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Outline

e Variational optimization of periodic MPS

e Mechanism of symmetry breaking with MPS
» |-d periodic transeverse-field Ising model
» critical form of the magnetization curve (finite N, N=00)
» limitations of finite computer precision(?)

e Criticality in 2D iPEPS (transverse-field Ising)

e MPS with variational Monte Carlo (time permitting)




Matrix product states (MPS)
Consider a periodic chain of S=1/2 spins
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W(s1,82,...,8n) = Tr|A(s1)A(s2) -+ A(sn)]

e MPSs can be implicitly generated by DMRG (Ostlund & Romer, 1995)
e Can be used independently of DMRG as a class of variational 1-d states

Graphical representation of a;®* and MPSs
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Can be easily evaluated; scaling for periodic chain: standard way costs ND°
e Pippan, White, Evertz (PRB 2010); good approximation (SVD) with ND3
e Monte Carlo sampling (Sandvik & Vidal, PRL 2007); ND?




How to optimize the matrices in MPS calculations
¢ |_ocal energy minimization, “sweep” through the lattice (Verstraete et al., ...)
¢ [maginary-time evolution (projecting out the ground state) (Vidal, ...)

Minimize the energy with maintained translational invariance?
Stochastic Optimization (using first derivatives)
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Steepest decent Line minimization Stochastic method

The stochastic method is guaranteed to
reach the global minimum if:

e “cooled” sufficiently slowly

e if all local minima on “funnel walls”: b<a
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Seems to work well for MPS optimization
e Starting from random matrices or ones optimized for smaller D
e Steepest decent can be faster at final stages

e But much slower than conventional methods




Test: Antiferromagnetic Heisenberg chain
N
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Comparison with N=100 results by: Pippan, White, Evertz (PRB 2010)

10~ +—= Stochastic MPS optimization
e—e Pippan, Evertz, White
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Good results, but the method is very slow




Infinite chain MPS

Exactly as in classical transfer-matrix method;

e keep only largest eigenvalue of P when N—co

¢ [maginary-time evolution (ground state projection) or DMRG-type
optimization can be applied (Vidal, Cirac, McCulloch,...)
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For some operator M (single-site, e.g., magnetization)
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Question: How is symmetry breaking manifested in MPS?
e for finite N and N—

Test: transverse-field Ising model

e true critical magnetization exponent f=1/8
e how does this exponent emerge?

e what is the h—h¢ behavior for finite D?
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Stochastic optimization

e Energy derivatives involve summing N different contributions
» time-consuming for N—co

Optimize in a trivial (slow) way for N=co
* Propose random changes in the matrix elements
» accept if and only if the energy improves
e casy to do in quadruple precision (but very slow)




Svymmetry breaking for finite N

First-order transition (D fixed)
e discontinuity decreases with
increasing N
e continuous for N—eo
¢ two E minimums
- symmetric and
symmetry-broken states
* “level” crossing
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Infinite chain MPS - optimization using derivatives

The derivative of the energy with respect to a matrix element is of the form
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D(l) is a correlation function; D() =0 when |2
¢ impose cut-off lcut in optimization for N=co; dependence on lcut
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N=oo: Optimization using trivial random updates
Does not require derivatives
e propose random changes in all parameters; maximum change=0
¢ accept only if the energy decreases
e for d—0 the acceptance rate should be 50%
e adjust 0 to give (e.g.) 10% acceptance rate
constant energy surface

/
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e find largest eigenvalue of P using
P"v =Xy, m— o0

* efficient with m=1,2,4,8,.... = p p2 p* ps
¢ numerically stable
e easy to go to high precision (quadruple, 128 bit)




Example: D=4, h=1.01432
¢ 10* update attempts per “step”
e 5—0/1.1 after each step if <10% accepted updates
¢ stage 1: double precision, stage 2: quadruple precision
e £ =-1.282445246576107642... , M,=0.0318141670... (quad precision)
Errors relative to converged results (for given D)
AE — (E - Econv)/Econv
Ay = (M — Meony ) /Meony evolution of & and acceptance rate
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N
z 1 z
E/N TEN 2_; & ) = max change in matrix elements
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E=-1.282454538906097 m=0.004589923026775 (l. McCulloch, standard)
E=-1.28245453890609554713490 m=0.004589765790234 (Random optimization)




Analysis of the critical behavior

Power-law fit for small m? always gives p = 0.50
¢ indicates asymptotic mean-field behavior

converged optimized data
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* For finite D, asymptotic critical behavior is of mean-field type
- cross-over to the true critical exponent
* numerical precision may limit access to critical behavior




The asymptotic mean-field behavior for MPS is not surprising
e finite D = maps to classical 1D transfer matrix
e criticality in 1D classical system requires long-range interactions

How about 2D PEPS?

Finite D — classical 2D partition function; critical points exist
e non-trivial exponents have been seen (?) for D=2,3 iPEPS

Infinite-size PEPS (iPEPS) [Orus & Vidal (2009)]

e Generalization of the N=c MPS (but more complicated, approximations)
e \We use new stable optimization/contraction [Wang & Verstraete]
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¢ mean-field cross-over

¢ to extract the true exponent
requires careful check of
convergence with D

¢ the true exponent emerges
in a window away from hc

® similar cross-overs in

T T classical systems

1 ]O}/z(_(D)-lljl/g(_(D) 10 0 (Baxter, Nishino et al.,...)
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Conclusions

Symmetry-breaking in MPS

¢ first-order for finite N, finite D

e continuous mean-field transition for N=oo, finite D
- mean-field window shrinks as D—
- true exponents emerge through cross-over behavior

Numerical precision issues (variational optimization)

e N=co optimization difficult close to phase transition
- relative error of order parameter large even if E converged
- difficult to extract the critical point precisely

N=cc PEPS (IPEPS)
e mean-field criticality for finite D
- existence of non-trivial critical points for finite D does not mean
that one automatically obtains correct critical behavior for a given H




