Nonperturbative functional renormalization group for disordered systems: The case of the random field Ising model

G. Tarjus and M. Tissier
(LPTMC, CNRS-Univ. PARIS 6)
Physics of “disordered systems”

- Systems in the presence of **quenched disorder** (due to impurities, dislocations, random environment, etc, frozen on the relevant time scale) pose new challenges to statistical physics:
 - new phases and phase transitions (spin glass, glassy phases, Griffiths phases,...)
 - new phenomena (localization, pinning,...)
 - slow relaxation, aging and hysteresis.

- One often needs new theoretical tools
 => Nonperturbative functional RG (NP-FRG)

- **Here**: focus on the equilibrium behavior of classical systems.
Random field model

• Prototypical model in theory of "disordered systems"

In the field-theoretical description (RFIM):

\[S_h[\phi] = S_B[\phi] - \int_x h(x)\phi(x); \quad S_B = \int d^d x \left\{ \frac{1}{2} (\partial_\mu \phi(x))^2 + \frac{\tau}{2} \phi(x)^2 + \frac{u}{4!} \phi(x)^4 \right\} \]

with a quenched random field drawn from a given probability distribution (e.g., Gaussian)

\[\overline{h(x)} = 0, \quad \overline{h(x)h(y)} = \Delta_B \delta^{(d)}(x - y) \]

• Physical realizations in soft and hard condensed matter:
 * Near critical fluids in disordered porous materials
 * Dilute antiferromagnets in a uniform magnetic fluid
 * Hysteresis in dirty magnets
 * Vortex phases in disordered type-II superconductors
Generic difficulties of disordered systems

• Due to quenched disorder \((h)\), one loses translational invariance.

 Way out: average over disorder, but what ?, how ?

• Presence of many low-energy (low-action) “metastable states”.

• Possible influence of rare events, rare spatial regions or rare samples.
Average over the disorder
[“self-averaging”, “replica trick”, etc.]

• RFIM equilibrium partition function in a given random-field sample h:

\[
Z_h[J] = e^{Wh[J]} = \int \mathcal{D}\phi \, e^{-S_h[\phi] + \int_x J(x)\phi(x)}
\]

• $Wh[J]$ is a random functional of the source \Rightarrow
 * in principle, one needs its whole probability distribution
 * or equivalently, the infinite set of its disorder-averaged cumulants:

\[
W_1[J] = \overline{Wh[J]}, \quad W_2[J_1, J_2] = \overline{Wh[J_1]Wh[J_2]}_c, \ldots
\]
Known results about the RFIM

• Existence of a Z_2 symmetry breaking transition for $d>2$ for the Ising version [transition for $d<4$ for the $O(N>2)$ version]. The upper critical dimension is $d_{uc}=6$.

• The critical behavior is associated with a zero-temperature fixed point (thermal fluctuations are formally irrelevant) and one can directly work at $T=0$.

• For a given realization of the disorder $h(x)$, the ground state is unique [except for rare values/configurations of the external source $J(x)$].
Known results about the RFIM (contd.)

Zero-temperature fixed point and its consequences

- **Additional exponent for the temperature flow:** \(\theta > 0 \)

- **Two distinct pair correlation functions:**

 \[
 \langle \phi(x) \rangle \langle \phi(x') \rangle \sim \frac{1}{|x - x'|^{d-4+\eta}}, \quad \text{with} \quad \theta = 2 + \eta - \bar{\eta},
 \]

 \[
 \langle \phi(x) \phi(x') \rangle - \langle \phi(x) \rangle \langle \phi(x') \rangle \sim \frac{T}{|x - x'|^{d-2+\eta}}
 \]

- **For \(T>0 \):** very slow “activated” critical dynamics, \(\tau \sim \exp(c \xi^\theta) \), with \(\xi \) the correlation length (that diverges at the critical point).
• At zero temperature, the equilibrium behavior of the RFIM is determined by the ground state configuration [absolute minimum of $S_h = S_B - (h + J)\phi$], which is solution of the stochastic field equation:

$$\frac{\delta S_B[\phi]}{\delta \phi(x)} = h(x) + J(x)$$

• However, for low disorder strength and in the region of interest (near the critical point), the equation has many solutions => many minima of the bare action ("metastable states").

