Reaction mechanism of fusion-fission process in superheavy mass region

Y. Aritomo1, K. Hagino2, K. Nishio1, and S. Chiba1

1Japan Atomic Energy Agency, Tokai, Japan
2Department of Physics, Tohoku University, Sendai, Japan

「微観的核反応理論による物理」
YITP, Kyoto, Japan, 1-3 August, 2011
1. Model

Coupled-channels method + Dynamical Langevin calculation

Trajectory analysis ← Langevin equation
Two center shell model

2. Results

$^{36}\text{S}+^{238}\text{U}$ and $^{30}\text{Si}+^{238}\text{U}$

Mass distribution of Fission fragments
Capture Cross-section
Fusion Cross-section

3. Mechanism of Dynamical process

Potential energy surface on scission line
Analysis of trajectory behavior
Analysis of probability distribution

4. Summary
Exp. by K. Nishio et al.

$^{30}\text{Si} + ^{238}\text{U}$ $\text{Zcn}=106$ \leftarrow

$^{36}\text{S} + ^{238}\text{U}$ $\text{Zcn}=108$ \rightarrow

$E_{\text{cm}} = 169.0 \text{ MeV}$ $E^* = 75.5 \text{ MeV}$

$E_{\text{cm}} = 159.0 \text{ MeV}$ $E^* = 65.5 \text{ MeV}$

$E_{\text{cm}} = 154.0 \text{ MeV}$ $E^* = 60.5 \text{ MeV}$

$E_{\text{cm}} = 149.0 \text{ MeV}$ $E^* = 55.5 \text{ MeV}$

$E_{\text{cm}} = 144.0 \text{ MeV}$ $E^* = 50.5 \text{ MeV}$

$E_{\text{cm}} = 139.0 \text{ MeV}$ $E^* = 45.5 \text{ MeV}$

$E_{\text{cm}} = 134.0 \text{ MeV}$ $E^* = 40.5 \text{ MeV}$

$E_{\text{cm}} = 129.0 \text{ MeV}$ $E^* = 35.5 \text{ MeV}$

$E_{\text{cm}} = 180.0 \text{ MeV}$ $E^* = 65.5 \text{ MeV}$

$E_{\text{cm}} = 176.0 \text{ MeV}$ $E^* = 61.5 \text{ MeV}$

$E_{\text{cm}} = 170.0 \text{ MeV}$ $E^* = 55.5 \text{ MeV}$

$E_{\text{cm}} = 166.0 \text{ MeV}$ $E^* = 51.5 \text{ MeV}$

$E_{\text{cm}} = 160.0 \text{ MeV}$ $E^* = 45.5 \text{ MeV}$

$E_{\text{cm}} = 154.0 \text{ MeV}$ $E^* = 39.5 \text{ MeV}$

$E_{\text{cm}} = 150.0 \text{ MeV}$ $E^* = 35.5 \text{ MeV}$

$E_{\text{cm}} = 146.0 \text{ MeV}$ $E^* = 31.5 \text{ MeV}$
What we can obtain under the conditions

Phenomenalism
Dynamical Model based on Fluctuation-dissipation theory
(Langevin eq, Fokker-Plank eq, etc) ← Classical trajectory analysis

We can obtain:
- Mass and TKE distribution of fission fragments
- Neutron multiplicity
- Charge distribution
- Cross section (capture, mass symmetric fission, fusion)
- Angle of ejected particle, Kinetic energy loss (← two body)

Fission, Synthesis of SHE
A_{CN} : 200~300

Conditions
- Nuclear shape parameter
- Potential energy surface (LDM, shell correction energy, LS force)
- Transport coefficients (friction, inertia mass) ← Linear Response Theory
- Dynamical equation (memory effect, Einstein relation)
1. Model

1-1. Potential
1-2. Dynamical Equation
1-3. Simulation of Experiment and Cross Sections
Estimation of cross sections

Capture Cross Section

\[\sigma_{\text{cap}}(E) = \int_0^1 d(\cos \theta) \sigma_{\text{cap}}(E; \theta), \]

\[\sigma_{\text{cap}}(E; \theta) = \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell + 1) T_{\ell}(E; \theta), \]

