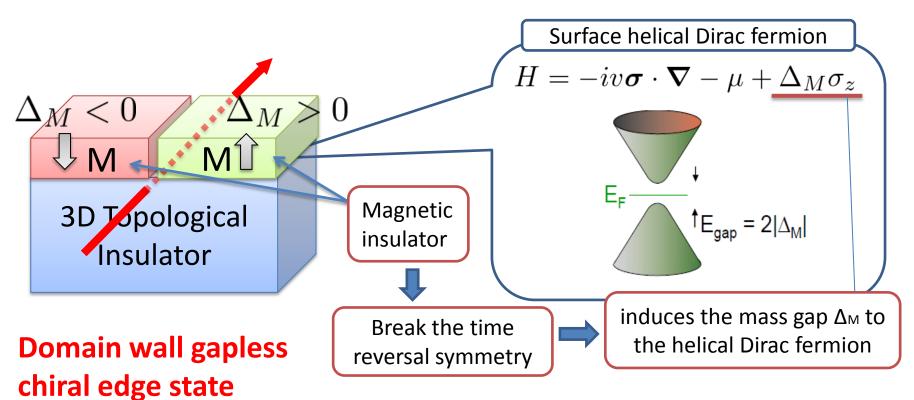
The condition for the existence the gapless modes in topological defects from Green's functions

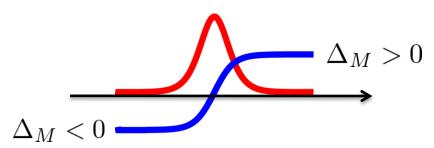
Ken Shiozaki and Satoshi Fujimoto Department of Physics, Kyoto University

K. Shiozaki and S. Fujimoto, arXiv:1111.1685

Surface Quantum Hall effect

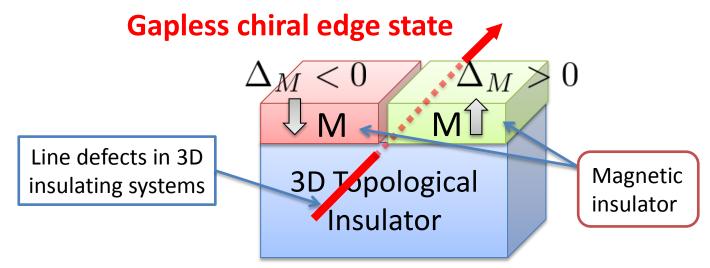
X. -L. Qi, T. L. Hughes, and S. -C. Zhang, Phys. Rev. B 78, 195424 (2008).





There exist gapless
chiral edge states at
domain wall : Δ_M ↔ - Δ_M

Topological invariants from Green's functions



our study...

Construction topological invariants characterizing the existence of gapless modes at line defects in heterostructure systems with broken time-reversal symmetry by using the Green's functions.

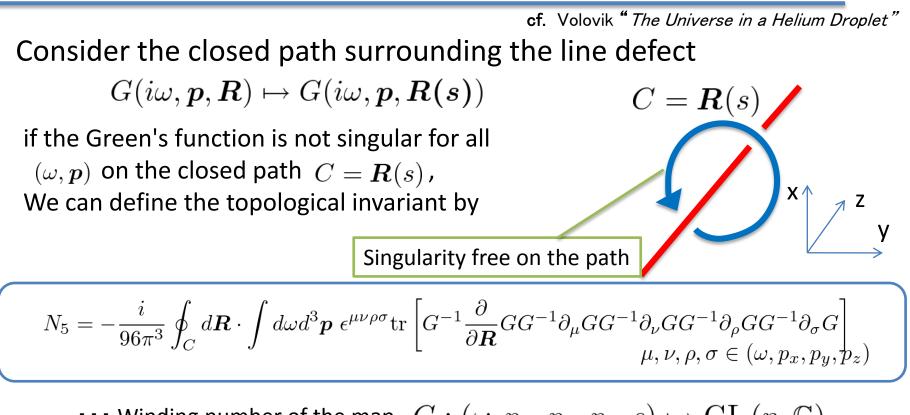
cf. classification of topological defects

[J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).]

Green's functions for 3-spatial dimensional systems

Full quantum formulation (not semi-classical approximation)

