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Importance of the variational method:

NRG and DMRG −→ variational optimization over TN:
⇒ very successful in describing low-energy states of
(low-dimensional) quantum lattice systems
Other variational methods in quantum physics:

single-particle quantum mechanics (e.g. quartic potential)
quantum chemistry: Hartree-Fock, Density Functional
Theory, . . .

Advantages over alternatives:

non-variational Monte Carlo: sign problem for many
interesting systems
perturbation theory: interesting physical effects are often
non-perturbative
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Nonperturbative application of the variational approach for
relativistic quantum field theory:

long history←→ little success

Feynman @ International Workshop on Variational
Calculations in Quantum Field Theory, Wangeroo, West
Germany, 1 - 4 September 1987 ∗:

. . . it is no damn good at all!

∗ R. P. Feynman in Proceedings of the International Workshop on Variational

Calculations in Quantum Field Theory (L. Polley and D. E. L. Pottinger, eds.), World

Scientific Publishing, Singapore, pp. 28–40 (1987).
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What are the “Difficulties in Applying the Variational
Principle to Quantum Field Theories”?

1 Sensitivity to High Frequencies:
the variational principle’s only task is to minimize the
ground state energy, which is dominated by zero-point
fluctuations of high frequencies/UV modes/deepest scale
the low frequencies, which generate the interesting
observable physics, will be ill-described

2 Only Gaussian Trial States
3 We Still Have To Do a Functional Integral

it’s hard to find a non-gaussian wave function that respects
extensivity and allows for an efficient evaluation of
expectation values
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Feynman’s second and third argument is generally applicable
to extended quantum systems and has been solved:

lattice systems: AKLT (1988)→MPS→ tensor networks
field theories: continuous matrix product states (2010)

→ did Feynman foresee this possibility?
. . . I think it should be possible some day to describe field theory in some

other way than with the wave functions and amplitudes. It might be
something like the density matrices where you concentrate on

quantities in a given locality . . .

The first argument is catastrophique for (relativistic) field
theories:

non-trivial vacuum all the way to the highest scale
infinite amount of UV modes

⇒ divergences (e.g. the ground state energy density)

Jutho Haegeman, Ghent University Variational principle in relativistic QFTs



Introduction
Description with continuous MPSs

Applications
Conclusions and outlook

Continuous Matrix Product States
Relevant properties of cMPSs
Manifestation of Feynman’s first problem
Solution of Feynman’s first problem

A continuous Matrix Product State (cMPS) is given by:

|Θ〉 = Tranc

[
P exp

{∫ +∞

−∞
dx Q(x)⊗ 1̂ + Rα(x)⊗ ψ̂†

α(x)
}]
|Ω〉 (∗)

Q and R position-dependent D×D matrices, acting on the
D-dimensional ancilla
→ we will use translational invariance: constant Q and R

Trace over ancilla for periodic system or D-dimensional
boundary vectors 〈vL|, |vR〉 for open system
→ will not matter for an infinite size system

ψ̂†
α(x) a type α particle (boson/fermion) creation operator

acting on an empty vacuum state |Ω〉 (i.e. ψ̂α(x) |Ω〉 = 0)
→ we will restrict to fermionic theories

⇒ more info: Frank Verstraete’s talk tomorrow!
∗ F. Verstraete and J.I. Cirac, Phys. Rev. Lett. 104:190405, 2010
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Properties of cMPSs for relativistic QFTs:

they overcome Feynman’s second and third objection:
the cMPS is an extensive, non-gaussian variational ansatz
that allows for an efficient evaluation of expectation values
they yield ‘regularized’ expectation values for the
relativistic kinetic energy of fermions, as well as of any
interaction term in the Hamiltonian, provided that

{Rα, Rβ} = δα,β, α, β ∈ {1, 2} (∗)

