New Development of Numerical Simulations in Low-Dimensional Quantum Systems: From Density Matrix Renormalization Group to Tensor Network Formulations October 27-29, 2010, Yukawa Institute for Theoretical Physics, Kyoto University

Matrix-Product states: Properties and Extensions

Anders W Sandvik

Boston University

Collaborators

Chen Liu (Boston University)
Ying-Jer Kao (National Taiwan University, Taipei)
Yu-Cheng Su (National Taiwan University, Taipei)
Ling Wang (University of Vienna)

PHYSICAL REVIEW B 82, 060410R (2010)

Outline

- Variational optimization of periodic MPS
- Mechanism of symmetry breaking with MPS
 - ▶ I-d periodic transeverse-field Ising model
 - ▶ critical form of the magnetization curve (finite $N, N=\infty$)
 - limitations of finite computer precision(?)
- Criticality in 2D iPEPS (transverse-field Ising)
- MPS with variational Monte Carlo (time permitting)

Matrix product states (MPS)

Consider a periodic chain of S=1/2 spins

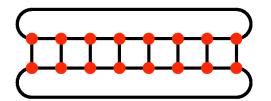
$$|\Psi\rangle = \sum_{\{s_i\}} W(s_1, s_2, \dots, s_N) |s_1, s_2, \dots, s_N\rangle, \quad s_i = \uparrow, \downarrow$$

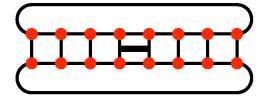
$$W(s_1, s_2, \dots, s_N) = \text{Tr}[A(s_1)A(s_2)\cdots A(s_N)]$$

- MPSs can be implicitly generated by DMRG (Ostlund & Romer, 1995)
- Can be used independently of DMRG as a class of variational 1-d states

Graphical representation of a_{Ir}s and MPSs

Normalization $\langle \Psi | \Psi \rangle$ Expectation value $\langle \Psi | S_i^a S_{i+1}^b \Psi \rangle$





Can be easily evaluated; scaling for periodic chain: standard way costs ND⁵

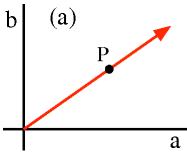
- Pippan, White, Evertz (PRB 2010); good approximation (SVD) with ND³
- Monte Carlo sampling (Sandvik & Vidal, PRL 2007); ND³

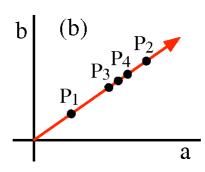
How to optimize the matrices in MPS calculations

- Local energy minimization, "sweep" through the lattice (Verstraete et al., ...)
- Imaginary-time evolution (projecting out the ground state) (Vidal, ...)

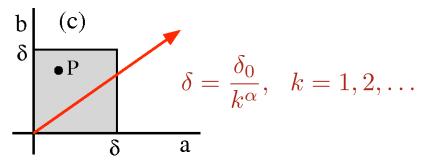
Minimize the energy with maintained translational invariance?

Stochastic Optimization (using first derivatives)





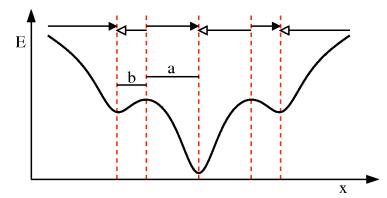
Line minimization



Stochastic method

The **stochastic method** is guaranteed to reach the global minimum if:

- "cooled" sufficiently slowly
- if all local minima on "funnel walls": b<a



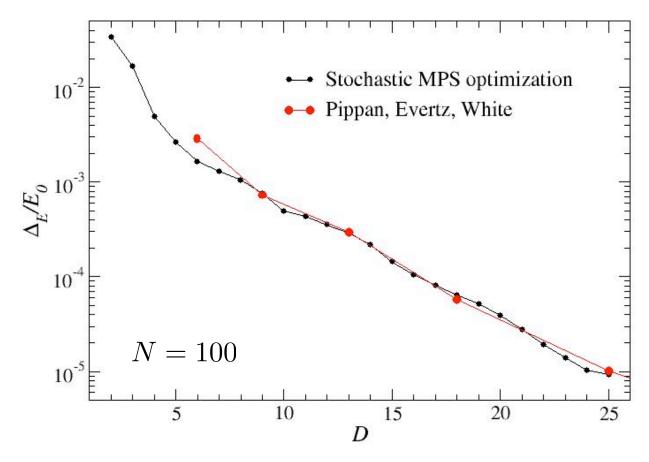
Seems to work well for MPS optimization

- Starting from random matrices or ones optimized for smaller D
- Steepest decent can be faster at final stages
- But much slower than conventional methods

