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Motivation
• Ultra-cold atoms in optical lattices provide a 

fascinating playground for studying strongly 
correlated systems

• Single-species boson systems:

• Superfluid to Mott insulator transition (Observed)

• Two-species boson systems:

• Exhibit even rich behavior

• Super CounterFluid (SCF)

• Pair SuperFluid (PSF)



Early Mean Field Study

No PSF/SCF Phase Found !



Mean Field and Monte Carlo Study

Mean Field MC (J-current model)

first order



QMC Study (Half-filling) 
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In this work, we reveal and quantify the mechanism of mediated sign-alternating

interactions, and discuss it in the context of the ground state phase diagram for hard-core bosons,

i.e. infinite intraspecies interaction, with repulsive interspecies interaction at half filling for each

component:
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implemented experimentally [7] and is considered to be the simplest one with purely contact

interactions and yet a highly nontrivial phase diagram.

Model (1) was studied previously using a combination of variational and mean-field

theories [17] which, in general, cannot guarantee the accuracy of results. With Monte Carlo

(MC) simulations using the worm algorithm [22], we obtain the first precise data for the ground

state phase diagram. For weak asymmetry between ta and tb and large U , our results confirm

the basic phases and transitions between them proposed in [17]. We, however, find strong

quantitative differences (up to 50–100%) in the location of transition lines. For large asymmetry

and moderate-to-weak interactions, we find a completely new structure of the phase diagram.

It is shaped by the effective Hamiltonian obtained for the ‘heavy’ (small hopping) component

after the ‘light’ component is integrated out. The resulting nearest-neighbor and longer-range

interactions (similar to the effective potential between the ions in solids mediated by electrons)

stabilize the CB solid phase of heavy atoms for sufficiently strong asymmetry between tb and

ta. A surprising result of the present study is that effective mediated interactions oscillate from

strong on-site attraction to much weaker nearest-neighbor repulsion and back to a tiny attractive

tail. In a broad perspective, this type of mediated interaction will result in interesting solid and

guaranteed supersolid [9] orders in related models. Moreover, for soft-core bosons, one can look

for phases and phase transitions that involve multi-particle bound states and order parameters

(‘multi-mers’).

Before we discuss our findings in more detail, let us review the key phases and limiting

cases of model (1). In the strong coupling limit, U � ta, tb, it can be mapped (within

second-order perturbation theory) onto the spin-1/2 Hamiltonian (see e.g. [14, 15, 17])
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2/U . The latter features

two possible ground states: (i) an antiferromagnetic state with z-Néel order for Jz > Jxy and

(ii) an XY-ferromagnetic state for Jxy > Jz. In bosonic language, the z-Néel state corresponds to

the CB solid order for both A and B particles (we will abbreviate it as 2CB). It is characterized

by nonzero structure factor Sa,b(k) = N
−1

�
r exp [ikr] �n(a,b)

0
n

(a,b)
r �. The XY state represents

the SCF phase featuring an order parameter �a†
b�. Both 2CB and SCF have to be regarded as

MIs as far as the total number of particles is concerned, i.e. there exists a finite gap to dope

the system. Thus only counter-propagating A and B currents with zero net particle flux possess

SF properties in the SCF state. Under the mapping one finds that Jz > Jxy everywhere except

at ta = tb when the spin Hamiltonian becomes SU (2)-symmetric. Thus higher order symmetry-

breaking terms are necessary to decide which phase, 2CB or SCF, survives. Altman et al [17]

provided a variational argument showing that SCF is stabilized in the vicinity of the ta = tb line,

and our data unambiguously confirm the validity of this conclusion.
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Figure 1. Phase diagram of model (1) on a square lattice at half-integer
filling factor for each component. The observed transition lines are 2CB–SCF
(first-order), SCF–2SF (second-order), 2CB–2SF (first-order), 2CB–CB + SF
(second-order) and CB + SF–2SF (first-order). Lines are used to guide the eye.

At weak interspecies interaction, U � ta, tb, we expect that the ground state is that of two
miscible strongly interacting (due to hard-core intracomponent repulsion) superfluids (2SF).
Finally, for tb � U � ta we should have a phase where B particles form the CB solid if effective
interactions mediated by the SF A component are repulsive and short-ranged (we abbreviate it
as CB + SF).

