NQS2011

Edge states and their stability of 2D antiferromagnets

University of Hyogo Takafumi Suzuki Aoyama Gakuin University Masahiro Sato

Introduction

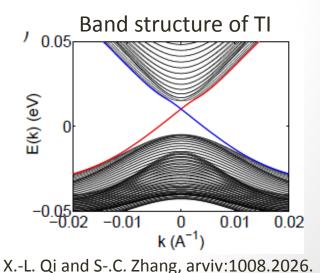
Topological insulator (TI)

Quantum orderings unexplained by local order parameters

Order parameters are defined global operators...

ex. Quantum hole state, Quantum-spin hole state (Topological Insulator) etc...

Non-trivial state


Characteristics of TIs

Existence of robust gapless modes against perturbations

Bulk-Edge Correspondence

Haldane chain

F. D. M. Haldane, Phys. Lett. A, 93, 464 (1983).

What corresponds to topological insulators in quantum magnets?...

Haldane gap state

Ground state of 1d antiferromagnetic Heisenberg spin chain (AFHC)

If the spin S is integer value(S=1,2,3,....), an energy gap exists between the ground state and the lowest excited state.

Valence-bond-solid picture for Haldane gap state

Singlet covering

• S = 1/2 spin• • Singlet: $\frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$

Haldane gap state is identified by non-local order parameter.

Ground state of Haldane spin chain

'Edge state' of Haldane gap state

S. Qin, et al., Phys. Rev. B 52, 12844 (1995).

When we consider the O.B.C., free spins appear at the edge...

Similarity to the original TI

Entanglement spectrum

TRI

TRI

Zy

0.0

B /J

Z22

0.5

B_z=0.1J, U_{xy}=0.1J

-1 R=0.10J

Edge

(a) ²

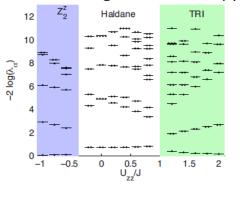
U_{zz}U

(b)

Uzz U

(c)

U_{zz}/J


Another aspect of Haldane gap state

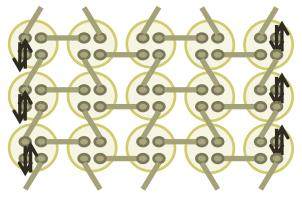
F. Pollmann and E. Berg, and M. Oshikawa, Phys. Rev. B 81, 064439 (2010).

Entanglement spectrum for 1D AFHC with single-ion anisotropy

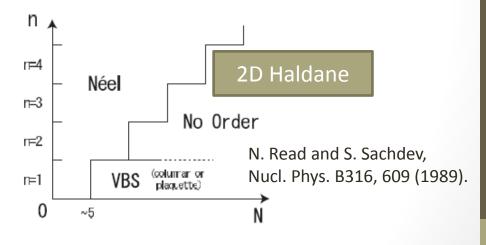
Bulk → Gapped

Gapless

In Haldane gap phase, all eigen states for entanglement spectrum are doubly degenerated.


The degeneracy is protected by these symmetries...

- $Z_2 x Z_2$
- Time reversal $S_i^{x,y,z} \rightarrow -S_i^{x,y,z}$
- Inversion


$$S_j^{x,y,z} \to S_{-j+1}^{x,y,z}$$

In this talk...

- What state corresponds to the topological insulator in 2D quantum magnets?
- If exists, how about its stability for perturbations?
 - ex : 2D Haldane gap state

⊠ 3 : Schimatic spin configuration for SU(N) spin n=0 (mod 4) model

Realistic model for experiments?

Stability for Perturbations (DM, Modulation, etc...)?