Coupled-channel method

Fusion Cross Section

\[\sigma_{\text{fus}}(E) = \int_0^1 d(\cos \theta) \sigma_{\text{fus}}(E; \theta), \]

\[\sigma_{\text{fus}}(E; \theta) = \frac{\pi}{k^2} \sum_{\ell=0}^{\infty} (2\ell + 1) T_{\ell}(E; \theta) P_{\text{CN}}(E, \ell, \theta), \]

Formation probability \(P_{\text{CN}} \)

Dynamical calculation

Langevin eq.
Model: Outlook of calculation methods

Time-evolution of nuclear shape in fusion-fission process

1. Potential energy surface

2. Trajectory → described by equations
Nuclear shape

two-center parametrization \((z, \delta, \alpha)\)

(Maruhn and Greiner, Z. Phys. 251(1972) 431)

\[q(z, \delta, \alpha) \]

\[z = \frac{z_0}{BR} \]

\[B = \frac{3 + \delta}{3 - 2\delta} \]

\(R \): Radius of the spherical compound nucleus

\[\delta = \frac{3(a - b)}{2a + b} \]

\((\delta_1 = \delta_2)\)

\[\alpha = \frac{A_1 - A_2}{A_{CN}} \]

Trajectory which enters into the spherical region = fusion trajectory
\[V(q, \ell, T) = V_{DM}(q) + \frac{\hbar^2 \ell (\ell + 1)}{2I(q)} + V_{SH}(q, T) \]

\[V_{DM}(q) = E_S(q) + E_C(q) \]

\[V_{SH}(q, T) = E_{shell}^0(q) \Phi(T) \]

\(T \): nuclear temperature
\(E^* = aT^2 \quad a \): level density parameter

Toke and Swiatecki

\(E_S \): Generalized surface energy (finite range effect)
\(E_C \): Coulomb repulsion for diffused surface
\(E_{shell}^0 \): Shell correction energy at \(T=0 \)

\(I \): Moment of inertia for rigid body

\(\Phi(T) \): Temperature dependent factor

\[\Phi(T) = \exp \left\{ -\frac{aT^2}{E_d} \right\} \]

\(E_d = 20 \text{ MeV} \)
\[
\frac{dq_i}{dt} = (m^{-1})_{ij} p_j \\
\frac{dp_i}{dt} = -\frac{\partial V}{\partial q_i} - \frac{1}{2} \frac{\partial}{\partial q_i} (m^{-1})_{jk} p_j p_k - \gamma_{ij} (m^{-1})_{jk} p_k + g_{ij} R_j(t)
\]

\[
\langle R_i(t) \rangle = 0, \quad \langle R_i(t_1) R_j(t_2) \rangle = 2 \delta_{ij} \delta(t_1 - t_2) : \text{white noise (Markovian process)}
\]

\[
\sum_k g_{ik} g_{jk} = T \gamma_{ij}
\]

\(q_i \): deformation coordinate \((\text{nuclear shape}) \)
\(\text{two-center parametrization} (z, \delta, \alpha) \)
\(\text{(Maruhn and Greiner, Z. Phys. 251(1972) 431)} \)

\(p_i \): momentum

\(m_{ij} \): Hydrodynamical mass \((\text{inertia mass}) \)

\(\gamma_{ij} \): Wall and Window (one-body) dissipation \((\text{friction}) \)

\[
E_{\text{int}} = E^* - \frac{1}{2} (m^{-1})_{ij} p_i p_j - V(q)
\]

\(E_{\text{int}} \): intrinsic energy, \(E^* \): excitation energy
Two Center Shell Model

\[\hat{H} = -\frac{\hbar^2}{2m_0} \nabla^2 + V(\mathbf{r}) + V_{\text{LS}}(\mathbf{r}, p, s) + V_{L^2}(\mathbf{r}, p). \]

Neck parameter is the ratio of smoothed potential height to the original one where two harmonic oscillator potential cross each other.

\[V(\rho, z) = \frac{1}{2} m_0 \begin{cases} \omega_{z_1}^2 z'^2 + \rho^2 \omega_p^2, & z < z_1 \\ \omega_{z_1}^2 z'^2 \left(1 + c_1 z' + d_1 z'^2\right) + \rho^2 \left(1 + g_1 z'^2\right), & z_1 < z < 0 \\ \omega_{z_2}^2 z'^2 \left(1 + c_2 z' + d_2 z'^2\right) + \rho^2 \left(1 + g_2 z'^2\right), & 0 < z < z_2 \\ \omega_{z_2}^2 z'^2 + \rho^2 \omega_p^2, & z > z_2, \end{cases} \]

\[z' = \begin{cases} z - z_1, & z < 0 \\ z - z_2, & z > 0 \end{cases} \]

