Auxiliary field Monte-Carlo study of the QCD phase diagram at strong coupling

A. Ohnishi (YITP)
in collaboration with
T.Z.Nakano (YITP/Kyoto U.), T. Ichihara (Kyoto U.)

- Introduction
- Auxiliary Field Monte-Carlo treatment of SC-LQCD
- Monte-Carlo estimate of the phase boundary
- Summary

Work in progress
QCD Phase Diagram

RHIC/LHC/Early Universe

T

μ_B

QGP
AGS/SPS/FAIR/J-PARC

Hadron Matter

Quarkyonic

Neutron Star

CSC

Nucleon Gas

Nuclear Matter

Nuclear Matter

Quarkyonic
QCD phase diagram (Exp. & Theor. Studies)

QCD phase transition is not only an academic problem, but also a subject which would be measured in HIC or Compact Stars
Lattice QCD at finite density has the sign problem. → Approx. methods and/or Effective model studies are necessary.

- Approximate methods: Taylor exp. (LT04), Imag. μ, Canonical (LC04, 08), Reweighting (LR02, 04), Fugacity exp. (Nagata / Adams), Strong Coupling Lattice QCD

- Effective models: NJL, PNJL, PQM, ..

Direct Sampling in LQCD at finite μ → Histogram method (Ejiri) or SC-LQCD
Strong Coupling Lattice QCD

Pure YM

YM+Quarks (MF)

Wilson ('74), Creutz ('80), Munster ('80, '81), Lottini, Philipsen, Langelage's ('11)

Kawamoto ('80), Kawamoto, Smit ('81), Damgaard, Hochberg, Kawamoto ('85), Bilic, Karsch, Redlich ('92), Fukushima ('03); Nishida ('03), Kawamoto, Miura, AO, Ohnuma ('07).

Miura, Nakano, AO, Kawamoto ('09)
Nakano, Miura, AO ('10)
SC-LQCD with Polyakov Loop Effects at $\mu=0$

- P-SC-LQCD reproduces $T_c(\mu=0)$ in the strong coupling region ($\beta = 2N_c/g^2 \leq 4$)

MC data: SCL (Karsch et al. (MDP), de Forcrand, Fromm (MDP)), $N_\tau=2$ (de Forcrand, private), $N_\tau=4$ (Gottlieb et al.('87), Fodor-Katz ('02)), $N_\tau=8$ (Gavai et al.('90))
Strong Coupling Lattice QCD

Pure YM

- SC-LQCD
- MC

YM+Quarks (MF)

- Wilson ('74), Creutz ('80), Munster ('80, '81), Lottini, Philipsen, Langelage's ('11)
- Kawamoto ('80), Kawamoto, Smit ('81), Damagaard, Hochberg, Kawamoto ('85), Bilic, Karsch, Redlich ('92), Fukushima ('03); Nishida ('03), Kawamoto, Miura, AO, Ohnuma ('07), Miura, Nakano, AO, Kawamoto ('09), Nakano, Miura, AO ('10)

YM+Q+Fluc. (MDP)

- Mutter, Karsch ('89), de Forcrand, Fromm ('10), de Forcrand, Unger ('11)

Challenge: YM+Q+Fluc.+Finite Coupling Effects

- de Forcrand, Fromm, Langelage, Miura, Philipsen, Unger ('11), AO, Nakano, Ichihara (in prep.)

Ohnishi @ NTFL (Feb. 21, 2012)
Auxiliary field effective action in the Strong Coupling Limit
Strong Coupling Expansion

- **Lattice QCD action (aniso. lattice, unrooted staggered Fermion)**

\[
S_{LQCD} = S_F + S_G \\
S_G = -\frac{1}{g^2} \sum_{\text{plaq.}} \text{tr} [U_P + U_P^+] f_P \\
S_F = \frac{1}{2} \sum_x \left[V^+(x) - V^-(x)\right] + \frac{1}{2\gamma} \sum_{x,j} \eta_j(x) \left[\bar{\chi}_x U_{x,j} \chi_{x+j} - \bar{\chi}_{x+j} U_{x,j}^+ \chi_x\right] + \sum_x \frac{m_0}{\gamma} M_x \\
V^+(x) = e^{\mu/\gamma^2} \bar{\chi}_x U_{x,0} \chi_{x+0}, \quad V^-(x) = e^{-\mu/\gamma^2} \bar{\chi}_{x+0} U_{x,0}^+ \chi_x, \quad M_x = \bar{\chi}_x \chi_x, \quad a_\gamma = a/\gamma, \quad f_P = 1 \text{ or } 1/\gamma
\]

