The Inhomogeneous Early Universe

Richard Easther (Yale)

SI2010: August 2010

Mustafa Amin (MIT) Hal Finkel (Yale) Raphael Flauger (Yale) James Gilmore (Yale) Tom Giblin (Yale -> Kenyon) Eugene Lim (Columbia) Nathaniel Roth (Yale->Berkeley)

What Inhomogeneity Do you Mean?

- Large inhomogeneities...
 - Not the usual 2-point or 3-point functions
 - Not loop corrections to the inflationary spectrum
 - Not bumps and glitches on the inflaton potential
- Putting the $\nabla^2 \phi$ back into $\Box \phi$!
 - Might also worry about Ψ and Φ as well as ψ and ϕ

But Doesn't Inflation Rule This Out?

- Yes: during inflation the universe is very smooth...
- Yes but: Pre-inflation
 - Bubble collisions; remnants of initial conditions
 - Chaotic dynamics in multifield models
- Yes but: Post-inflation
 - Smooth on super horizon scales
 - What about scales near horizon as inflation ends?
 - Or scales that re-enter horizon soon after inflation ends?

Reasons to Care...

- How does inflation *begin*?
 - Pre-inflationary dynamics in "realistic" potentials
- Impact on present day observables
 - Gravitational waves (although at high frequencies)
 - Connection to inflationary observables (see lectures)
 - Primordial black hole formation (usually bad for a model)
- Post-inflationary expansion history long and unknown
 - And probes physics above LHC scales

Two Approaches to the Early Universe

- Build models with new ingredients...
 - Branes / strings / extra dimensions / exotic matter
 - Non-standard gravity (Horava-Lifshitz, Galileon)
- New phenomenology with "standard" ingredients
 - Nonlinearity, inhomogeneity
- This talk: Method 2

Iron Chef: Cosmology

Many Examples [Izakaya-style]

1.Post-inflationary coherent oscillations

• Just wait long enough without reheating?

2.Parametric resonance; gravity waves; reheating

• Equation of state; semi-stable states?

3.Oscillons

4. Primordial black holes (and gravitational waves)?

5.Pre-inflation: bubble collisions

• Mechanisms for exploring landscape?

Tools of the Trade: Klein-Gordon

- Assume universe is made from scalar fields
- Without a potential, in an expanding universe
 - Wave equation with dissipation (weakly nonlinear)
- With a potential
 - Nonlinear wave equation
 - Rich analytics; direct numerical solution
- Standard ingredients; new physics.

Tools of the Trade: Numerical methods

- LatticeEasy (Felder and Tkachev)
 - + Defrost (Frolov)
 - + HLattice (Huang)
- PSPECTRE (Easther, Finkel & Roth) arXiv:1005.1921
 - Pseudo-SPECTral REheating
 - Solves for Fourier components of fields
 - DOWNLOAD: http://easther.physics.yale.edu/

1. Delayed Reheating

- Simplest picture of inflation...
 - Universe inflates, then inflation ends
 - Inflaton oscillates at bottom of the potential
 - Not a new scenario!
- For a quadratic potential, a(t)~t^{2/3} "matter dominated"
 - Naively, perturbations grow ~ a(t)
 - But inflaton weakly coupled; oscillations last a long time...
 - Most potentials quadratic *near minimum*

Summary

- Algebra in paper... [RE, Flauger & Gilmore, arXiv:1003.3011]
 - Two time scales: Hubble time, and (inflaton) oscillation time
 - Modes with frequency > inflation oscillation will decay
 - Modes inside horizon, frequency < inflation oscillation *grow*
 - Perturbations nonlinear after universe grows by $\sim 10^5$
- Inhomogeneity happens in the *simplest* system!
 - Possible gravitational wave production, nonlinear collapse?
 - See e.g. Assadullahi and Wands

Spectral Index v. Tensor amplitude

Matching equation [see lecture]

2. Preheating & Gravitational Waves

- Original work: Khlebnikov and Tkachev (1997)
- Revived: RE and Lim (2006) astro-ph/0601617
 - Frequency correlated to inflationary scale
 - RE, Giblin and Lim astro-ph/0612294 arXiv:0712.2991
 - Dufaux et al., Garcia-Bellido et al., Price & Siemans
- Hard numerical problem; hard physical problem