Topological invariants from Green's functions

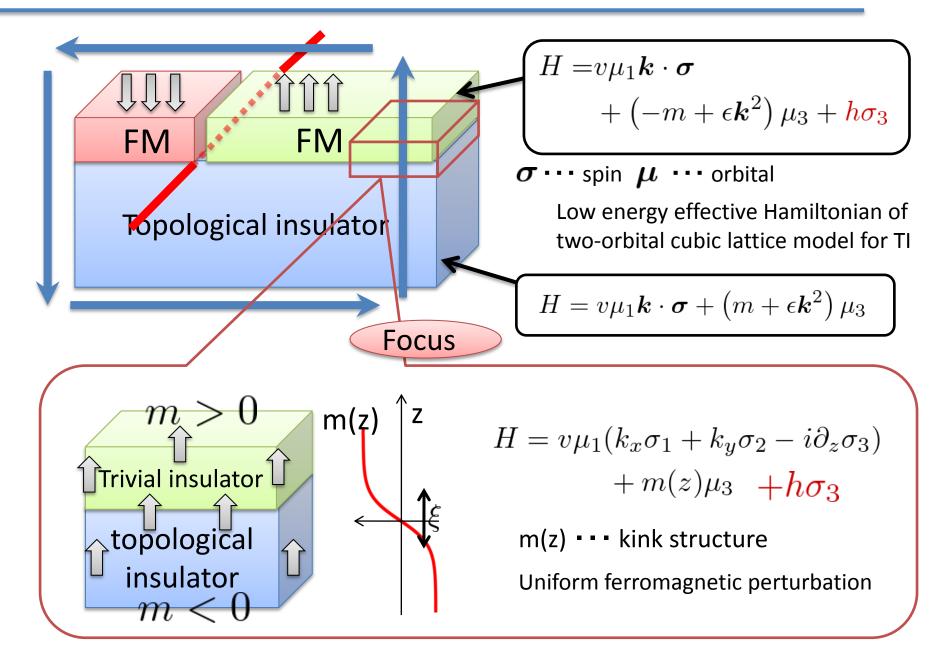


•• Winding number of the map $G: (\omega, p_x, p_y, p_z, s) \mapsto \operatorname{GL}(n, \mathbb{C})$ $\pi_5(\operatorname{GL}(n, \mathbb{C})) = \mathbb{Z}$

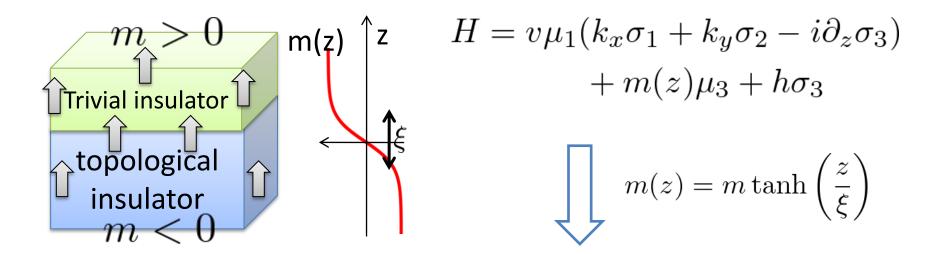
Singularity of Green's function

Fermi surface $\det G(i\omega, \boldsymbol{p}, \boldsymbol{R}) = \infty$ (Mott insulator) $\det G(i\omega, \boldsymbol{p}, \boldsymbol{R}) = 0$

A model for TI-ferromagnet tri-junction systems



An analytically solvable model



$$H = v\mu_1(k_x\sigma_1 + k_y\sigma_2 - i\partial_z\sigma_3) + m\tanh(z/\xi)\mu_3 + h\sigma_3$$

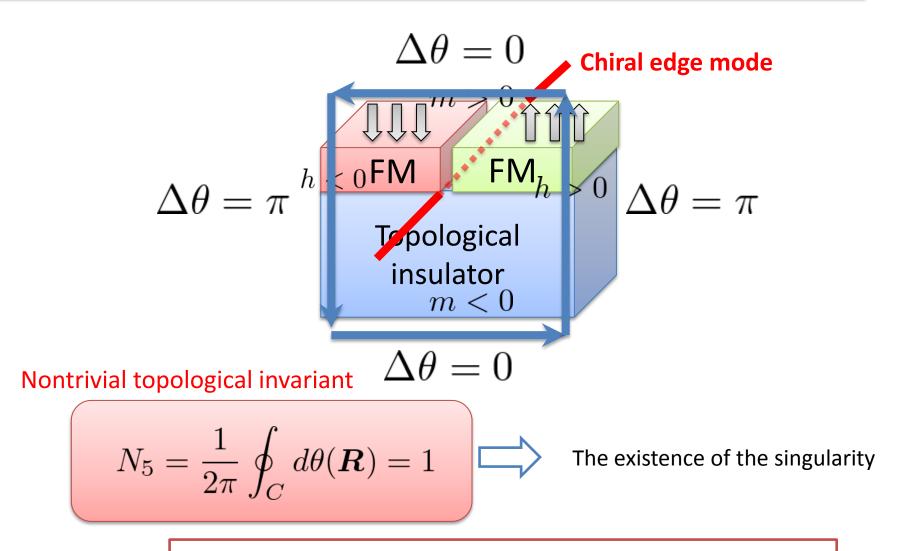
This Hamiltonian is analytically solvable

•polyacetylene [Takayama, Liu and Maki (1980)]

•Inhomogeneous Superconductor [Bar-Sagi and Kuper (1972)]

all energy eigenstates can be analytically represented

Numerical results ($\xi = v/m$)



consistent with the existence of chiral edge mode