First-principles study on the magnetism and metal-insulator transition in pyrochlore oxide Cd₂Os₂O₇ AIST^A, JST-CREST^B

Hiroshi Shinaoka^{A,B}, Takashi Miyake^{A,B}, and Shoji Ishibashi^A

Cd₂Os₂O₇ $\stackrel{<}{>}5d$ pyrochlore oxide with long history of study since 1974 $\stackrel{<}{>}$ Metal-insulator transition at 227 K $\stackrel{<}{>}$ Néel-type ordering of Os spins at low *T*

All-in/all-out magnetic order

Os⁵⁺ (5d³) cf. Ir⁴⁺ (5d⁵, $J_{eff}=1/2$)

Corner-sharing tetrahedral "pyrochlore" network of Os Recently, the all-in/all-out magnetic ordering was suggested by X-ray experiments (Yamaura *et al.*) and NMR experiments (Yamauchi *et al.*).

Peculiar properties of Cd₂Os₂O₇

Absence of a clear charge gap vs. the opening of an optical gap
Semiconducting behavior up to high *T*The *highest* transition temperature among magnetic pyrochlore oxides

So far, no first-principles study is available concerning electronic properties of the magnetic ground state.

Results

LSDA+SO+U $U_{eff} \equiv U - J$

PAW computational code: Quantum MAterials Simulator (QMAS)

All-in/all-out order is stabilized by strong easy-axis anisotropy (~50 meV) Semi-metallic band structure / *pseudo gap* near MIT \rightarrow Calculated results well explain the peculiar low-*T* characteristics