Parametric Resonance: Quick Sketch

$$\mathcal{L} = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi + \frac{1}{2}\partial_{\mu}\chi\partial^{\mu}\chi - \frac{1}{2}m^{2}\phi^{2} - \frac{g^{2}}{2}\phi^{2}\chi^{2}$$

- φ is the inflaton field
- χ is a (massless) field coupled to the inflaton
 - Perturbations in χ , canonically quantized

$$\ddot{\chi}_k + 3H\dot{\chi}_k + \left(\frac{k^2}{a^2} + g^2\phi^2\right)\chi_k = 0$$
$$\hat{\chi}_k = \frac{1}{(2\pi)^{3/2}}\int d^3k \left(\hat{a}_k\chi_k(t)e^{-i\mathbf{k}\cdot\mathbf{x}} + \hat{a}_k^{\dagger}\chi_k^{\star}(t)e^{i\mathbf{k}\cdot\mathbf{x}}\right)$$

Parametric Resonance: Quick Sketch

- A > 2q
 - A and q evolve
 - Modes move in and out of resonance
- Pump k-modes
 - Inhomogeneities

Production of Gravitational Waves

- Compute tensor signal:
 - Assume spacetime rigid
 - Solve full nonlinear equations for scalar fields
 - Evolve transverse traceless $h_{\mu\nu}$ (sourced by t-t $T_{\mu\nu}$)
- No back-reaction, but this is small (at least for tensors)
 - $\delta \rho / \rho$ large; metric perturbations small

Location of Peak

- Hubble size at end of inflation: 1/H_{end} ~ (V_{end})^{-1/2}
 - Instant preheating: $\rho \sim T^4 \sim V_{end}$; $T_{max} \sim (V_{end})^{1/4}$
 - Growth ~T_{max} /T_{CMB}
- Present size of inflationary Hubble patch:
 - $T_{max}/H_{end} \sim (V_{end})^{1/4}$
 - GUT scale inflation: cm m today; MHz GHz
 - Inflation at 10 TeV: ~ 10,000,000km10⁻² Hz
- DECIGO, BBO and advanced ground-based experiments?

Height of Peak

- Model dependent
- Gravitational waves require gradient terms
 - Maximal gradient energy less than total density
 - Most models: gradient energy ~ density
- Typically: $d\Omega_{gw}/dlnk \sim 10^{-5}$ at production, 10^{-10} today.
 - Working on better analytic theory of this now.

Structure of Peak

- Depends on potential and couplings
 - Most power dropped into narrow frequency range
 - Only sampled a small range of models
 - Other preheating mechanisms available
- Very sharp cutoff at high frequencies, k³ tail
 - Associated with modes that are never in resonance

Current topics...

- Achieved "consensus" on overall properties of signal
 - Would like to improve semi-analytic account...
- Non-gaussianity (Bond, Frolov, Huang & Kofman)
- Gravitational wave 3-pt (Adshead & Lim 0912.1615)
- Completion of thermalization?
- Evolution of large local overdensities?
- Key problem: coupling between inflation and "everything else"

3. Nonlinear Dynamics & Oscillons

- Localized "blobs" of scalar field matter
- Requires a single scalar field with a nonlinear potential
 - Potential must (near origin) increase more slowly than ϕ^2

•
$$V(\phi^2) = m^2 \phi^2 - \lambda \phi^4 + g \phi^6$$

- Related to q-balls and solitons
 - Stationary (≠ soliton), real valued field (≠ q-ball)
- Are oscillons relevant to post-inflationary universe?

SPATIAL PROFILES

One Dimensional Oscillons

- Semi-analytic theory Amin, Amin & Shirokoff • 1002.3380 & 1006.3075 "Flat topped" solutions "1/g" expansion Formed via resonance
 - $-50 \qquad 0 \qquad 50$

Oscillons in Three Dimensions

- Work in progress: Amin, Easther & Finkel
- 3D approximate generalizations of 1D analytic results
- Questions:
 - Math: do solutions *exist* in 3D, expanding background?
 - Physics: do oscillons form, given physical initial conditions?
 - Cosmology: can oscillons *dominate* early universe?
 - Inflation: which inflationary potentials lead to oscillons?
- Answers: YES, YES, YES, WORKING ON IT

Post-resonance iso-density surface. Standard parametric resonance.

