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Outline

• Variational optimization of periodic MPS

• Mechanism of symmetry breaking with MPS

‣ 1-d periodic transeverse-field Ising model

‣  critical form of the magnetization curve (finite N, N=∞)

‣  limitations of finite computer precision(?)

•  Criticality in 2D iPEPS (transverse-field Ising)

•  MPS with variational Monte Carlo (time permitting)



|Ψ〉 =
∑

{si}

W (s1, s2, . . . , sN )|s1, s2, . . . , sN 〉, si =↑, ↓

W (s1, s2, . . . , sN ) = Tr[A(s1)A(s2) · · · A(sN )]

Matrix product states (MPS)

Can be easily evaluated; scaling for periodic chain: standard way costs ND5

• Pippan, White, Evertz (PRB 2010); good approximation (SVD) with ND3

• Monte Carlo sampling (Sandvik & Vidal, PRL 2007); ND3

Consider a periodic chain of S=1/2 spins

• MPSs can be implicitly generated by DMRG (Ostlund & Romer, 1995)
• Can be used independently of DMRG as a class of variational 1-d states 
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The stochastic method is guaranteed to 
reach the global minimum if:
•  “cooled” sufficiently slowly
• if all local minima on “funnel  walls”: b<a

Seems to work well for MPS optimization
• Starting from random matrices or ones optimized for smaller D
• Steepest decent can be faster at final stages

Stochastic Optimization (using first derivatives)

Steepest decent Line minimization Stochastic method

δ =
δ0

kα
, k = 1, 2, . . .

How to optimize the matrices in MPS calculations
• Local energy minimization, “sweep” through the lattice (Verstraete et al., ...)
• Imaginary-time evolution (projecting out the ground state)  (Vidal, ...)

Minimize the energy with maintained translational invariance?

• But much slower than conventional methods
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N∑
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Si · Si+1 =
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[Sz
i Sz
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2 (S+

i S−i+1 + S−i S+
i+1)]

Test: Antiferromagnetic Heisenberg chain

Comparison with N=100 results by: Pippan, White, Evertz (PRB 2010)

N = 100

Good results, but the method is very slow



Infinite chain MPS
Exactly as in classical transfer-matrix method; 
• keep only largest eigenvalue of P when N→∞
• Imaginary-time evolution (ground state projection) or DMRG-type   

optimization can be applied (Vidal, Cirac, McCulloch,...)

= Tr{PN}

= P

For some operator M (single-site, e.g., magnetization)

〈M〉 =
Tr{MPN−1}

Tr{PN}
→ 1

λ1

∑

i,j

v∗1iv1jMij



Stochastic optimization
• Energy derivatives involve summing N different contributions
‣ time-consuming for N→∞

Optimize in a trivial (slow) way for N=∞
• Propose random changes in the matrix elements
‣  accept if and only if the energy improves

•  easy to do in quadruple precision (but very slow)

Question: How is symmetry breaking manifested in MPS? 
• for finite N and N→∞

Test: transverse-field Ising model
• true critical magnetization exponent β=1/8
• how does this exponent emerge?
• what is the h→hc behavior for finite D?
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Symmetry breaking for finite N

D = 2

First-order transition (D fixed)
•  discontinuity decreases with 

 increasing N
•  continuous for N→∞
•  two E minimums

-  symmetric and 
    symmetry-broken states 

•  “level” crossing

N = 12, D = 2

Behavior versus D
•  for given N, hc(D) → 0
•  no symmetry-breaking 

 for N<∞, D=∞



D = 2

Infinite chain MPS - optimization using derivatives
The derivative of the energy with respect to a matrix element is of the form

∂E

∂aσ
ij

= Cσ
ij +

N−2∑

l=1

Dσ
ij(l) D(l) ∼ Tr{XBlXBN−2−l}

D(l) is a correlation function; D(l)→0 when l→∞
• impose cut-off lcut in optimization for N=∞; dependence on lcut



constant energy surface

current point
new point

N=∞: Optimization using trivial random updates
Does not require derivatives 
• propose random changes in all parameters; maximum change=δ
• accept only if the energy decreases
• for δ→0 the acceptance rate should be 50%
• adjust δ to give (e.g.) 10% acceptance rate

• efficient with m=1,2,4,8,.... →
• numerically stable
• easy to go to high precision (quadruple, 128 bit)

Pmv = λm
1 v, m→∞

• find largest eigenvalue of P using

P, P 2, P 4, P 8, ...