Test: Antiferromagnetic Heisenberg chain

$$H = \sum_{i=1}^{N} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} = \sum_{i=1}^{N} \left[S_{i}^{z} S_{i+1}^{z} + \frac{1}{2} (S_{i}^{+} S_{i+1}^{-} + S_{i}^{-} S_{i+1}^{+}) \right]$$

Comparison with N=100 results by: Pippan, White, Evertz (PRB 2010)



Good results, but the method is very slow

Infinite chain MPS

Exactly as in classical transfer-matrix method;

- keep only largest eigenvalue of P when N→∞
- Imaginary-time evolution (ground state projection) or DMRG-type optimization can be applied (Vidal, Cirac, McCulloch,...)

(a)
$$\langle \Psi | \Psi \rangle =$$
 $=$ $\text{Tr}\{P^N\}$

(b)
$$c \xrightarrow{d} = a + (c-1)D \xrightarrow{\bullet} b + (d-1)D = A_{ab}(\uparrow)A_{cd}^*(\uparrow) + A_{ab}(\downarrow)A_{cd}^*(\downarrow) = P$$

For some operator M (single-site, e.g., magnetization)

$$\langle M \rangle = \frac{\text{Tr}\{MP^{N-1}\}}{\text{Tr}\{P^N\}} \rightarrow \frac{1}{\lambda_1} \sum_{i,j} v_{1i}^* v_{1j} M_{ij}$$

Question: How is symmetry breaking manifested in MPS?

for finite N and N→∞

Test: transverse-field Ising model

- true critical magnetization exponent β=1/8
- how does this exponent emerge?
- what is the $h \rightarrow h_c$ behavior for finite D?

$$H = -\sum_{i=1}^{N} \sigma_i^z \sigma_{i+1}^z - \frac{h}{2} \sum_{i=1}^{N} (\sigma_i^+ + \sigma_i^-)$$

Stochastic optimization

- Energy derivatives involve summing N different contributions
 - time-consuming for N→∞

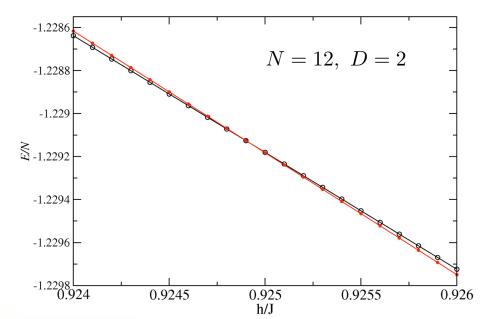
Optimize in a trivial (slow) way for N=∞

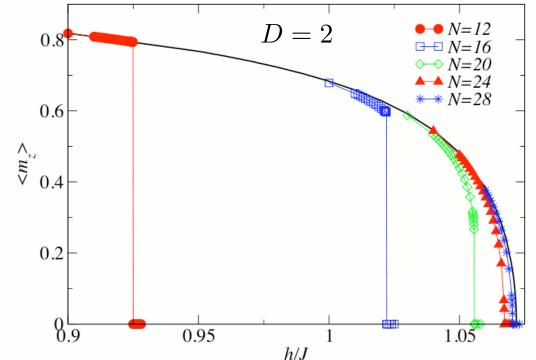
- Propose random changes in the matrix elements
 - accept if and only if the energy improves
- easy to do in quadruple precision (but very slow)

Symmetry breaking for finite N

First-order transition (D fixed)

- discontinuity decreases with increasing N
- continuous for N→∞
- two E minimums
 - symmetric and symmetry-broken states
- "level" crossing





