Description of Nucleon Transfer Reaction by TDHF Method

Kazuyuki Sekizawa

Graduate School of Pure and Applied Sciences
University of Tsukuba

Collaborator: Kazuhiro Yabana
1. Introduction

Time-dependent Hartree-Fock method (TDHF)

- mean-field theory; based on microscopic degree of freedom
- has no parameter about reaction mechanism

So far

Fusion cross section, deep inelastic collision, etc. averaging quantities

Nucleon transfer reaction

We need to extract probabilities of each transfer channel.

Last year, an innovative method was proposed by C. Simenel

We extract nucleon transfer probabilities from TDHF final state wave function and compare the transfer cross section with experimental data.
1. Introduction

Nucleon transfer cross section

- $^{40}\text{Ca}^{124}\text{Sn}$, $E_{\text{lab}}=170$ [MeV]
- isotope distribution for a particular proton stripping channel
- full line; GRAZING

2. Formulation

Preparation to define the nucleon transfer probabilities

Normalization of many-body wave function

$$\int d\vec{r}_1 \cdots \int d\vec{r}_N |\Phi_f(\vec{r}_1, \cdots, \vec{r}_N)|^2 = 1$$

Final state

$$\Phi_f(\vec{r}_1, \cdots, \vec{r}_N)$$

A \quad B

\(N; \text{total nucleon number}\)

$$\int d\vec{r} = \int_A d\vec{r} + \int_B d\vec{r}$$

divide spacial integral into two parts

$$\left(\int_A d\vec{r}_1 + \int_B d\vec{r}_1\right) \cdots \left(\int_A d\vec{r}_N + \int_B d\vec{r}_N\right) |\Phi_f(\vec{r}_1, \cdots, \vec{r}_N)|^2 = 1$$

$$\sum_{\tau_1 \cdots \tau_N} \int_{\tau_1} d\vec{r}_1 \cdots \int_{\tau_N} d\vec{r}_N |\Phi_f(\vec{r}_1, \cdots, \vec{r}_N)|^2 = 1$$

\(\tau_i = A \text{ or } B\)

Summation over \(2^N\) all patterns of \(\tau_i\)
2. Formulation

Definition of nucleon transfer probabilities

Normalizaton of many-body wave function

\[\sum_{\tau_1 \cdots \tau_N} \int_{\tau_1} d\vec{r}_1 \cdots \int_{\tau_N} d\vec{r}_N |\Phi_f(\vec{r}_1, \cdots, \vec{r}_N)|^2 = 1 \]

Breakdown of the summation

\# of terms

configurations

\[\binom{N}{0} \quad \binom{N}{1} \quad \cdots \quad \binom{N}{n} \quad \cdots \quad \binom{N}{N} \]

\{BB \cdots B\} \quad \{AB \cdots B\} \quad \{AA \cdots ABB \cdots B\} \quad \{AA \cdots A\}

Probability; n nucleons in A and N-n nucleons in B

\[P_A(n) \equiv \sum_{\{\tau_i; A^n B^{N-n}\}} \int_{\tau_1} d\vec{r}_1 \cdots \int_{\tau_N} d\vec{r}_N |\Phi_f(\vec{r}_1, \cdots, \vec{r}_N)|^2 \]

\[\sum_{n=0}^{N} P_A(n) = 1 \]

All combinations; A appears n times and B appears N-n times
2. Formulation

Expression of the nucleon transfer probabilities using space division function

Probability; n nucleons in A and N-n nucleons in B

\[P_A(n) \equiv \sum_{\{ \tau_i; A^nB^{N-n} \}} \int_{\tau_1} d\vec{r}_1 \cdots \int_{\tau_N} d\vec{r}_N |\Phi_f(\vec{r}_1, \cdots, \vec{r}_N)|^2 \]

Space division function

\[\Theta_{\tau}(\vec{r}) \equiv \begin{cases} 1 & \vec{r} \in \tau \\ 0 & \vec{r} \notin \tau \end{cases}, \quad \tau_i = A \text{ or } B \]

\[\int_{\tau} d\vec{r} = \int d\vec{r} \Theta_{\tau}(\vec{r}) \]

Then, we can write \(P_A(n) \) as

\[P_A(n) = \int d\vec{r}_1 \cdots \int d\vec{r}_N \sum_{\{ \tau_i; A^nB^{N-n} \}} \Theta_{\tau_1}(\vec{r}_1) \cdots \Theta_{\tau_N}(\vec{r}_N) |\Phi_f(\vec{r}_1, \cdots, \vec{r}_N)|^2 \]

We can extract nucleon transfer probabilities applying this formula to the final-state wave function.

