr
4πr4= 1 ∂2r

∂t24πr2

初期組成 大質量星のHe燃焼後の中心組成

mesh数 ~540 mesh



中心温度, 密度の進化

C, Ne, O, Si燃焼を経てFe coreを形成, 重力崩壊へ
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C燃焼

Ne燃焼
O燃焼

Si燃焼



中心温度, 密度の進化

Si燃焼がoff centerで点火
燃焼面が中心に達する時に中心温度が上昇
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C燃焼

Ne燃焼
O燃焼

Si燃焼



中心温度, 密度の進化

Ne/O, Si燃焼がoff centerで点火
Ne燃焼がoff centerのままO燃焼へ移行
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中心温度, 密度の進化

Ne/O/Si燃焼がoff centerのまま移行
O/Ne coreの外側にFe shellが形成
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中心温度の進化
1.6M  CO星のoff center Ne/O燃焼

12C
16O

20Ne“Si”

“Fe”

6での質量比分布

Mr = 0.09M でNeが点火
O燃焼中に燃焼面が内側へ移動
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対流層の進化
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1.6M  CO星

C燃焼



元素組成分布

1H

4He
12C

16O
20Ne

“Si”

“Fe”

1H

4He
12C

16O

20Ne

“Si”

“Fe”

1H

4He
12C

16O
20Ne

“Si”

“Fe”

1H

4He

12C

16O
20Ne

“Si”

“Fe”
2M 

1.45M 

2.6M 

1.6M 

MFe=1.41M 

MFe=1.32M MFe=1.36M 

MFe=1.52M 
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重力崩壊直前での密度分布

軽いCOコアの方がFeコアの外側で低密度
●はFeコア境界の位置を示す

rFe core = (1.34 - 1.77) × 108 cm
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中心集中度

ξ1.4 = 0.454 - 1.160

MCO ξ1.4

1.45M 0.456
1.5M 0.616
1.6M 0.808
2M 0.940

2.6M 1.160

compactness parameter
ξ1.4 = 1.4 / (r[Mr = 1.4M  ]/1000km)

●はFeコアの位置を示す

軽いCOコアの方が中心集中が緩い
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まとめ
1.4 - 2 M  COコアの進化(preliminary)

off center Ne/O燃焼 MCO < 1.6 M 
off center Si燃焼 MCO < 2 M 

off center 燃焼の様子に質量依存性

超新星progenitor
軽いCOコアの方がFeコアの外側で低密度
ξ1.4 = 0.454 - 1.160

今後
1.40 - 2.00 M  COコアの進化を計算中
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超新星爆発計算へ

~
~


