Isoentangled Mutually Unbiased Bases and Mixed-states t-designs

> Karol Zyczkowski ˙ Jagiellonian University, Cracow, & Polish Academy of Sciences, Warsaw in collaboration with Jakub Czartowski (Cracow) Dardo Goyeneche (Antofagasta) Markus Grassl (Gdańsk)

Yukawa Institute, Kyoto University, September 19, 2020

we analyze **discrete** structures like **combinatorial designs** and look for generalizations motivated by **Quantum Information**

What are **combinatorial designs**?

finite sets arranged with balance and symmetry for instance:

Magic square **Latin square**

Classical combinatorial designs

other important examples include

3 points at each line and solution all pairs are different! 3 lines from each point any two lines cross in a single point **Euler square** $=$ 2 orthogonal LS

Fano plane Greaco–Latin square

2 combinations used

we analyze **discrete** structures in the finite **Hilbert space** \mathcal{H}_N . relevant for the standard **Quantum Theory**,

for instance:

- Mutually Unbiased Bases (MUBs)
- Symmetric Informationally Complete generalized quantum measurements (SIC POVMs)
- **Quantum orthogonal Latin** squares & orthogonal arrays (OA)
- Complex **projective t-designs** formed of pure quantum states and their generalizations:
- **•** selected constellations of mixed states which form

mixed states t-designs.

Why we do it? Because we

a) do not fully understand these structures relevant for quantum theory !

- b) wish to construct novel schemes of **generalized measurements** and
- c) des[i](#page-16-0)gn te[c](#page-17-0)hniqu[es](#page-0-0) averaging [o](#page-16-0)ver the set o[f](#page-17-0) **d[en](#page-2-0)[sit](#page-4-0)[y](#page-2-0) [m](#page-3-0)[atr](#page-0-0)ices** of [si](#page-0-0)[ze](#page-34-0) N_{eq}

What are they?

finite sets of states/operators arranged with balance and symmetry

Mermin-Peres Magic Square (1990)

operators in each column do commute \Rightarrow compatible measurements operators in each row do commute \Rightarrow compatible measurements

Introduced by **Vicary, Musto (2016)**: Example of order $N = 4$

$$
\begin{array}{ccccc}\n\vert 0\rangle & \vert 1\rangle & \vert 2\rangle & \vert 3\rangle \\
\vert 3\rangle & \vert 2\rangle & \vert 1\rangle & \vert 0\rangle \\
\vert \chi_{-}\rangle & \vert \xi_{-}\rangle & \vert \xi_{+}\rangle & \vert \chi_{+}\rangle \\
\vert \chi_{+}\rangle & \vert \xi_{+}\rangle & \vert \xi_{-}\rangle & \vert \chi_{-}\rangle\n\end{array}
$$

where $\ket{\chi_{\pm}} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|1\rangle\pm|2\rangle)$ denote ${\bf Bell}$ states, while $|\xi_{+}\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{5}}(i\ket{0}+2\ket{3})\ket{\xi_-}=\frac{1}{\sqrt{3}}$ $\frac{1}{5}(2\ket{0}+i\ket{3})$ other **entangled** states. Four states in each row & column form an **orthogonal basis** in \mathcal{H}_4

Standard combinatorics: discrete set of symbols, $1, 2, \ldots, N$. $+$ permutation group generalized ("Quantum") combinatorics: continuous family of states $|\psi\rangle \in \mathcal{H}_N$ + unitary group $U(N)$.

 QQQ

Classical combinatorial designs...

include: Orthogonal Arrays (OA), Latin Squares (LS), Latin Cubes (LC)

More general quantum combinatorial designs include: **Quantum** Orthogonal Arrays (QOA), Quantum Latin Squares (QLS) and Quantum Latin Cubes (QLC) Goyeneche, Raissi, Di Martino, K.[Z.](#page-5-0) [P](#page-7-0)[h](#page-5-0)[ys](#page-6-0)[.](#page-7-0) [R](#page-0-0)[e](#page-16-0)[v](#page-17-0)[.](#page-0-0) [A](#page-16-0)[\(2](#page-0-0)[01](#page-34-0)8)