• What is their effect on the long-distance properties?
 [Also known to go with slow relaxation, hysteresis and "glassiness"]
At $T=0$, generating functional of the correlation functions:

$$\mathcal{Z}_h[J, \hat{J}] = \int \mathcal{D}\phi \delta\left[\frac{\delta S_B[\phi]}{\delta \phi} - h - J \right] \left| \frac{\delta^2 S_B[\phi]}{\delta \phi \delta \phi} \right| e^{\int_x \hat{J}(x) \phi(x)}$$

If there is a unique solution of the stochastic field equation, usual manipulations:

- Introduce auxiliary fields $\hat{\phi}(x), \psi(x), \bar{\psi}(x)$,
- average over disorder h (Gaussian probability distribution),
- introduce a superspace with 2 Grassmann coordinates $\underline{x} = (x, \bar{\theta}, \theta)$
- and supermetric $d\underline{x}^2 = dx^2 + \frac{4}{\Delta_B} d\bar{\theta}d\theta$,
- a superLaplacian $\Delta_{SS} = \partial_\mu^2 + \Delta_B \partial_\theta \partial_{\bar{\theta}}$,
- a superfield $\Phi(x) = \phi(x) + \bar{\theta}\psi(x) + \bar{\psi}(x)\theta + \bar{\theta}\theta \hat{\phi}(x)$, super-etc...
Parisi-Sourlas supersymmetric approach of the RFIM (contd.)

• The generating functional \mathcal{Z}_h can then be obtained from a superfield theory with action:

$$S_{SUSY}[\Phi] = \int_x \left\{ -\frac{1}{2} \Phi(x) \Delta_{SS} \Phi(x) + \frac{\tau}{2} \Phi(x)^2 + \frac{u}{4!} \Phi(x)^4 \right\}$$

• Invariant under SUSY (super-rotations in superspace)
 => leads to "dimensional reduction": RFIM in d dimensions is equivalent to the pure theory in $d-2$.

$$\left[\int d^d x d\theta d\bar{\theta} f(x^2 + \frac{4}{\Delta_B} \theta \bar{\theta}) = \left(\frac{4\pi}{\Delta_B} \right) \int d^{d-2} x f(x^2) \right]$$

Beautiful, but wrong!!
Problem with multiple solutions!!
Rare events: toy model (d=0 RFIM)

Stochastic equation: \[\frac{\delta S_B(\phi)}{\delta \phi} = J + h \quad \text{with} \]

- **For zero temperature** \(T=0 \), select the ground state:

 The pair correlation function for slightly different sources,

 \[
 \frac{\phi_{GS,h}(J + \delta J)\phi_{GS,h}(J - \delta J)}{\phi_{GS,h}(J)^2 + A(J)|\delta J| + O(\delta J^2)} =
 \]

 has a nonanalytic behavior (a “cusp”) when \(J \rightarrow 0 \) due to the “avalanches”.

- **For a small** \(T>0 \), Boltzmann weighting of the minima (\(e^{-\frac{S_B(\phi) - (J+h)\phi}{T}} \)):

 The cusp is rounded in a “thermal boundary layer”

 \[
 < \phi(J + \delta J + h) > < \phi(J - \delta J + h) > = < \phi(J + h) >^2 + T f(J, \frac{|\delta J|}{T}) + \ldots
 \]

 ISSUE: Does this persist at long distance when \(d>0 \)?
Long-standing puzzles concerning random-field systems

- Critical behavior: what is the way out of dimensional reduction?
- What is the phase diagram of the d-dimensional random-field $O(N)$ model in the whole (N,d) plane?
Why does one need a nonperturbative functional RG?

- **RG**, because one is interested in the long-distance properties near to the critical point; in particular, the “metastable states” of potential relevance are not those of the bare action but those of a scale-dependent renormalized functional;

- **Functional**, because the influence of the rare events (avalanches and droplets) can only be described through a singular dependence of the cumulants of the renormalized disorder on their arguments;

- **Nonperturbative**, because standard perturbation theory completely fails (dimensional reduction), relevant dimensions are far from $d=6$, disorder grows strong under coarse graining.
Program for RG study of RFIM
[Search for the proper T=0 IR (critical) fixed point]

• Select with high probability the ground state at the running IR scale \(k \) among the solutions if several of them and ensure that only the ground state is considered when \(k \rightarrow 0 \).