- **Strong coupling expansion**
 - (Strong coupling limit)

 - Ignore plaquette action \((1/g^2)\)
 - Integrate out spatial link variables of min. quark number diagrams \((1/d\) expansion)

\[
S_{\text{eff}} = \frac{1}{2} \sum_x \left[V^+(x) - V^-(x)\right] - \frac{1}{4 N_c \gamma^2} \sum_{x,j} M_x M_{x+j} + \frac{m_0}{\gamma} \sum_x M_x
\]

\[\int dU \ U_{ab} U_{cd}^{+} = \delta_{ad} \delta_{bc} / N_c\]
Introduction of Auxiliary Fields

- Bosonization of MM term (Four Fermi (two-body) interaction)

$$S_F^{(s)} = -\alpha \sum_{j, x} M_x M_{x+j} = -\alpha \sum_{x, y} M_x V_{x, y} M_y \quad [V_{x, y} = \frac{1}{2} \sum_j (\delta_{x+j, y} + \delta_{x-j, y})]$$

- Meson matrix (V) has positive and negative eigen values

$$f_M(k) = \sum_j \cos k_j \quad , \quad f_M(\bar{k}) = -f_M(k) \quad [\bar{k} = k + (\pi, \pi, \pi)]$$

- Negative mode = “High” momentum mode
 → Involves a factor $\exp(i \pi (x_1 + x_2 + x_3)) = (-1)^*(x_1 + x_2 + x_3)$
 in coordinate representation

- Bosonization of Negative mode: Extended HS transf.
 → Introducing “i” gives rise to the sign problem.

 $Miura, Nakano, AO (09), Miura, Nakano, AO, Kawamoto (09)$

$$\exp(\alpha AB) = \int d\varphi d\phi \exp[-\alpha (\varphi^2 - (A+B)\varphi + \varphi^2 - i(A-B)\phi)]$$

$$\approx \exp[-\alpha (\bar{\psi}\psi - A\psi - \bar{\psi}B)]_{\text{stationary}}$$
Phase cancellation mechanism in σMC

Bosonized effective action

$$S_{\text{eff}} = \frac{1}{2} \sum_{x,y} \bar{\chi}_x D_{x,y} \chi_y + \frac{\Omega}{4 N_c \gamma^2} \sum_{k, f_M(k) > 0} f_M(k) \left[\sigma_k^* \sigma_k + \pi_k^* \pi_k \right]$$

$$D_{x,y} = \delta_{x+\hat{0}, y} \delta_{x,y} e^{\mu/\gamma^2} U_{x,0} - \delta_{x,y+\hat{0}} \delta_{x,y} e^{-\mu/\gamma^2} U_{y,0}^+ + 2 \left[\sum_x + \frac{m_0}{\gamma} \right] \delta_{x,y}$$

$$\sigma(x) = \sum_{k, f_M(k) > 0} f_M(k) e^{i k x} \sigma_k \quad \pi(x) = \sum_{k, f_M(k) > 0} f_M(k) e^{i k x} \pi_k$$

Fermion matrix is spatially separated

→ Fermion det at each point

Imaginary part (π) involves

$$\varepsilon = (-1)^{x_0 + x_1 + x_2 + x_3} = \exp(i \pi(x_0 + x_1 + x_2 + x_3))$$

→ Phase cancellation of nearest neighbor spatial site det for π field having low k
Auxiliary Field Monte-Carlo Integral