KZ (UJ/CFT) Quantum Combinatorial Designs & entanglem 19.09.2020 7 / 34

Mutually Unbiased Bases I

 \bullet Two orthogonal bases consisting of *n* vectors each in \mathcal{H}_N are called mutually unbiased (MUB) if

$$
|\langle \phi_i | \psi_j \rangle|^2 = \frac{1}{N} \; , \quad \text{for} \quad i, j = 1, \dots, N \; .
$$

- Such bases provide maximally different quantum measurements.
- For a complex Hilbert space of dimension N there exist at most $N + 1$ such bases.
- Example $N = 2$, complex space: 3 eigenbases of $\sigma_x, \sigma_y, \sigma_y$

Two unbiased bases in \mathbb{R}^2

つひひ

Mutually Unbiased Bases & Hadamard matrices

• Full sets of $(N + 1)$ MUB's are known if dimension is a **power of** prime, $N = p^k$.

For $N = 6 = 2 \times 3$ only $3 < 7$ MUB's are known!

- A transition matrix $H_{ij} = \langle \phi_i | \psi_j \rangle$ from one **unbiased** basis to another forms a complex Hadamard matrix, which is a) unitary, $H^\dagger=H^{-1}$, b) has "**unimodular**" entries, $|H_{ij}|^2 = 1/N$, $i, j = 1, ..., N$.
- Classification of all complex Hadamard matrices is complete for $N = 2, 3, 4, 5$ only. (**Haagerup** 1996) see Catalog of **complex Hadamard matrices**, at http://chaos.if.uj.edu.pl/∼karol/hadamard

Standard set of 2-qubit MUBs, $(N = 2 \times 2 = 4)$

consists of 3 separable bases $+$ 2 maximally entangled bases in \mathcal{H}_4

• Reduced states ρ_A and ρ_B form 6 (doubly degenerated) vertices of the regular octahedron within the Bloch ball (eigenvectors of $\sigma_x, \sigma_y, \sigma_z$ $= 3$ MUBs for $N = 2$) and 8-fold degenerated maximally mixed state $1/2$ in the centre.

Symmetric Informationally Complete POVM

• Symmetric informationally complete (SIC) POVM is such a set of \mathcal{N}^2 vectors $\{|\psi_i \rangle \}$ in $\mathcal{H}_\mathcal{N}$, that

$$
|\langle \psi_i | \psi_j \rangle|^2 = \frac{1}{N+1}
$$

Zauner (1999), Rennes, Blume-Kohout, Scott, Caves (2003)

- They may be thought as equiangular structures in the Hilbert space.
- SIC POVM are found analitically for $N = 2, \ldots, 24$ and numerically up to $151 +$ some special cases: $N = 844$ Grassl & Scott (2017)

4 pure states at the Bloch sphere forming a SIC for $N = 2$.

projective t -designs $=$ discrete set of pure states

Definition

Any ensemble $\ket{\psi_i}_{i=1}^M$ of $\bm{\mathsf{pure}}$ states in \mathcal{H}^N is called $\bm{\mathsf{complex}}$ projective **t-design** if for any polynomial f_t of degree at **most** t in both components of the states and their conjugates the average over the ensemble coincides with the average over the space $\mathbb{C}P^{N-1}$

$$
\frac{1}{M}\sum_{i=1}^M f_t\{\psi_i\} = \int_{\mathbb{C}P^{N-1}} f_t(\psi) d\psi_{FS}.
$$

with respect to the unitarily–invariant Fubini–Study measure $d\psi_{FS}$.

- Complex projective t -designs are used for quantum state tomography, quantum fingerprinting and quantum cryptography.
- **Examples of 2-designs include maximal sets of mutually unbiased** bases (MUB) and symmetric informationally complete (SIC) POVM.
- \bullet the larger t the better design approximate[s t](#page-10-0)[he](#page-12-0)[set](#page-11-0) [of](#page-0-0) [s](#page-16-0)[ta](#page-17-0)[te](#page-0-0)[s](#page-16-0)[..](#page-17-0)

Interesting case – isoentangled SIC-POVM

Averaging property implies a condition for the average entanglement (measured by the purity of partial trace) of vectors in a 2-design in $\mathcal{H}_{N}\otimes\mathcal{H}_{N}$

$$
\left\langle \text{Tr}\big[(\text{Tr}_A|\psi_i\rangle\langle\psi_i|)^2\big]\right\rangle = \frac{2N}{N^2+1}
$$