Example: D=4, h=1.01432
• 104 update attempts per “step”
• δ→δ/1.1 after each step if <10% accepted updates
• stage 1: double precision, stage 2: quadruple precision
• E =-1.282445246576107642... , Mz=0.0318141670... (quad precision)

∆E = (E − Econv)/Econv

∆m = (m−mconv)/mconv

Errors relative to converged results (for given D)

evolution of δ and acceptance rate



N =∞

Close to the critical point:
Small change in E→
large (relative) change in mz

• can be a serious issue
   when analyzing the
   critical behavior

E/N
mz =

1
N

N∑

i=1

Sz
i

Example
Evolution of the
energy and the
magnetization

     -1.274624764007379568601740    0.0107523120526   0.0000001652
     -1.274624764007380869060010    0.0107537678231   0.0000001502
     -1.274624764007382167234777    0.0107581552419   0.0000001366
     -1.274624764007383018499448    0.0107499540804   0.0000001241
     -1.274624764007392878608852    0.0107457713217   0.0000001128
     -1.274624764007400992225410    0.0107333530705   0.0000001026
     -1.274624764007405559290561    0.0107279581661   0.0000000933
     -1.274624764007410209949167    0.0107265535218   0.0000000848
     -1.274624764007416468671250    0.0107241180809   0.0000000771

relative change = 3× 10−14 3× 10−3

δ = max change in matrix elements

E=-1.282454538906097                     m=0.004589923026775   (I. McCulloch, standard)
E=-1.28245453890609554713490     m=0.004589765790234   (Random optimization)

Comparison with imaginary-time projection (TEBD); D=4, h=1.014334



• For finite D, asymptotic critical behavior is of mean-field type 
- cross-over to the true critical exponent

•  numerical precision may limit access to critical behavior

converged optimized data

β = 1/8

β = 1/2

Analysis of the critical behavior
Power-law fit for small mz always gives β ≈ 0.50
• indicates asymptotic mean-field behavior



The asymptotic mean-field behavior for MPS is not surprising
• finite D → maps to classical 1D transfer matrix
• criticality in 1D classical system requires long-range interactions 

How about 2D PEPS?
Finite D → classical 2D partition function; critical points exist
• non-trivial exponents have been seen (?) for D=2,3 iPEPS

Infinite-size PEPS (iPEPS) [Orus & Vidal (2009)]

• Generalization of the N=∞ MPS (but more complicated, approximations)
• We use new stable optimization/contraction [Wang & Verstraete]

• mean-field cross-over
• to extract the true exponent
   requires careful check of
   convergence with D
• the true exponent emerges
   in a window away from hc

• similar cross-overs in
   classical systems 
   (Baxter, Nishino et al.,...)

➔
2D transverse-field Ising



Conclusions

Symmetry-breaking in MPS
• first-order for finite N, finite D
• continuous mean-field transition for N=∞, finite D

- mean-field window shrinks as D→∞
- true exponents emerge through cross-over behavior

Numerical precision issues (variational optimization)
• N=∞ optimization difficult close to phase transition

- relative error of order parameter large even if E converged
- difficult to extract the critical point precisely

N=∞ PEPS (IPEPS)
• mean-field criticality for finite D

- existence of non-trivial critical points for finite D does not mean 
    that one automatically obtains correct critical behavior for a given H