• Describe full functional dependence of cumulants of renormalized disorder and allow for nonanalytical dependence on their arguments.

• Start the RG flow with a “regularized” stochastic field equation having a unique solution.

• Use a nonperturbative truncation and be able to recover dimensional reduction if it has a range of validity.

=> NP-FRG in a superfield setting
Superfield formalism for the RFIM

- Several copies + a weighting factor => Generating functional:

\[
Z_h^{(\beta)} \{J_a, \hat{J}_a\} = \prod_a \int \mathcal{D}\phi_a \delta \left[\frac{\delta S_B[\phi_a]}{\delta \phi_a} - h - J_a \right] \det \left(\frac{\delta^2 S_B[\phi_a]}{\delta \phi_a \delta \phi_a} \right) \\
\times e^{\int_x \hat{J}_a(x) \phi_a(x)} e^{-\beta \left(S_B[\phi_a] - \int_x [h(x) + J_a(x)] \phi_a(x) \right)}
\]

Average over disorder generates cumulants with full functional dependence:

\[
Z_h \{J_a, \hat{J}_a\} = \prod_a e^{\mathcal{W}_h[J_a, \hat{J}_a]} = e^{\sum_a \mathcal{W}_h[J_a, \hat{J}_a] + \frac{1}{2} \sum_{ab} \mathcal{W}_h[J_a, \hat{J}_a] \mathcal{W}_h[J_b, \hat{J}_b]_c + \ldots}
\]

- Introduce superfields and a “curved” Grassmannian space

\[
\Phi(\theta) = \phi + \bar{\theta} \psi + \bar{\psi} \theta + \bar{\theta} \bar{\psi} \phi; \quad \int_{\tilde{\theta}} = \int \int d\theta d\bar{\theta} (1 + \beta \bar{\theta} \theta)
\]

\[
\Rightarrow \quad S^{(\beta)} \{\Phi_a\} = \sum_a \int_{\tilde{\theta}} S_1[\Phi_a(\theta)] + \frac{1}{2} \sum_{ab} \int_{\tilde{\theta}_1 \tilde{\theta}_2} S_2[\Phi_a(\theta_1), \Phi_a(\theta_2)]
\]

\[
S_1 = \int_x \left[\frac{1}{2} \left(\partial_{\mu} \Phi_a(\theta, x) \right)^2 + U_B(\Phi_a(\theta, x)) \right]; \quad S_2 = \int_x \Delta_B \Phi_a(\theta_1, x) \Phi_b(\theta_2, x)
\]
Add coupling to supersources \(\sum_a \int_{\theta,x} \mathcal{J}_a(\theta, x) \Phi_a(\theta, x) \rightarrow \mathcal{W}^{(\beta)}[\{\mathcal{J}_a\}] \)

+ Legendre transform \(\rightarrow \) Effective action \(\Gamma^{(\beta)}[\{\Phi_a\}] \)

The action is invariant under a large group of symmetries and supersymmetries (\(S_n \) between copies, global \(\mathbb{Z}_2 \) and Euclidean translations + rotations, isometries of the curved Grassmann subspace copy by copy).

The expansion in increasing number of sums over copies generates the “cumulant expansion” of the 1PI generating functional (effective action):

\[
\Gamma^{(\beta)}[\{\Phi_a\}] = \sum_{a_1} \Gamma_1^{(\beta)}[\Phi_{a_1}] - \frac{1}{2} \sum_{a_1, a_2} \Gamma_2^{(\beta)}[\Phi_{a_1}, \Phi_{a_2}] + \cdots
\]
NP-FRG in superfield formalism

• Add an IR regulator to the action:

\[\Delta S^{(\beta)}_k[\{\Phi_a\}] = \frac{1}{2} \sum_{ab} \int_{x_1} \int_{x_2} \Phi_a(x_1) \mathcal{R}_{k,ab}(x_1, x_2) \Phi_b(x_2) \]

\[\mathcal{R}_{k,ab}(x_1, x_2) = \delta_{\theta_1, \theta_2} \hat{R}_k(q^2) + \tilde{R}_k(q^2) \] : suppresses fluctuations of \(\Phi \) field and random field