Behavior versus D

- for given N, $h_c(D) \rightarrow 0$
- no symmetry-breaking for N<∞, D=∞

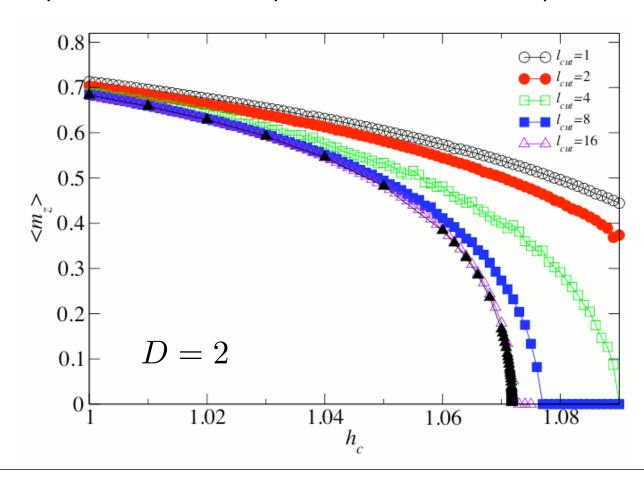
Infinite chain MPS - optimization using derivatives

The derivative of the energy with respect to a matrix element is of the form

$$\frac{\partial E}{\partial a_{ij}^{\sigma}} = C_{ij}^{\sigma} + \sum_{l=1}^{N-2} D_{ij}^{\sigma}(l) \qquad D(l) \sim \text{Tr}\{XB^{l}XB^{N-2-l}\}$$

D(I) is a correlation function; D(I) \rightarrow 0 when I \rightarrow ∞

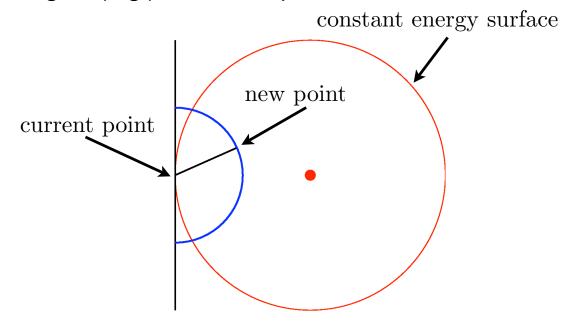
• impose cut-off I_{cut} in optimization for N=∞; dependence on I_{cut}



N=∞: Optimization using trivial random updates

Does not require derivatives

- propose random changes in all parameters; maximum change=δ
- accept only if the energy decreases
- for $\delta \rightarrow 0$ the acceptance rate should be 50%
- adjust δ to give (e.g.) 10% acceptance rate



find largest eigenvalue of P using

$$P^m v = \lambda_1^m v, \quad m \to \infty$$

- efficient with m=1,2,4,8,.... $\rightarrow P, P^2, P^4, P^8, ...$
- numerically stable
- easy to go to high precision (quadruple, 128 bit)

Example: D=4, h=1.01432

- 10⁴ update attempts per "step"
- $\delta \rightarrow \delta/1.1$ after each step if <10% accepted updates
- stage 1: double precision, stage 2: quadruple precision
- E =-1.282445246576107642..., M_z =0.0318141670... (quad precision)

Errors relative to converged results (for given D)

$$\Delta_E = (E-E_{\rm conv})/E_{\rm conv}$$

$$\Delta_m = (m-m_{\rm conv})/m_{\rm conv}$$
 evolution of δ and acceptance rate
$$\frac{\Delta_E}{\Delta_0^2 - 10} = \frac{1}{100} = \frac{1}{100}$$

0.0107279581661

0.0107265535218

0.0107241180809

= max change in matrix elements

-1.274624764007 <mark>410</mark> 209949167 -1.274624764007 <mark>416</mark> 468671250	-1.27462476400737956860174 -1.27462476400738086906001 -1.27462476400738216723477 -1.27462476400738301849944 -1.27462476400739287860885 -1.27462476400740099222541 -1.27462476400740555929056	0 7 8 2 0
	$\begin{array}{c} -1.27462476400740555929056 \\ -1.27462476400741020994916 \end{array}$	1 7