Our simulation method is based on the lattice path integral representation and the worm
algorithm [22]. The original version was generalized to deal with two-component systems
following ideas introduced for classical j-current models [23]. The simulation configuration
space now includes the possibility of having two types of disconnected worldlines (worms)
representing off-diagonal correlation functions (Green’s functions). In order to allow efficient
sampling of the SCF phase (any paired phases for that matter) it is necessary to enlarge
the configuration space and consider worldline trajectories with two worms propagating
simultaneously. The results for the phase diagram are summarized in figure 1. To detect the
SCF phase, we have calculated the stiffness of the relative SF flow from the standard winding
number formula [24] ρSCF = β−1�(Wa − Wb)

2�, where Wa(b) are winding numbers of worldlines
A (B), and β is the inverse temperature. In SCF, the sum of winding numbers is zero in
the thermodynamic limit. We confirm the SCF ground state for ta ∼ tb and sufficiently strong
interactions. It survives at arbitrary large U along the diagonal ta = tb, directly demonstrating
that higher order terms in the effective spin-1/2 Hamiltonian break the SU (2) symmetry in favor
of XY order. To locate the weakly first-order SF–solid 2CB-SCF line (circles in figure 1) we have
used the flowgram method, which works well for both first- and second-order transitions and is
particularly helpful for telling the former from the latter (see [25] for details).

Although the 2CB–SCF transition is expected to be first order, one may not exclude the
possibility of the intermediate supersolid phase. We did search for evidence of the state featuring
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Symmetric Hardcore Bosons

• Particle-Hole symmetric

• Isotropic hopping

• Possible phases (symmetric around μ=-1/2)

• MI (Mott Insulating)

• 2SF (Two SuerFluid)

• PSF (Paired SuperFluid, Uab<0)

• SCF (Super CounterFluid, Uab>0)
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Order Parameters

<a>=<b> <ab> <ab†>

MI 0 0 0

2SF ≠0 ≠0 ≠0

PSF 0 ≠0 0 or ⟨(Wa-Wb)2⟩=0

SCF 0 0 or ⟨(Wa+Wb)2⟩=0 ≠0

• PSF: a→eiθa, b→eiθb broken; a→eiθa, b→e-iθb not broken

• SCF: a→eiθa, b→eiθb not broken; a→eiθa, b→e-iθb broken



The Method
• Wave-function: Tensor Product State (TPS)

• Optimization

• Imaginary time evolution (Projection)

• H. C. Jiang, Z. Y. Weng, and T. Xiang, Phys. Rev. Lett. 101,090603 ,(2008)

• Expectation value

• Tensor Renormalization Group (TRG)

• M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)

• Z.C. Gu, M. Levin, and X. G. Wen, Phys. Rev. B 78, 205116,(2008)



2D Tensor Product State (TPS)
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Coarse-Grained Tensor Network
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Expectation value of TPS can be approximately but efficiently 
calculated via TERG

Final 2x2 Plaque

TA TB

TC TD

After N iteration of RG,  2x2 plaque effective represent 2Nx2N lattice
Tensor contract can be done exactly for the 2x2 plaque 



Imaginary Time Evolution
• Use imaginary time to reach the ground state
• Assume initial state has some overlap with GS

• Imaginary time evolution single out the GS

• Obtain ground state by

ψ (0) = A0 G + A1 E1 + A2 E2 +

e−τ t ψ (0) = A0 G + A1e
−τE1 E1 + A2e

−τE2 E2 +

G = lim
N→∞

e−δτ( )N ψ (0)

e−δτ( )N ψ (0)



Results



Phase Diagram
PSF

2SFMI

M. Iskin, PRA 82, 033630 (2010)

(−2µ −1) / 4z −zt
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t = 0.12
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Weak first order?



Mean Field and Monte Carlo Study

Mean Field MC (J-current model)

first order



Summary and Outlook
• Application of TPS/TRG to bosonic system

• Two-Species Bose-Hubbard Model

• Phase diagram

• Paired SuperFluid

• Improve the accuracy

• Improved optimization and contraction method

• SRG, CTMRG, etc



Thank You
ありがとう

謝謝



Expectation Value of TPS
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Double tensor T



Tensor Renormalization Group

T
S3

S1 S2

S4

Rewrite rank 4 tensor T into product of two rank 3 tensor S

OR
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Tαβµν ≅ S3,αδγS1,µνγ
γ=1

Dcut
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Tensor Renormalization Group
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Rewrite rank 4 tensor T into product of two rank 3 tensor S

OR� 

Tαβµν ≅ S3,αδγS1,µνγ
γ=1

Dcut
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Imaginary Time Evolution of TPS
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