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Frustration

• Large number of degenerate classical ground states

• Emergence of novel spin-disordered ground states due 
to quantum fluctuations

• Hard to study numerically: size limitation in Exact 
Diagonalization, sign problem in QMC (also fermion), 
dimension limit for DMRG 

or

AF

Kagome Pyrochlore Hyperkagome Garnet

ZnCu3(OH)6Cl2 Tb2Ti2O7 Na4Ir3O8 Gd3Ga5O12 
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Tensor product states
• Tensor product states, projected entangled paired 

state (PEPS)
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tTr{A(s1)A(s2) · · ·A(sN )}|s1, s2, . . . , sN �

Aijkl: rank-4 tensor
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F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066
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Tensor Contraction
• Contracting the internal indices, 

the four-leg tensor can be 
viewed as a single tensor.

• External link dimension becomes 
D2 after one contraction; 
exponential growth as we keep 
contracting D4,D8......

• Computationally intensive; 
Impossible to store intermediate 
results.

• Need some RG scheme.
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Plaquette renormalized trial wavefunction 

• We treat the elements in the A 
and S tensors as variational 
parameters, and minimize the 
total energy. 

• Optimization: Principal axis 
method / random optimization, 
derivative-free, computationally 
expensive. 
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Plaquette-Renormalization

Wang, Kao, Sandvik, arXiv:0901.0214
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8-index tensor: D8 4-index tensor: Dcut4

a,b,...g,h=1...D i,j,k,l=1...Dcut
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8-index dbl-tensor: D16 4-index dbl-tensor: Dcut8 

Renormalization of an 8-index plaquette tensor using 
auxiliary 3-index tensors S.
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Building block: plaquette

• 12 internal sums. Maximum 
computational effort: D8.

• Each free index and 
summation contributes D.
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Plaquette-Renormalization of TNS

• Effective reduced 
tensor network for a 
8x8 lattice

• Summing over all 
unequivalent bonds 
and sites

• Method is variational

• Optimize T and R 
globally

• Size scaling: L2Log(L)

R1

R2

T1

T0

T2

Wang, Kao, Sandvik, arXiv:0901.0214
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Expectation values
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Transverse Ising Model

• Assume translational invariance: 
all initial T’s are the same.  

• Globally optimized T and R.

• hc=3.33 (3.04,QMC)

• mz~ (h-hc)β, β~0.40
• h~hc, β~0.50 mean-field like. 
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Transverse Ising Model

• Spins at different lattice sites 
inside the plaquette have 
different environments.

• We use different tensors  
inside a plaquette.
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Computational Costs

• Globally optimized T and R.

• Contraction calculation is highly parallelizable. 

• IBM Blue Gene/L at BU. D=2, takes weeks to 
optimize.

• Bottleneck: plaquette contractions.

• Take advantage of GPU (Graphic Processing 
Unit)

• SIMT (Single-instruction, multiple-thread) 
device.
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J1-J2 Model

• Need large size and large D to see the real 
physics.

• Currently L=8, D=3 is very time consuming on 
CPU. 

H. J. Schulz, T. A. Ziman and D. Poilblanc, J. Phys. I 6 (1996) 675-703
A. W. Sandvik, Phys. Rev. B 56, 11678 (1997)
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J1-J2 Model

• Order parameters M2(qx, qy) =

�

 1
N

�

j

ei(qxjx+qyjy)Sj




2�

M1=M(π,π) M2=M(0,π))(a

)(b

)(c

Figure 4.10: A graphric representation of the f(j) in Eq. (4.12) associated
with (a) Q = (π, π), (b) Q = (π, 0) , and (c) Q = (0, π).
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Figure 4.10: A graphric representation of the f(j) in Eq. (4.12) associated
with (a) Q = (π, π), (b) Q = (π, 0) , and (c) Q = (0, π).
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Summary and Outlook

• Tensor network states are promising candidates to 
understand frustrated quantum spin systems.

• In plaquette renormalized tensor network representation, 
no approximations are made when contracting the 
effective renormalized tensor network.

• Non-MFT results even with the smallest possible non- 
trivial tensors and truncation (D = 2) in 2d transverse Ising 
model. 

• GPU can potentially speed up the computationally 
intensive part of the calculation.

• GS for J2/J1~0.6? VBS order? 