0.0000000933

0.0000000848

0.000000771

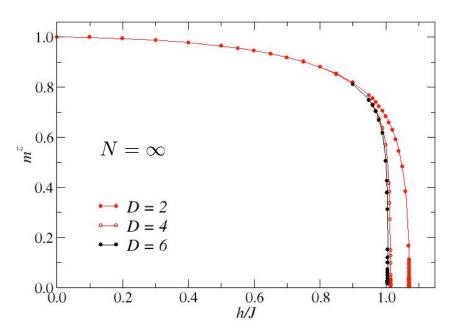
Example Evolution of the energy and the magnetization

relative change $= 3 \times 10^{-14}$ 3×10^{-3}

Close to the critical point:

Small change in E→ large (relative) change in m^z

 can be a serious issue when analyzing the critical behavior



Comparison with imaginary-time projection (TEBD); D=4, h=1.014334

E=-1.282454538906097

m=0.004589923026775 (I. McCulloch, standard)

E=-1.28245453890609554713490

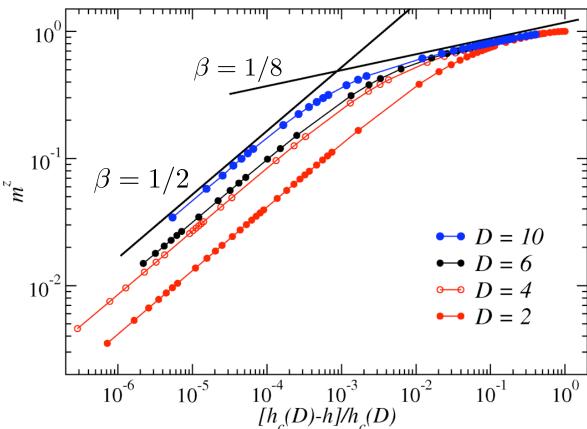
m=0.004589765790234 (Random optimization)

Analysis of the critical behavior

Power-law fit for small m^z always gives $\beta \approx 0.50$

• indicates asymptotic mean-field behavior

converged optimized data



- For finite D, asymptotic critical behavior is of mean-field type
 - cross-over to the true critical exponent
- numerical precision may limit access to critical behavior

The asymptotic mean-field behavior for MPS is not surprising

- finite D → maps to classical 1D transfer matrix
- criticality in 1D classical system requires long-range interactions

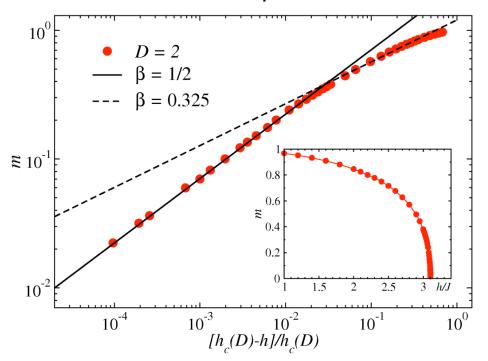
How about 2D PEPS?

Finite D → classical 2D partition function; critical points exist

• non-trivial exponents have been seen (?) for D=2,3 iPEPS

Infinite-size PEPS (iPEPS) [Orus & Vidal (2009)]

- Generalization of the N=∞ MPS (but more complicated, approximations)
- We use new stable optimization/contraction [Wang & Verstraete]



- ← 2D transverse-field Ising
- mean-field cross-over
- to extract the true exponent requires careful check of convergence with D
- the true exponent emerges in a window away from h_c
- similar cross-overs in classical systems (Baxter, Nishino et al.,...)

Conclusions

Symmetry-breaking in MPS

- first-order for finite N, finite D
- continuous mean-field transition for N=∞, finite D
 - mean-field window shrinks as D→∞
 - true exponents emerge through cross-over behavior

Numerical precision issues (variational optimization)

- N=∞ optimization difficult close to phase transition
 - relative error of order parameter large even if E converged
 - difficult to extract the critical point precisely

N=∞ PEPS (IPEPS)

- mean-field criticality for finite D
 - existence of non-trivial critical points for finite D does not mean that one automatically obtains correct critical behavior for a given H