Zhu & Englert (2011) found an interesting constelation of $4^2 = 16$ states in $H_2 \otimes H_2$ forming a SIC for two-qubit system, such that entanglement of all states is constant,

$$
\operatorname{Tr}\big[\big(\operatorname{Tr}_A|\psi_i\rangle\langle\psi_i|\big)^2\big]=\frac{4}{5},\ \ \text{for}\ \ i=1,\ldots,16.
$$

Such a set of states can be obtained from a single fiducial state $|\phi_0\rangle$ by local unitary operations, $|\phi_j\rangle = U_j \otimes V_j |\phi_0\rangle$.

Question:

Is there a similar configuration for the full set of 5 iso-entangled MUBs for 2 qubits?

the standard MUB solution for $N = 4$ consists of 3 separable bases and 2 maximally entangled...

The answer is positive!

$$
\ket{\phi_0} = \frac{1}{20}(a_+ \ket{00} - 10i \ket{01} + (8i - 6) \ket{10} + a_- \ket{11}),
$$

where $a_\pm=-7\pm3$ √ $5 + i(1 \pm$ √ 5) and other states are **locally equivalent**, $\ket{\phi_j} = \textit{U}_j \otimes \textit{V}_j \ket{\phi_0}$

Each of $5 \times 4 = 20$ pure states $|\psi_i\rangle$ in $\mathcal{H}_2 \otimes \mathcal{H}_2$ will be represented by its partial trace, $\rho_j = \text{Tr}_\mathcal{B} |\psi_j\rangle\langle\psi_j|$ belonging to the Bloch ball of one-qubit mixed states.

Czartowski, Goyeneche, Grassl, K. Ż, Phys. Rev. Lett. (2020)

- Each basis is represented by a regular tetrahedron inside the Bloch ball.
- Each colour corresponds to a single basis.
- **•** Entire five-color set forms a regular 5-tetrahedra compound.
- Its convex hull forms a regular dodecahedron,

different from the one of Zimba and Penrose...

つひひ

Jakub Czartowski and his s[cul](#page-15-0)[pt](#page-17-0)[ur](#page-15-0)[e](#page-16-0)

KZ (UJ/CFT) [Quantum Combinatorial Designs & entanglement](#page-0-0) 19.09.2020 16 / 34

[Mixed states t-designs](#page-17-0)

 \leftarrow

In quantum theory one uses

- projective designs formed by pure states, $|\psi_i\rangle \in \mathcal{H}_N$
- unitary designs formed by unitary matrices, $U_i \in U(N)$ (which induce designes in the set of maximally entangled states, $|\phi_i\rangle = (U_i \otimes 1)|\psi_{+}\rangle$
- ${\sf spherical}\,$ designs sets of points *evenly distributed* at the sphere S^k
- related notions, e.g. conical designs, Graydon $&$ Appleby (2016), mixed designs by Brandsen, Dall'Arno, Szymusiak (2016)

These examples for special case of a general construction of **averaging** sets by Seymour and Zaslavsky (1984). It concerns a collection of M points x_j from an arbitrary measurable set Ω with measure μ such that

$$
\frac{1}{M}\sum_{i=1}^M f_t(x_i)=\int_{\Omega} f_t(x)d\mu(x),
$$

where $f_t(x)$ $f_t(x)$ $f_t(x)$ $f_t(x)$ $f_t(x)$ $f_t(x)$ denote selected continuous function[s,](#page-17-0) [e.g](#page-19-0)[.](#page-34-0) $f_t(x) = x^t$ $f_t(x) = x^t$ $f_t(x) = x^t$

We apply this idea for a compact set of mixed states $\Omega_N \subset \mathbb{R}^{N^2-1}$ endowed with the flat Hilbert-Schmidt measure $d\rho_{HS}$

Definition

Any ensemble $\{\rho_i\}_{i=1}^M$ of M density matrices of size N is called a $\boldsymbol{\mathsf{mixed}}$ states t-design if for any polynomial g_t of degree t in the eigenvalues λ_i of the state ρ the average over the ensemble is equal to the mean value over the space of mixed states Ω_N with respect to the **Hilbert-Schmidt** measure $d\rho$ _{HS}.

$$
\frac{1}{M}\sum_{i=1}^{M}g_{t}(\rho_{i})=\int_{\Omega_{N}}g_{t}(\rho)\,\mathrm{d}\rho_{H\!S}.\tag{1}
$$

つひひ

Method of genereting mixed states t-designs

Proposition 1.