Neck parameter \(\varepsilon = 1.0 \)

J. Maruhn and W. Greiner, Z. Phys, 1972
Time dependent adiabatic fusion-fission potential

$V_{\text{adiab}}(r, \delta, \alpha, \varepsilon; t) = V_{\text{adiab}}(r, \delta, \alpha, \varepsilon = 1) \cdot \exp\left(-\frac{t}{\tau_\varepsilon}\right) + V_{\text{adiab}}(r, \delta, \alpha, \varepsilon = \varepsilon_{\text{out}}) \cdot \left[1 - \exp\left(-\frac{t}{\tau_\varepsilon}\right)\right]$

$\tau_\varepsilon = 10^{-20} \text{ sec}$

V. Zagrebaev, A. Karpov, Y. Aritomo, M. Naumenko and W. Greiner,
2. Results

1. Capture and Fusion Cross sections
2. Mass distribution of Fission Fragments

$^{34, 36}S + ^{238}U$ and $^{30}Si + ^{238}U$

Touching probability \leftarrow CC method

Perform a trajectory calculation starting from the touching distance between target and projectile to the end each process.
Fusion box and Sample trajectory $^{36}\text{S} + ^{238}\text{U}$

- $Z-\alpha$
- $\delta = 0$
- $E^* = 40$ MeV
- $L = 0$
- $\theta = 0$

- $Z-\delta$
- $\alpha = 0$

(a) and (b) diagrams with various labels and coordinates.
Results \(^{36}\text{S} + ^{238}\text{U} \) MDFF and Cross sections

FF process

[Graph showing cross-sections for different energies with legends for individual cross-section categories]
Results $^{30}\text{Si}+^{238}\text{U}$ MDFF and Cross sections

![Graph showing cross-sections for different energies](image)

![Graph showing cross-sections as a function of energy](image)
3. Mechanism of Dynamical process

MDFF at Low incident energy

$^{30}\text{Si} + ^{238}\text{U}$

Clarification of the mechanism of Fusion-fission process
(a) 1-dim Potential energy on scission line

\[V(A) = \begin{cases} \text{energy expression} & \text{for } z=1.5, \delta=0.22, \epsilon=1.0 \\ \text{energy expression} & \text{for } z=2.35, \delta=0.22, \epsilon=0.35 \end{cases} \]

(b) [Potential energy graph for \(^{274}\text{Hs} + ^{238}\text{U} \)]
(b) Trajectory Analysis on Potential Energy Surface \(z-A \) plane

\[^{30}\text{Si}+^{238}\text{U} \quad E^* = 35.5 \text{ MeV} \]
\[L=0, \theta=0 \]

\[\delta=0.22, \varepsilon=1.0 \]

\[^{36}\text{S}+^{238}\text{U} \quad E^* = 39.5 \text{ MeV} \]
\[L=0, \theta=0 \]

\[\delta=0.22, \varepsilon=1.0 \]
Trajectory Analysis on Potential Energy Surface $^{30}\text{Si} + ^{238}\text{U}$

$E^* = 35.5$ MeV
$L=0, \theta=0$
Trajectory Analysis on Potential Energy Surface $^{36}\text{S}+^{238}\text{U}$

$E^* = 39.5$ MeV
$L=0, \theta=0$
Trajectory Analysis ⇐ using **ALL** trajectories

![Diagram showing trajectory analysis with ~40,000 points]
(c) Trajectory Analysis → “Probability Distribution”

\[E^* = 35.5 \text{ MeV} \]
\[L=0, \theta=0 \]

\[E^* = 39.5 \text{ MeV} \]
\[L=0, \theta=0 \]
1. In order to analyze the fusion-fission process in superheavy mass region, we apply the Couple channels method + Langevin calculation.

2. **Incident energy dependence** of mass distribution of fission fragments (MDFF) is reproduced in reaction $^{36}\text{S}+^{238}\text{U}$ and $^{30}\text{Si}+^{238}\text{U}$.

3. The shape of the MDFF is analyzed using
 (a) 1-dim potential energy surface on the scission line
 (b) sample trajectory on the potential energy surface
 (c) *probability distribution*

4. The relation between the touching point and the ridge line is very important to decide the process \rightarrow fusion hindrance leading to synthesize SHE