• ERGE for the effective average action at scale \(k \):

\[
\partial_k \Gamma^{(\beta)}_k[\{\Phi_a\}] = \frac{1}{2} \sum_{ab} \int_{x_1} \int_{x_2} \partial_k \mathcal{R}_{k,ab}(x_1, x_2) (\Gamma^{(2)}_k[\{\Phi_a\}] + \mathcal{R}_k)^{-1}(b, x_2)(a, x_1)
\]

• Through the expansion of \(\Gamma^{(\beta)}_k[\{\Phi_a\}] \) in increasing number of copies:

Hierarchy of coupled ERGE’s for the cumulants (functionals of the superfields):

\[\partial_k \Gamma^{(\beta)}_{k,1}[\Phi_1] = \cdots, \partial_k \Gamma^{(\beta)}_{k,2}[\Phi_1, \Phi_2] = \cdots, \text{ etc} \]
“Grassmannian ultralocality” and superrotational invariance

• Property of the generating functionals when a unique solution of the stochastic equation is included:

“Grassmannian ultralocality”: \(\mathcal{W}_h^{(\beta)}[\mathcal{J}] = \int_\theta W[\mathcal{J}(\theta)] \)

• When \(\beta \to \infty \), “ultralocality” (UL) becomes exact, with the \(p \)th cumulant of the effective average action given by (more later!)

\[
\Gamma^{(\beta)}_{k,p}[\Phi_{a_1}, ..., \Phi_{a_p}] = \\
\int_{\theta_{a_1}} ... \int_{\theta_{a_p}} \left(\Gamma^{(UL)}_{k,p}[\Phi_{a_1}(\theta_{a_1}), ..., \Phi_{a_p}(\theta_{a_p})] + NUL \text{ corrections} \right)
\]

• When “Grassm. UL”, \(\beta \) drops out of the FRG equations.

Then, for supersources that reduce the theory to a 1-copy problem, the theory is invariant under superrotations (SUSY)

\(\Rightarrow \) Ward-Takahashi (WT) identities.
NP-FRG and SUSY breaking

• Grassm. ultralocality => hierarchy of ERGE’s for the cumulants with physical field arguments \((\Phi \equiv \phi)\):

\[
\begin{align*}
\partial_t \Gamma_{k1}[\phi] &= \frac{1}{2}\tilde{\partial}_t Tr\{ [\Gamma_{k1}^{(2)}[\phi] + \hat{R}_k]^{-1} [\Gamma_{k2}^{(11)}[\phi, \phi] - \hat{R}_k] \} \\
\partial_t \Gamma_{k2}[\phi_1, \phi_2] &= \cdots \\
\end{align*}
\]

!!! Recall: The auxiliary parameter \(\beta\) then drops out of the ERGE’s !!!

• As a result, superrotational invariance for 1 copy is \textit{a priori} preserved along the RG flow: From the WT identities, one can show that it leads (nonperturbatively) to dimensional reduction.

• \textbf{What can go wrong ?}

 * Spontaneous breaking of superrotation invariance: some 1PI vertex blows up when copy fields become equal.
 * Dimension reduction is broken when a cusp

\[
\Gamma_{k,2}^{(11)}(\varphi_1, \varphi_2) - \Gamma_{k,2}^{(11)}(\varphi_1, \varphi_1) \sim |\varphi_2 - \varphi_1| \quad \text{as} \quad \varphi_2 \to \varphi_1
\]

appears at a \textbf{finite} scale \(k_L\).
SUSY-compatible approximation and RG flow

• Ansatz for effective average action (under “Grassm. ultralocality”):

\[
\Gamma_{k1}[\phi] = \int_x \left[U_k(\phi(x)) + \frac{1}{2} Z_k(\phi(x))(\partial_\mu \phi(x))^2 \right]
\]

\[
\Gamma_{k2}[\phi_1, \phi_2] = \int_x V_k(\phi_1(x), \phi_2(x)), \quad \Gamma_{k,p>2} = 0
\]

+ Regulators: \(\hat{R}_k = Z_k k^2 r(q^2/k^2) \), \(\tilde{R}_k = - (\Delta_k/Z_k) \partial_q^2 \hat{R}(q^2) \)

[SUSY WT identity: \(\Delta_k = \Delta B Z_k \)]