Any complex **projective** *s*-design $\{|\psi_i\rangle\}_{i=1}^{M}$ in the composite Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ of size $N \times N$ induces, by partial trace, a mixed states t-design $\{\rho_i\}_{i=1}^M$ in Ω_N with $\rho_i = \text{Tr}_\mathcal{B} |\psi_i \rangle\!\langle \psi_i |$ and $t \geq s.$ The same property holds also for the dual set $\{\rho'_i: \rho'_i = \text{Tr}_{\mathcal{A}} |\psi_i\rangle\!\langle\psi_i|\}.$

Construction for $t = s$ is based on the fact that **Fubini–Study measure** in the space of pure states od size \mathcal{N}^2 induces, by partial trace, the flat HS **measure** in the space Ω_N of mixed states of size N.

Observation 1.

Every positive operator-valued measurement (POVM) induces a mixed states 1-design, as its barycenter coincides with the maximally mixed state $1/N$.

KZ (UJ/CFT) Quantum Combinatorial Designs & entanglem 19.09.2020 20 / 34

 (4)

If and only if conditions for mixed states t-designs

Proposition 2.

A set $\{\rho_j\}_{j=1}^M$ of density matrices of size N forms a \bold{mixed} states $\textit{t}\text{-}\bold{design}$ **if and only if** it saturates the inequality analogous to the Welsh bound – Scott (2006)

$$
2\operatorname{Tr}\left(\frac{1}{M}\sum_{i=1}^{M}\rho_{i}^{\otimes t}\int_{\Omega_{N}}\rho^{\otimes t}\,\mathrm{d}\rho_{H\mathcal{S}}\right)-\frac{1}{M^{2}}\sum_{i,j=1}^{M}\operatorname{Tr}(\rho_{i}\rho_{j})^{t}\leq\gamma_{N,t}
$$
\nwhere $\gamma_{N,t}:=\operatorname{Tr}\omega_{N,t}^{2}$ and $\omega_{N,t}:=\int_{\Omega_{N}}\rho^{\otimes t}\,\mathrm{d}\rho_{H\mathcal{S}}$

Observation 2.

Due to the theorem of Seymour and Zaslavsky

mixed–states t-designs exists for any order t and matrix size N .

KZ (UJ/CFT) **Supermantum Combinatorial Designs & entanglem** 19.09.2020 21 / 34

Isoentangled 2 -qubit SIC-POVM formed of 16 pure states 1

both partial traces form a constelation of 8 (doubly degenerated) points inside Bloch ball

• In Alice reduction SIC-POVM yields a Platonic solid - the cube. The constellation in the reduction of Bob is not as regular as for Alice.

 1 Zhu & Englert (2011)

KZ (UJ/CFT) Quantum Combinatorial Designs & entanglem 19.09.2020 22 / 34

Hoggar example² of 60 states in \mathcal{H}_4

- Hoggar provides an example (no. 24) of projective 3-design in \mathcal{H}_4 attained by considering particular complex polytope that consists of 60 states.
- both reductions yield the same structure inside the Bloch ball as the one generated by the standard MUB for 2 qubits.
- This implies that reducing 20 states forming the standard set of MUBs for 2 qubits induces mixed 3-design.

²S. Hoggar Geometriae Dedicata 69, 287 – 289 (199[8\)](#page-22-0)

KZ (UJ/CFT) Quantum Combinatorial Designs & entanglem 19.09.2020 23 / 34

 \bullet 5 \times 4 = 20 mixed states obtained by partial trace, $\rho_j = \text{Tr}_B |\psi_j\rangle \langle \psi_j|$ of 20 pure states $|\psi_i\rangle$ from iso-entangled MUB in $\mathcal{H}_2 \otimes \mathcal{H}_2$ form a mixed states 2-design inside the Bloch ball.