⇒ regularization through intrinsic soft momentum cutoff Λ:
momentum occupation nα,β(k) goes as O(k−4) for k & Λ

they easily allow scale transformations:
Q→ cQ, Rα →

√
cRα ⇒ nα,β(k)→ nα,β(k/c), Λ→ cΛ

∗ α = 1, 2: two components of the Dirac spinor in (1 + 1) dimensions
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The exact ground state of a relativistic Hamiltonian is
non-trivial/non-empty all the way up to the deepest scales

Manifestation of Feynman’s sensitivity to high frequencies

Momentum space interpretation:
energy can most strongly be lowered by having particles
with very large momentum in the ground state (∗)
variational principle will send Λ→ ∞ by letting c→ ∞,

Real space interpretation:
if 〈T̂〉 < 0, then the (kinetic) energy density can be lowered
with c→ ∞ since t̂→ c2 t̂
for comparison: non-relativistic T̂ is positive definite

∗ free Hamiltonian: filling negative energy levels,

interacting Hamiltonian: some other non-trivial configuration
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Why is this problematic

a cMPS will be able to accurately describe a ground state if
D ∼ O(eS) with S ∼ log(Λ/∆) with ∆ the energy gap
if D is too small, or Λ too large, compromises will be made
in the description of long range behavior (IR scale)
if the variational algorithm can push c→ ∞:
behavior at any observationally accessible scale will be
totally wrong for any finite D
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Renormalizability: physical quantities are nearly independent
to the UV specifics of a renormalizable QFT

⇒ We are free to ‘regularize’ the field theory by modifying
the Hamiltonian such that

the low energy dynamics are unchanged
the high energy dynamics are such that the asymptotic
solution for k→ ∞ is the the empty vacuum |Ω〉 ∗

∗ Any other unentangled vacuum would do as well.
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Regularizing relativistic fermions: one of many possibilities

Ĥ→ Ĥ +
1
Λ

∫ +∞

−∞
dx
(

dψ†
α

dx
(x)
)(

dψα

dx
(x)
)

⇒ dispersion relation of free fermions will change to

ω(k) =
√

m2 + k2 + k4/Λ2 =
√

m2 + k2 +O(k4/Λ2)

⇒ breaks relativistic invariance
⇒ ground state of the free theory will be completely empty

(sharp cutoff / Fermi surface) for |k| & Λ
ground state of an interacting theory will quickly become
empty for |k| > Λ (no sharp cutoff / Luttinger liquid)

⇒ note: no fermion doublers in this regularization scheme!
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Evaluating results for Dirac fermions
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Ground state energy
density is not useful.

⇒ Look at occupation of
exact energy levels:

for a gapped system
(m > 0), low energy
behavior is very well
reproduced

sharp cutoff is not
reproduced (but this
does not matter)

chiral symmetry is
respected for m = 0

Note: ancilla is C2 ⊗C2 ⊗CD.
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Gross Neveu

N flavors of massless fermions interacting through a
quartic potential (exactly solvable for N → ∞)

⇒ spontaneous breaking of chiral symmetry
⇒ dynamical mass generation

Order parameter of chiral symmetry breaking

λ(
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Order parameter:

σ = 〈ψ̂†
1 ψ̂1 − ψ̂†

2 ψ̂2〉

Exact solution (N = ∞):

λσ = Λe−
π
λ

with λ = (N− 1)g2
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Conclusions

We have taken a first step in showing that
the variational approach towards relativistic QFT might be
not so bad after all
continuous matrix product states are well suited to capture
the low energy dynamics of relativistic field theories too

But much more still has to be done!
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Outlook

In the near future, we expect to be able to
treat bosonic theories
have an ansatz for creating excitations

In the far future, we might be able to
treat (relativistic) field theories in higher dimensions
deal with gauge theories
solve QCD, prove confinement, win one million dollar
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Thank you for your attention!

Questions ?
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Casimir energy for Dirac fermions

Energy density between two plates:
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⇒ Friedel oscillations due to presence of cutoff (Fermi surface).
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Casimir energy for Dirac fermions

Total energy as function of plate separation
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⇒ Friedel oscillations lead to resonances
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