• Introduce scaling dimensions for T=0 fixed point (critical). Then,

\[
\partial_t u'_k(\phi) = \cdots
\]

\[
\partial_t z_k(\phi) = \cdots
\]

\[
\partial_t \delta_k(\phi_1, \phi_2) = \partial_t v_k^{(11)}(\phi_1, \phi_2) = \cdots
\]

\[
\eta_k = -\partial_t Z_k \quad \bar{\eta}_k = 2\eta_k + \partial_t \Delta_k
\]

• If no linear cusp in \(\delta_k(\phi_1, \phi_2) \), then \(\partial_t \delta_k(\phi, \phi) = \partial_t z_k(\phi) \) (WT id.)

and exact dim. reduction follows: found for \(d > d_{DR} \approx 5.1 \)

• Numerical resolution on a grid.
Above $d_{DR} \approx 5.1$: no cusp in $\delta_k(\varphi_1, \varphi_2)$.

Below d_{DR}: cusp in $\delta_k(\varphi_1, \varphi_2)$ and SUSY breaking in a finite RG time.

A second order derivative of δ_k blows up in a finite RG time for $d<d_{DR}$ (red curve), not for $d>d_{DR}$ (blue curve)

\Rightarrow SUSY breaking

Flow of the dimensionless second cumulant δ_k in $d=4$
Results: Critical exponents η and $\bar{\eta}$

Breakdown of dimensional reduction appears continuously in dimension d

- Dimensional reduction: $\bar{\eta} = \eta$ \[= \eta^{(pure,d-2)}\]
- Below d_{DR}: $\bar{\eta} > \eta$

Very good agreement with “best estimates”:

In $d=3$

$\eta = 0.57 \pm 0.05$

[0.51\(\pm\)0.04]

$\bar{\eta} = 1.08 \pm 0.05$

[1.02-1.10]
If one adds the first “non-ultralocal” corrections, one finds that they go to finite fixed-point values and that the flow of the ultralocal quantities is generically of the form

\[\partial_t \delta_k(\varphi_1, \varphi_2) = \beta^{(UL)}_{\delta_k}(\varphi_1, \varphi_2) + \left(\frac{k \theta}{\beta} \right) \beta^{(NUL)}_{\delta_k}(\varphi_1, \varphi_2) \]

The second term drops out when \((1/\beta) = 0 \) (zero auxiliary temperature) and one is back to the purely “ultralocal” contributions.

When \(\beta \) finite and \(k \to 0 \), nonuniform convergence to the “ultralocal” cuspy fixed point: cusp in \(\delta_k(\varphi_1, \varphi_2) \) is rounded in a thermal boundary layer in \(|\varphi_1 - \varphi_2|/k^\theta \).

The boundary layer is related to the presence of rare “droplet” excitations.
Region IV: Weak non-analyticity (at fixed pt.); dim. red. predictions O.K.

Regions I and II: Spontaneous SUSY breaking at finite RG scale; cusp in renormalized second cumulant; breakdown of dim. red. (II: QLRO)

Region III: No phase transition
Conclusion

• The description of the long-distance physics of systems with quenched disorder requires special theoretical tools to account for loss of translational invariance/average over disorder, rare events, metastable states, etc...

• NP-FRG in a superfield setting (with introduction of many copies and of a weighting factor to select the proper solution) solves the 30-year-old pending problems concerning the critical behavior in random field systems.

• It could be a useful formalism for other problems described by a stochastic field equation with multiple solutions (metastable states in glasses, shocks in fluid turbulence, Gribov copies in non-Abelian gauge theories,...).
Below $d_{DR} \approx 5.1$: cuspy fixed point for

$\delta_k(\varphi_1, \varphi_2)$

Dimensionless second cumulant at the fixed point in $d=3$
Results (contd)

Below d_{DR}: cusp in $\delta_k(\varphi_1, \varphi_2)$ & spontaneous SUSY breaking

Breakdown of the (SUSY) WT identity at the fixed point in $d=3$
Results (contd.)

Above $N_{\text{DR}} = 18$: no cusp and dimensional reduction
Below $N_{\text{DR}} = 18$: cusp and breakdown of dimensional reduction

Anomalous dimensions in $d=4+\varepsilon$ (1-loop exact FRG)
Results: Critical exponents η and $\bar{\eta}$ (contd.)

Optimization of the cut-off (to ensure a better stability of the results)