Oscillon Formation (x2 Average Density) PSpectRe (256³ Simulation)

Summary...

- Post-inflation oscillon dominated phase possible...
 - Numerics here for sixth order potential
 - Truncated Taylor series for inflaton potential
 - Realistic scenarios will not match this idealized set up
 - But can produce "blobs" that are stable on timescales ~1/H
- Newtonian potential 0.001-0.01 for these objects
 - Not yet considering gravitational backreaction
4. What About Primordial black holes?

- Formed *after* inflation
 - If power spectrum rises at (very) short scales
 - Or nonlinear growth, or resonant growth?
- Contribute mass and radiation to universe
 - Constraints: BBN, microlensing, x-ray background, dark matter abundance.
- But very small PBH (~1gram) decay before BBN
 - Leaves no trace behind??

Anantua, Easther and Giblin

Hawking radiation

- Black hole radiates *all* "massless" states M << T_{BH}
 - Including gravitons
 - Quantum source of gravitational waves
 - Rough guess: g states; power in gravitational waves ~ 2/g
- With Anantua and Giblin (PRL, 0812.0825)
 - Grey body corrections in paper (not here).

Computational Strategy

• The evolution equations for the major constituents are:

$$\frac{d\rho_{BH}}{dt} = -3\frac{\dot{a}}{a}\rho_{BH} + \rho_{BH}\dot{M}_{BH}$$

$$\frac{d\rho_{rad}}{dt} = -4\frac{\dot{a}}{a}\rho_{rad} - \rho_{BH}\dot{M}_{BH}$$

$$\frac{\dot{a}}{a} = \left[\frac{8\pi}{3M_p^2}\left(\rho_{BH} + \rho_{rad}\right)\right]^{1/2}$$

• Once we know M(t) and a(t), we can calculate

$$\frac{dM_{BH}}{dt} = -\frac{g}{30,720\pi} \frac{M_p^4}{M_{BH}^2}$$

The GW Spectrum

• Number density of gravitons /unit frequency / unit time

$$\frac{dN(k)}{dt} = \frac{2g}{\pi} \frac{M_{BH}^2}{M_P^4} \frac{\tilde{k}^2}{a^2} \frac{1}{e^{\tilde{k}/(aT)} - 1}$$

• \tilde{k} is the comoving wavenumber.

$$\Omega_{gw}(f) = \frac{1}{\rho} \frac{d\rho_{gw}}{d\ln f}$$

An Example

Matter dominated Phase

- PBH-driven matter dominated phase
 - Matter perturbations will grow
 - PBH live for many Hubble times; can cluster...
- PBH radiate: "Hawking stars"
 - Clustering statistics unknown
 - Open problem
 - Related to inter-oscillon dynamics?

5. Initial conditions for inflation...

- Inflation sets initial conditions for hot big bang...
 - What what sets initial conditions for inflation?
- Worry about this at the homogeneous level:
 - Many fields (chaos), branes in bulk, compact dimensions (topology, # of dimensions)
- But what about at the inhomogeneous level?
 - Colliding bubbles, tuning of initial inhomogeneity

New Bubble Collision Mechanism

- Start in highest of three minima
- Nucleate two bubbles in the middle minimum

$$\phi = \frac{\phi_0}{\sqrt{1 + 2e^{-\sqrt{2\lambda}\phi_0^2(\rho - R_0)}}}$$

Two Bubbles

3D View

Consequences...

- Still working on this...
 - But new channel for bubble universe production
 - Just solving the Klein-Gordon equation (expanding background, assuming de Sitter for now)
- Implications for "exploring" the landscape?
- Can also worry about pre-inflationary dynamics in general
 - Even without tunneling (especially with coupled fields)
 - Chaos in systems with two or more fields?

6. The Morals of The Story

- Moral #1: Old models with rich new phenomenology
- Moral #2: General program understanding scalar field dynamics (post-inflationary physics, preheating and bubbles)
- Moral #3: Looking at/for signals that are still here today (even if they may be impossible to detect)
- Moral #4: We have to worry about this even in simple models
- Moral #5: Very little thought about *preinflationary* behavior
- Moral #6: Need this in post-inflationary equation of state ("theory error" on any model)