We apply this to the final-state of TDHF, i.e., single Slater determinant.
2. Formulation

Nucleon transfer probabilities; for single Slater determinant

Final state of TDHF; single Slater determinant

Slater determinant

\[
\Phi_f(\vec{r}_1, \cdots, \vec{r}_N) = \frac{1}{N!} \begin{vmatrix}
\phi_1(\vec{r}_1) & \cdots & \phi_1(\vec{r}_N) \\
\vdots & & \vdots \\
\phi_N(\vec{r}_1) & \cdots & \phi_N(\vec{r}_N)
\end{vmatrix} = \frac{1}{N!} \det \{\phi_i(\vec{r}_j)\}
\]

\[
= \frac{1}{N!} \sum_\sigma \text{sgn}(\sigma) \phi_{\sigma_1}(\vec{r}_1) \cdots \phi_{\sigma_N}(\vec{r}_N)
\]

\[\phi_i(\vec{r})\]; single particle wave function

\[i = 1, \cdots, N \ (N = N_1 + N_2)\]

each orbitals exist in whole space

\[\phi_i(\vec{r}) = \phi^A_i(\vec{r}) + \phi^B_i(\vec{r})\]

\[\phi^\tau_i(\vec{r}) = \phi_i(\vec{r}) \Theta^\tau(\vec{r})\]

\[\langle \phi_i | \phi_j \rangle = \delta_{i,j}\]; orthonormalization
2. Formulation

Probability; n nucleons in A and N-n nucleons in B

\[P_A(n) = \int d\vec{r}_1 \cdots \int d\vec{r}_N \sum_{\{\tau_i; A^n B^{N-n}\}} \Theta_{\tau_1}(\vec{r}_1) \cdots \Theta_{\tau_N}(\vec{r}_N) |\Phi_f(\vec{r}_1, \cdots, \vec{r}_N)|^2 \]

Invariant under exchange \(r_i \) and \(r_j \)

\[= \int d\vec{r}_1 \cdots \int d\vec{r}_N \sum_{\{\tau_i; A^n B^{N-n}\}} \Theta_{\tau_1}(\vec{r}_1) \cdots \Theta_{\tau_N}(\vec{r}_N) \]

\[\frac{1}{N!} \sum_{\sigma} \text{sgn}(\sigma) \phi_{\sigma_1}^{*}(\vec{r}_1) \cdots \phi_{\sigma_N}^{*}(\vec{r}_N) \text{det} \{\phi_i(\vec{r}_j)\} \]

All permutation gives same contribution \(\Rightarrow \) cancel \(1/N! \)

\[= \int d\vec{r}_1 \cdots \int d\vec{r}_N \sum_{\{\tau_i; A^n B^{N-n}\}} \Theta_{\tau_1}(\vec{r}_1) \cdots \Theta_{\tau_N}(\vec{r}_N) \phi_1^{*}(\vec{r}_1) \cdots \phi_N^{*}(\vec{r}_N) \text{det} \{\phi_i(\vec{r}_j)\} \]

\[= \sum_{\{\tau_i; A^n B^{N-n}\}} \sum_{\sigma} \text{sgn}(\sigma) \int d\vec{r}_1 \Theta_{\tau_1}(\vec{r}_1) \phi_1^{*}(\vec{r}_1) \phi_{\sigma_1}(\vec{r}_1) \cdots \int d\vec{r}_N \Theta_{\tau_N}(\vec{r}_N) \phi_N^{*}(\vec{r}_N) \phi_{\sigma_N}(\vec{r}_N) \]

We obtain probability \(P_A(n) \) for single Slater determinant
2. Formulation

Nucleon transfer probabilities; for single Slater determinant (1)

Probability; n nucleons in A and N-n nucleons in B for Slater det. [1], [2]

\[
P_A(n) = \sum_{\{\tau_i; A^n B^{N-n}\}} \begin{vmatrix} <\phi_1|\phi_1>_{\tau_1} & \cdots & <\phi_N|\phi_1>_{\tau_N} \\ \vdots & \ddots & \vdots \\ <\phi_1|\phi_N>_{\tau_1} & \cdots & <\phi_N|\phi_N>_{\tau_N} \end{vmatrix}
\]

all combinations; A appears n times and B appears N-n times

\[
<\phi_i|\phi_j> = <\phi_i|\phi_j>_A + <\phi_i|\phi_j>_B = \delta_{ij}
\]

\[
<\phi_i|\phi_j>_{\tau} \equiv \int d\vec{r} \phi_i^*(\vec{r}) \phi_j(\vec{r}) \Theta_{\tau}(\vec{r}) \quad \text{inner product in the region } \tau
\]

\[2^N \text{ times calculation of determinant are required to obtain all (n=0,1,...,N) probabilities.}\]