In fact they form a 3-design ! so that $t = 3 > s = 2$.

Example: t-designs in the interval $($ = averaging sets)

• Consider a measure $\mu(x)$ defined on the interval [0, 1] and a minimal sequence of points $\{x_i: x_i \in [0,1]\}_{i=1}^M$ such that

$$
\frac{1}{M} \sum_{i=1}^{M} x_i^t = \int_0^1 x^t \mu(x) \, dx \,. \tag{2}
$$

• Such structures may find use in approximate integration using Taylor expansion

$$
\int_0^1 f(x) dx = \left(\sum_{i=0}^t \sum_{j=1}^M \frac{1}{i!} \frac{d^i f(x)}{dx^i} \Big|_{x=x_0} (x_j - x_0)^t \right) + O(x^{t+1}) \quad (3)
$$

 n – number of points on interval t – degree of the design

- $\rho(\mu(x)) = 1$ defines flat measure.
- Configurations have been found up to $t = 7$.

 \blacksquare

Consider the Hilbert-Schmidt measure on eigenvalues of density matrices, $P(\lambda_1, \lambda_2) \sim (\lambda_1 - \lambda_2)^2$ which leads to the **flat** measure inside the Bloch Ball

$$
\mu_{HS}(x)=3(2x-1)^2
$$

with radius $r = |2x - 1|$

• For $t = 5$ we found $n = 4$ points.

Projection of projective designs onto the simplex I

Pure states *t*-design $\{|\psi_i\rangle\}$ in \mathcal{H}_N cover the set of **pure** states. Their projection on the simplex due to $\sf{decoherence}, \;\; p_j = {\rm diag}(|\psi_j\rangle \langle \psi_j|)$ gives a t–design in the simplex Δ_N according to the flat measure:

(example for $N = t = 2$ and **Bloch sphere**).

Projection of quantum states designs onto the simplex II

• a) Pure states *t*-design $\{|\psi_i\rangle\}$ in \mathcal{H}_N cover the set of **pure** states. Their projection on the simplex due to decoherence,

 $\mathbf{p}_j = \mathrm{diag}(|\psi_j\rangle\langle\psi_j|)$ gives a t –design in the simplex Δ_N according to the flat measure: (example for

 $N = t = 2$ and the **Bloch sphere**).

• b) Mixed states *t*–design $\{\rho_i\}$ cover the set Ω_N of **mixed** states. Their projection on the simplex related to spectrum, $\mathbf{p}_i = \text{eig}(\rho_i)$, gives a t–design in the simplex Δ_N according to the HS measure: (example for $N = t = 2$ [a](#page-29-0)[n](#page-30-0)[d](#page-16-0) [t](#page-17-0)[he](#page-34-0) **[B](#page-17-0)[lo](#page-34-0)[ch](#page-0-0) [ba](#page-34-0)ll**)

Bipartite quantum measurements with optimal single-sided distinguishability

Problem: Which orthonormal basis $\{|\psi_i\rangle \in \mathcal{H}^{\otimes 2}_N\}_{i=1}^{N^2}$ gives optimal single-sided distinguishability ?

Maximize trace distance between reduced states $\rho_i = \mathsf{Tr}_\mathcal{B}\left(|\psi_i\rangle\!\langle\psi_i|\right)$ and $\sigma_i = \mathsf{Tr}_\mathcal{A}\left(|\psi_i\rangle\!\langle\psi_i|\right)$ in both subsystems: $D_{\text{max}} = \max_{\{|\psi_i\rangle\}} \{D : \forall_{i,j} D_{\text{tr}}(\rho_i, \rho_j) = D_{\text{tr}}(\sigma_i, \sigma_j) = D\}.$

