Dec. 2011

Two parameter flow diagram in ac regime for the graphene quantum Hall system

T. Morimoto Univ. of Tokyo

H. Aoki Y. Hatsugai Y. Avishai

Tokyo Tsukuba Ben Gurion

Purpose

Model and method

• Explore Anderson localization effect for optical responses

➔ Disordered system analyzed with exact diagonalization method

$$V(r) = \sum_j u_j \exp(-|r - R_j|^2/2d^2)/(2\pi d^2)$$
 $H = \sigma \cdot (p + eA) + V(r)$

Free Dirac Hamiltonian +B

Impurity potential

■Optical longitudinal and Hall conductivity from Kubo formula

$$\sigma_{xy}(\varepsilon_F,\omega) = \frac{i\hbar e^2}{L^2} \sum_{\epsilon_a,\epsilon_b} \frac{f(\epsilon_b) - f(\epsilon_a)}{\epsilon_b - \epsilon_a} \frac{j_x^{ab} j_y^{ba}}{\epsilon_b - \epsilon_a - \hbar\omega - i\eta}$$
$$\operatorname{Re}\sigma_{xx}(\omega) = \frac{\hbar e^2}{L^2} \sum_{\varepsilon_a,\varepsilon_b} \frac{f(\varepsilon_b) - f(\varepsilon_a)}{\varepsilon_b - \varepsilon_a} \frac{|j_x^{ab}|^2 \eta}{(\varepsilon_b - \varepsilon_a - \hbar\omega)^2 + \eta^2}$$

Energy cutoff $\eta \sim 1/L^2$

→Average over disorder realizations

$\sigma_{xy}(\omega)$ from effective Dirac model

Robust plateaus even in ac \rightarrow Localization effect

Scaling of plateau to plateau transition

Two parameter flow extended to ac