2. Formulation

Nucleon transfer probabilities; for single Slater determinant

\[P_A(n) = \frac{1}{2\pi} \int_0^{2\pi} d\theta \ e^{in\theta} \det \left\{ <\phi_i|\phi_j>_{B} + e^{-i\theta} <\phi_i|\phi_j>_{A} \right\} \]

\[= \frac{1}{2\pi} \int_0^{2\pi} d\theta \ e^{in\theta} \sum_{\sigma} \text{sgn}(\sigma) \left(<\phi_{\sigma_1}|\phi_1>_{B} + e^{-i\theta} <\phi_{\sigma_1}|\phi_1>_{A} \right) \]

\[\cdots \left(<\phi_{\sigma_N}|\phi_N>_{B} + e^{-i\theta} <\phi_{\sigma_N}|\phi_N>_{A} \right) \]

\[= \frac{1}{2\pi} \int_0^{2\pi} d\theta \ e^{in\theta} \sum_{\sigma} \text{sgn}(\sigma) \sum_{n'=0}^{N} e^{-in'\theta} \sum_{\{\tau_i;A^n B^N-n'\}} <\phi_{\sigma_1}|\phi_1>_{\tau_1} \cdots <\phi_{\sigma_N}|\phi_N>_{\tau_N} \]

\[= \sum_{\{\tau_i;A^n B^N-n\}} \sum_{\sigma} \text{sgn}(\sigma) <\phi_{\sigma_1}|\phi_1>_{\tau_1} \cdots <\phi_{\sigma_N}|\phi_N>_{\tau_N} \]

These two expression are equivalent exactly.

Last year, an innovative method was proposed by C. Simenel [3]

2. Formulation

Nucleon transfer probabilities; for single Slater determinant

Interpretation by particle number projection operator

\[
\delta(n - \hat{N}_A) = \frac{1}{2\pi} \int_0^{2\pi} d\theta \ e^{i(n - \hat{N}_A)\theta}
\]

\[
\hat{N}_A = \sum_{i=1}^{N} \Theta_A(\vec{r}_i)
\]

\[
P_A(n) = \langle \Phi_f | \delta(n - \hat{N}_A) | \Phi_f \rangle
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} d\theta \ e^{i n \theta} \langle \Phi_f | e^{-i \Theta_A(\vec{r}_1)\theta} \cdots e^{-i \Theta_A(\vec{r}_N)\theta} | \Phi_f \rangle
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} d\theta \ e^{i n \theta} \sum_{\sigma} \text{sgn}(\sigma) \int d\vec{r}_1 \phi_1^*(\vec{r}_1) e^{-i \Theta_A(\vec{r}_1)\theta} \phi_{\sigma_1}(\vec{r}_1) \cdots \int d\vec{r}_N \phi_N^*(\vec{r}_N) e^{-i \Theta_A(\vec{r}_N)\theta} \phi_{\sigma_N}(\vec{r}_N)
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} d\theta \ e^{i n \theta} \det \left\{ \langle \phi_i | \phi_j \rangle_B + e^{-i \theta} \langle \phi_i | \phi_j \rangle_A \right\}
\]

2. Formulation

Nucleon transfer probabilities;
for single Slater determinant (2)

Comparison of these two expressions

\[P_A(n) = \sum_{\{\tau_i; A^n B^{N-n}\}} \begin{vmatrix} <\phi_1|\phi_1>_{\tau_1} & \cdots & <\phi_N|\phi_1>_{\tau_N} \\ \vdots & \ddots & \vdots \\ <\phi_1|\phi_N>_{\tau_1} & \cdots & <\phi_N|\phi_N>_{\tau_N} \end{vmatrix} \]

all combinations; A appears n times and B appears N-n times

\[\sum_{n=0}^{N} N C_n = 2^N \] times calculations of the determinant

\[P_A(n) = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \ e^{in\theta} \text{det} \left\{ <\phi_i|\phi_j>_B + e^{-i\theta} <\phi_i|\phi_j>_A \right\} \]

discretization of \(\theta \)

\(~100 \) times calculations of the determinant

We can apply this to the heavy ion reaction with realistic computational cost.
3. Results; $^{40}\text{Ca} + ^{124}\text{Sn}, \ E_{\text{lab}} = 170 \ [\text{MeV}]$

Nucleon transfer cross section $^{40}\text{Ca} + ^{124}\text{Sn}, \ E_{\text{lab}} = 170 \ [\text{MeV}]$