Solution for $N = 2$ (yields a tetrahedral structure)

$$
U_4=\begin{pmatrix} \langle\psi_1|\\\langle\psi_2|\\\langle\psi_3|\rangle\\\langle\psi_4|\end{pmatrix}=\begin{pmatrix} \sqrt{\frac{1}{2}+\sqrt{\frac{3}{16}}}&0&0&-\sqrt{\frac{1}{2}-\sqrt{\frac{3}{16}}\\ \frac{1}{6}\sqrt{6-3\sqrt{3}}&\frac{1}{\sqrt{3}}&\frac{1}{\sqrt{3}}&\frac{1}{6}\sqrt{6+3\sqrt{3}}\\ \frac{1}{6}\sqrt{6-3\sqrt{3}}&\frac{\omega^2}{\sqrt{3}}&\frac{\omega}{\sqrt{3}}&\frac{1}{6}\sqrt{6+3\sqrt{3}}\\ \frac{1}{6}\sqrt{6-3\sqrt{3}}&\frac{\omega}{\sqrt{3}}&\frac{\omega^2}{\sqrt{3}}&\frac{1}{6}\sqrt{6+3\sqrt{3}} \end{pmatrix}
$$

and coincides with Elegant Joint Measurement

Massar and Popescu (1995[\),](#page-29-0) [Gis](#page-31-0)[i](#page-29-0)[n](#page-30-0) [\(2](#page-31-0)[0](#page-16-0)[1](#page-17-0)[9\)](#page-34-0)

KZ (UJ/CFT) [Quantum Combinatorial Designs & entanglement](#page-0-0) 19.09.2020 30 / 34

Tetrahedral constellations in the Bloch ball

mean purity $\langle Tr(\rho^2) \rangle =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ 1 for SIC-POVM 7 $\frac{7}{8}$ for Elegant Joint Measurement 4 $\frac{4}{5}$ for mixed 2-designs ,

$N = 3$ Optimal basis in $H_3 \otimes H_3$

with the largest single-sided distinguishability with the largest single-sided distinguishability
written as rows of a unitary matrix U of size $N^2=9$ rescaled by $1/6\sqrt{ }$ 3

with $\omega = \exp(2i\pi/3)$.

arbitrary N: Optimal basis in $\mathcal{H}_N \otimes \mathcal{H}_N$

Solution found if there exist a $\, {\bf SIC} \,\, {\bf POVM} \,\, \{ \vert i_0\rangle \}_{i=1}^{N^2} \,$ in $\, {\cal H}_N. \,$

Optimal basis in $\mathcal{H}_{N} \otimes \mathcal{H}_{N}$ reads

$$
\left|\psi_{i}\right\rangle = \sqrt{\lambda_{\max}}\left|i_{0}\right\rangle\left|i_{0}^{*}\right\rangle - \sqrt{\frac{1-\lambda_{\max}}{N-1}}\sum_{j=1}^{N-1}\left|i_{j}\right\rangle\left|i_{j}^{*}\right\rangle, i=1,\ldots,N^{2}
$$

 $Vectors \mid$ $\left\langle i_j^*\right\rangle \in {\cal H}^B$ are obtained by conjugate components of $\left\vert i_j\right\rangle$ for $i=1,\ldots,N^2$ and $j=0,\,\ldots,\,N-1$.

Dominating Schmidt coefficient λ_{max} is

$$
\lambda_{\text{max}} = \frac{N^3 - N^2 - N + 2(N-1)\sqrt{N+1} + 2}{N^3}.
$$

and tends to unity for $N \to \infty$.

Concluding Remarks

- • An invitation to quantum combinatorics: a search for discrete structures in Hilbert space...
- Configuration of 20 pure states in \mathcal{H}_4 which form the full set of 5 **iso-entangled MUBs** for 2 qubits is constructed.
- Notion of **mixed states t-design** is introduced and **necessary and** sufficient conditions for $\{\rho_i\}$ to be a t-design are established.
- **Projective** t-designs on composite spaces $\mathcal{H}_{N} \otimes \mathcal{H}_{N}$ induce, by partial trace, **mixed states** *t*-designs in the set Ω_N of mixed states.
- Simplicial *t*–designs in the simplex Δ_n obtained from projective t-designs $\{|\psi_j\rangle\}$ in \mathcal{H}_N by decoherence, $\mathbf{p}_j = \text{diag}(|\psi_j\rangle \langle \psi_j|)$.
- Bi-partite **orthogonal basis** with optimal single side distinguishability: reduced states for $N = 2$ gives rescaled tetrahedron of SIC equivalent to Elegant Joint Measurement (EJM)
- Analitical form of EJM found for higher N, for which SIC is known.