Effective action of Auxiliary Fields

\[
S_{\text{eff}} = \frac{\Omega}{4 N_c \gamma^2} \sum_{k, f_M(k) > 0} f_M(k) \left[\sigma_k^* \sigma_k + \pi_k^* \pi_k \right] \\
- \sum_x \log \left[X_N(x)^3 - 2 X_N(x) + 2 \cosh (3 N \tau \mu) \right]
\]

\[
X_N(x) = X_N[\sigma(x, \tau), \pi(x, \tau)]
\]

- μ dependence appears only in the log.
- σ_k, π_k have to be generated in momentum space, while X_N requires $\sigma(x)$ and $\pi(x) \rightarrow$ Fourier transf. in each step.
- X_N is complex, and this action has the sign problem. But the sign problem is milder because of the phase cancellation and is less severe at larger μ.

Let's try at finite μ!
Auxiliary Field Monte-Carlo (σMC) estimate of the phase boundary
Numerical Calculation

- 4^4 asymmetric lattice + Metropolis sampling of σ_k and π_k.

- Metropolis sampling of full configuration (σ_k and π_k) at a time. (efficient for small lattice)

- Initial cond. = const. σ

- Chiral limit ($m=0$) simulation \rightarrow Symmetry in $\sigma \leftrightarrow -\sigma$

- Sign problem is not severe ($<\cos \theta> \sim (0.9-1.0)$) in a 4^4 lattice.

- Computer: My PC (Core i7)
Results (1): σ distribution

- Fixed μ/T simulation: $\mu/T = 0 \sim 2.4$
- Low μ region: Second order
 (Single peak: finite $\sigma \rightarrow$ zero)
- High μ region: First order
 (Dist. func. has two peaks)
Results (2): Susceptibility and Quark density

- Weight factor $<\cos \theta>$
 \[
 \langle \cos \theta \rangle = \frac{Z}{Z_{\text{abs}}}
 \]
 \[
 Z = \int D\sigma_k D\pi_k \exp(-S_{\text{eff}})
 \]
 \[
 = \int D\sigma_k D\pi_k \exp(-\text{Re } S_{\text{eff}}) e^{i\varphi}
 \]
 \[
 Z_{\text{abs}} = \int D\sigma_k D\pi_k \exp(-\text{Re } S_{\text{eff}})
 \]

- Chiral susceptibility
 \[
 \chi = -\frac{1}{L^3} \frac{\partial^2 \log Z}{\partial m_0^2}
 \]

- Quark number density
 \[
 \rho_q = -\frac{1}{L^3} \frac{\gamma^2}{N_\tau} \frac{\partial \log Z}{\partial \mu}
 \]
Results (3): Phase diagram

By taking $T = \gamma^2 / N_\tau$,
γ dep. of the phase boundary becomes small. *Bilic et al.* ('92)

Definitions of phase boundary

- $\phi^2 = \sigma^2 + \pi^2$ dist. peak: finite or zero (red curve)
- Chiral susceptibility peak (blue)

Fluctuation effect

- Reduction of T_c at $\mu=0$
- Enlarged hadron phase at medium T

→ Consistent with MDP

de Forcrand, Fromm ('09); *de Forcrand, Unger* ('11)
Results (4): Larger Lattice

Can we go to a larger lattice?

d\(\mu/dT\) > 0 at low T.
→ How about in a larger lattice?

Suggestion by de Forcrand
→ low T behavior is sensitive to N.
→ 4\(^3\) x 8
Summary

- We have proposed an auxiliary field MC method (σMC) in SC-LQCD.
 - To simulate the SCL quark-U_0 action (LO in strong coupling ($1/g^0$) and $1/d$ ($1/d^0$) expansion) without further approximation.
 c.f. Determinantal MC by Abe, Seki
 - Sign problem is mild in small lattice ($<\cos \theta> \sim (0.9-1)$ for 4^4), because of the phase cancellation coming from nearest neighbor interaction.
 - Extension to NLO SC-LQCD is straightforward.