- isotope distribution for a particular proton stripping channel
- full line; GRAZING
3. Results; $^{40}\text{Ca}+^{124}\text{Sn}$, $E_{\text{lab}}=170$ [MeV]

- Skyrme interaction; SLy5
- 3D Cartesian coordinate; discretized into a uniform mesh
- Grid size; $60 \times 60 \times 26$ (x \times y \times z)
- Mesh spacing; 0.8 [fm]
- Time step; 0.2 [fm/c]
- Impact parameter; 3.7-10.0 [fm]

3. Results; $^{40}\text{Ca} + ^{124}\text{Sn}, E_{\text{lab}} = 170$ [MeV]

- $b=3.65$ [fm]
- $b=3.70$ [fm]
- $b=4.50$ [fm]
3. Results; \(^{40}\text{Ca} + ^{124}\text{Sn} \), \(E_{\text{lab}} = 170 \) [MeV]

- \(b = 3.65 \) [fm]
- \(b = 3.70 \) [fm]
- \(b = 4.50 \) [fm]
3. Results; $^{40}\text{Ca} + ^{124}\text{Sn}, E_{\text{lab}}=170$ [MeV]
3. Results; $^{40}\text{Ca} + ^{124}\text{Sn}$, $E_{\text{lab}}=170$ [MeV]

- $b=3.65$ [fm]
- $b=3.70$ [fm]
- $b=4.50$ [fm]
3. Results; $^{40}\text{Ca}+^{124}\text{Sn}$, $E_{\text{lab}}=170$ [MeV]

In the experiment light ejectiles have been detected. We define the region “P” around the C. M. of light ejectile which is a sphere with radius 10 [fm].

And then, we calculate

- Average nucleon number in the region P

\[< \Phi_f | \hat{N}_P | \Phi_f > \]

- Nucleon transfer probabilities

\[P_P(n) = < \Phi_f | \delta(n - \hat{N}_P) | \Phi_f > \]

- Nucleon transfer cross section

\[\sigma_{tr}(n) = \int_{b_{\text{min}}}^{b_{\text{max}}} 2\pi b P_P(n) db \]

Ex.) $b=3.70$ [fm]
3. Results; $^{40}\text{Ca}+^{124}\text{Sn}, E_{\text{lab}}=170 \text{ [MeV]}$

Average nucleon number in the region P

$$\langle \Phi_f | \hat{N}_P | \Phi_f \rangle$$

Number operator

$$\hat{N}_P = \int d\vec{r} \sum_{i=1}^{N} \delta(\vec{r} - \vec{r}_i) \Theta_P(\vec{r})$$

Projectile; $^{40}\text{Ca} \ (Z=20, \ N=20)$
Target; $^{124}\text{Sn} \ (Z=50, \ N=74)$

neutron; ^{40}Ca
proton; ^{40}Ca
neutron; ^{124}Sn
proton; ^{124}Sn
3. Results; $^{40}\text{Ca} + ^{124}\text{Sn}, \ E_{\text{lab}} = 170 \ [\text{MeV}]$

Neutron transfer probabilities

$$P_P (n) = \langle \Phi_f | \delta (n - \hat{N}_P) | \Phi_f \rangle$$

![Graph showing neutron transfer probabilities vs. impact parameter]
3. Results; $^{40}\text{Ca}+^{124}\text{Sn}, E_{\text{lab}}=170$ [MeV]

Proton transfer probabilities

$$P_P(n) = \langle \Phi_f | \delta(n - \hat{N}_P) | \Phi_f \rangle$$

![Graph showing proton transfer probabilities with impact parameter and fusion region]
3. Results; $^{40}\text{Ca} + ^{124}\text{Sn}$, $E_{lab} = 170$ [MeV]

Nucleon transfer cross section

$$\sigma_{tr}(n) = \int_{b_{\text{min}}}^{b_{\text{max}}} 2\pi b P_p(n) db$$

preliminary
3. Results: $^{40}\text{Ca}+^{124}\text{Sn}, E_{\text{lab}}=170$ [MeV]

Nucleon transfer cross section

Preliminary
4. Summary and Outlook

Summary

✔ The method to calculate nucleon transfer probabilities from final state wave function are presented.

✔ $^{40}\text{Ca}^{+^{124}}\text{Sn}$ TDHF calculations have been carried out and yields the nucleon transfer cross sections.

✔ Overall agreement is good when 0-2 proton transfer occurred.

✔ Neutron-proton correlation is not described in our calculation.

Outlook

➢ Calculate the other collision and compare the result with experiment quantitatively.

➢ Inclusion of the evaporation's effect.