Monte Carlo study of a spin-ice type Kondo lattice model on a pyrochlore lattice

Hiroaki Ishizuka^A, Masafumi Udagawa^{A,B}, and Yukitoshi Motome^A

^ADept. of Applied Physics, Univ. of Tokyo ^BMax-Planck Institut fur Physik Komplexer Systeme

- I. Metallic pyrochlore oxides
- II. Spin-ice type Kondo lattice model
- III. Phase diagram
- IV. Magnetization process
- V. Summary

Metallic pyrochlore oxides

- Geometrical frustration
- ✓ Embedded pyrochlore networks
- ✓ 4f localized spins
 + 3d conduction electrons
- Peculiar properties
- ✓ "Diffusive metal" [R₂Mo₂O₇]
- ✓ Resistivity minimum $[Pr_2Ir_2O_7]$
- ✓ Unconventional Hall effects [Pr₂Ir₂O₇, Nd₂Mo₂O₇]

Spin-Ice type Kondo lattice model

- S_i : Ising spins along the <111> axis. \triangleright
- J = 2.0, t=1.0 \succ

- No direct interactions between the localized spins. Only effective interactions mediated by itinerant electrons. \Rightarrow (cf. Ikeda & Kawamura `07)
- Possible geometrical frustration by the electron-mediated interactions. \Rightarrow Importance of long-range interactions

Real space Monte Carlo simulation

Exact diagonalization: O[N⁴]
⇒ Only small systems.
Polynomial expansion: O[N]
⇒ Much larger systems.
1. Basis: Site-localized states |k⟩

- 2. Density matrix \Rightarrow up to *M* th order in Chebyshev polynomials
- 3. Truncation distance *d*

Phase diagram (J=2.0)

Novel magnetic states:

- Stripe order
- ✓ Ice rule
- ✓ Stripe ordering of tetrahedra
 ⇒ AF order

- 32 sublattice order
- ✓ No ice-rule
- ✓ AF 3^{rd} n.n.
 - \Rightarrow AF order

Magnetization process (32 sublattice phase)

μ: -3.4 Steps: 900 mcs × 3 bins Size: N = 4x6³

- Magnetic field along <111> axis
 (Orthogonal to a kagome plane)
 - Magnetization plateau around H~0.10 at T=0.02
 - ✓ The magnetic structure in the kagome plane is retained.
 - ✓ The spins in intermediate triangular layer aligns ferromagnetically.

Employing real-space Monte-Carlo simulation by exact diagonalization method and polynomial expansion technique, we investigated thermodynamic properties of Spin-Ice type Kondo lattice model.

- ✓ Emergence of novel magnetic phases.
- ✓ Existence of magnetization plateau in one of the novel phase.

Related works (Not shown in poster)

1. Double exchange limit ($J \rightarrow \infty$) with anti-ferromagnetic superexchange interaction on a pyrochlore lattice.

 \rightarrow Successive phase transition & novel intermediate phase.

- 2. Triangular lattice with finite J interactions
 - \rightarrow Partially disordered phase