- Phase boundary is obtained and found to be compatible with recent MDP results.
 - Phase boundary is moderately modified from MF results by fluctuations, if $T = \gamma^2/N_\tau$ and $\mu = \gamma^2 \mu_0$ scaling is adopted.
 - σMC results are compatible with MDP results, while the shift of T_c at $\mu=0$ is around half (LO in $1/d$ expansion in σMC).
Future work

To do:

- Larger lattice (8^4, $16^3 \times 8$, ...)
- Finite coupling effects (NLO, NNLO, Polyakov loop, ...)
- Higher 1/d terms including baryonic action
- Polyakov coupling (back reaction)
- Unrooted staggered fermion corresponds to 4 flavors (tates) in continuum
 → Different Fermion (e.g. staggered-Wilson fermion).
Thank you
Clausius-Clapeyron Relation

- **First order phase boundary** → two phases coexist

\[
P_h = P_q \quad \rightarrow \quad dP_h = dP_q \quad \rightarrow \quad \frac{d\mu}{dT} = -\frac{s_q - s_h}{\rho_q - \rho_h}
\]

\[
dP_h = \rho_h d\mu + s_h dT, \quad dP_q = \rho_q d\mu + s_q dT
\]

- **Continuum theory**
 → Quark matter has larger entropy and density (d\(\mu\)/dT < 0)

- **Strong coupling lattice**
 - SCL: Quark density is larger than half-filling, and “Quark hole” carries entropy → d\(\mu\)/dT > 0
 - NLO, NNLO → d\(\mu\)/dT < 0

AO, Miura, Nakano, Kawamoto ('09))
Introduction of Auxiliary Fields

\[S^{(s)} = -\frac{1}{4N_c\gamma^2} \sum_{x,j} M_x M_{x+j} = -\frac{L^3}{4N_c\gamma^2} \sum_{\tau,k} f_M(k) \tilde{M}_k(\tau) \tilde{M}_{-k}(\tau) \]
\[= \frac{L^3}{4N_c\gamma^2} \sum_{\tau,k,f_M(k)>0} f_M(k) \left[\varphi_k(\tau)^2 + \phi_k(\tau)^2 + \varphi_k(\tilde{M}_k + \tilde{M}_{-k}) - i\phi_k(\tilde{M}_k - \tilde{M}_{-k}) \right. \]
\[\left. + \varphi_k(\tau)^2 + \phi_k(\tau)^2 + i\varphi_k(\tilde{M}_k + \tilde{M}_{-k}) + \phi_k(\tilde{M}_k - \tilde{M}_{-k}) \right] \]
\[= \frac{\Omega}{2N_c\gamma^2} \sum_{k,f_M(k)>0} f_M(k) \left[\sigma_k^* \sigma_k + \pi_k^* \pi_k \right] + \frac{1}{2N_c\gamma^2} \sum_x M_x \left[\sigma(x) + i\varepsilon(x)\pi(x) \right] \]

\[\Omega = L^3 N_\tau \]

\[\sigma(x) = \sum_{k,f_M(k)>0} f_M(k) e^{ikx} \sigma_k, \quad \pi(x) = \sum_{k,f_M(k)>0} f_M(k) e^{ikx} \pi_k \]
\[\sigma_k = \varphi_k + i\phi_k, \quad \pi_k = \varphi_k + i\phi_k \]
\[V_{x,y} = \frac{1}{2} \sum_j \left(\delta_{x+j,y} + \delta_{x-j,y} \right), \quad f_M(k) = \sum_j \cos k_j, \quad \tilde{k} = k + (\pi, \pi, \pi) \]
Fermion action is separated to each spatial point and bi-linear
→ Determinant of Nτ x Nc matrix

\[
\exp(-V_{\text{eff}}/T) = \int dU_0 \det \left[X_N [\sigma] \otimes \mathbf{1}_c + e^{-\mu/T} U^+ + (-1)^{N_\tau} e^{\mu/T} U \right]
\]

\[
= X_N^3 - 2 X_N + 2 \cosh(3 N_\tau \mu)
\]

\[
I_\tau/2 = [\sigma(\chi) + i \varepsilon(\chi) \pi(\chi)] / 2 N_c \gamma^2 + m_0 / \gamma
\]

\[
X_N = B_N + B_{N-2} (2; N-1)
\]

\[
B_N = I_N B_{N-1} + B_{N-2}
\]