Inflationary Observables

Richard Easther (Yale University)

Concordance Parameters

h	Hubble's "constant"	When we are looking	
т	Reionization	First stars (gastrophysics, nuclear physics)	
Asz	Sunyaev-Zeldovich Amplitude	Scattering of photons by hot gas in clusters	
$\Omega_{ m b}$	Baryon fraction (Mass known, #??)	Baryogenesis (? - GUT, Electroweak?)	
$\Omega_{ m CDM}$	Dark matter (Mass ??, #??)	TeV Scale physics?? Supersymmetry? LHC?	
Ω_{Λ}	Cosmological constant	Quantum Gravity Magic?	
A _s ,n _s	Primordial Perturbations	Inflation GUT/string physics?	

Concordance Cosmology

- Requires initial perturbations
 - Does not say where these perturbations come from
 - Does not explain flatness, homogeneity etc.
- Previously we looked at the tree
 - Now we explore the roots.

Inflation...

- Standard cosmological paradigm
 - Early universe undergoes accelerated expansion
- High energy physics
 - Inflation not driven by standard model fields
 - Beyond Standard Model (e.g. ~TeV scale or above)
 - GUT scale, in many theories
- Sourced by matter with negative pressure

Inflation: Cartoon Version

Inflation: Cartoon Version

Perturbation Amplitude

- Scalar field in de Sitter space $\delta \phi \approx \frac{H}{2\pi}$ $H^2 = \frac{1}{3M_p^2} \left| \frac{\phi}{2} + V(\phi) \right|$
- Klein-Gordon equation in expanding background

•
$$\dot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi} = 0$$
 $H \equiv \frac{\dot{a}}{a} = \frac{d\log a}{dt}$

• Expansion (e-folds) N = log(a)

$$N = \int H dt = \int \frac{H}{\dot{\phi}} d\phi \Rightarrow \delta N \sim \frac{dN}{d\phi} \delta \phi = \frac{1}{2\sqrt{3}\pi M_p^3} \frac{V^{3/2}}{V'}$$

Density Perturbations

- If field jumps "uphill", inflation lasts a little longer
 - Inflation ends a little later, density a little higher: $\delta N \sim \delta \rho / \rho$
 - Observations: $\delta \rho \sim 10^{-5} \rho$ in early universe.
 - Fixes inflationary scale (simple potentials; GUT scale)
- For simple potential $\delta \rho / \rho$ decreases (slowly) with time
- Metric perturbations / gravitational waves ~ H
 - Bound on gravitational wave background limits H (or ρ)

The Story So Far...

- Inflationary perturbations are a function of the potential
 - Minimal inflation: potential defines the model
 - Also kinetic term, coupling to gravity, other fields.
 - MANY inflationary models
- To make predictions we need relevant value of ϕ

Cosmological Horizon

- Key number: Hubble length: 1/H "Hubble horizon"
 - Modes with wavelength larger than 1/H do not evolve GR
 - Comoving wavenumber k
 - Physical wavenumber k/a (decreases with expansion)
- Mode "crosses the horizon" when $k = aH = \dot{a}$
 - Inflation: accelerated expansion modes leave horizon
 - After inflation: modes re-enters horizon
 - Long modes leave before short modes, re-enter later

The duration of inflation

What happens after inflation?

- During inflation universe cold
 - Almost (no) particles
- Successful inflationary model must reheat
 - Take energy from inflaton; convert to standard model states
 - Hard limit: must reheat by MeV scales (nucleosynthesis, ν)
 - But inflation (potentially) at GUT scales
 - Huge range of scales; largely unknown particle physics

Pivot Scale

Connecting measurements to model

Matching Equation

Matching Equation

$$\frac{k}{a_0 H_0} = \frac{k}{a_\star H_\star}$$

1

•
$$\frac{k}{H_0 a_0} = \frac{a_k H_k}{a_0 H_0} = \frac{a_k}{a_{end}} \frac{a_{end}}{a_{reh}} \frac{a_{reh}}{a_{eq}} \frac{a_{eq}}{a_0} \frac{H_k}{H_0}$$

•
$$N = \log \left[\frac{a_{end}}{a_{reh}} \frac{a_{reh}}{a_{eq}} \frac{a_{eq}}{a_0} \frac{H_k}{H_0} \right] - \log \left[\frac{k}{H_0 a_0} \right]$$

- Assume long matter dominated phase (GUT TeV)
 - $\Delta N \sim 9$; general equation of state, to MeV scale $\Delta N \sim 30$

Spectral Parameters

• Primordial spectrum specified by empirical parameter

•
$$P(k) = A_s \left(\frac{k}{k_0}\right)^{n_s(k)-1}$$

•
$$n_s(k) = n_s(k_0) + \alpha_s \log\left(\frac{k}{k_0}\right) + \cdots$$
; $\alpha_s \equiv \frac{dn_s(k)}{d\log k}$

- α is the *running*
- Typically $|n_s 1| \sim N^{-1}$, $log(k) \sim N$, $\alpha \sim -N^{-2}$, $10^{-3} > |\alpha| > 10^{-4}$
- Can only be detected with very futuristic experiments

Running: Simple V(**\$**)

- Green: Natural inflation
 - $\Lambda^4 [\cos(\Phi/f) + 1]$
- Red: Single term
 - λΦ^p
- Purple: Hilltop
 - Λ^4 $\lambda \Phi^4$
- Blue: Inflection
 - Λ⁴ λΦ³
- One parameter fixed by As

Given that n_s is a function of reheating...

- For specific inflationary model
 - Measure n_s and r accurately: $\Delta n_s = \alpha \Delta N \sim 0.005$
 - Constrain post-inflationary expansion
 - Constrain physics between TeV and GUT scales
- How well can we do this?
 - Mortonson, Peiris & RE [ModeCode] arXiv:1007.4205
 - Adshead, RE, Pritchard and Loeb arXiv:1007.3748

	Natural		ϕ^n	
	N	f	N	n
fiducial values	51	$\sqrt{8\pi}$	51	2
Planck	5.1	-	3.6	-
	-	0.33	-	0.25
	14.5	0.93	19.7	1.4
$+ \sigma_r = 0.01$	3.5	0.26	8.6	0.41
CIP+Planck	1.69	-	1.2	-
	-	0.11	-	0.09
	13.7	0.87	14.5	1.14
$+ \sigma_r = 0.01$	2.8	0.18	3.96	0.27
FFTT+Planck	0.41	-	0.29	-
	-	0.027	-	0.024
	7.0	0.45	11.0	0.91
$+ \sigma_r = 0.01$	2.5	0.17	2.95	0.24

Forecasts for Future Experiments

W. Adshead, Pritchard and Loeb

Waiting for Thermalization

- In simple models, thermalization is *naturally* slow
 - Inflaton self-coupling small (to protect slow roll)
- Consequently: inflaton weakly coupled to other fields
 - To protect inflaton self-coupling from loop corrections
 - Tree-level particle production inefficient
 - Also need to look at growth of inhomogeneities
- Some models: parametric resonance, rapid thermalization

Parametric Resonance: Quick Sketch

$$\mathcal{L} = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi + \frac{1}{2}\partial_{\mu}\chi\partial^{\mu}\chi - \frac{1}{2}m^{2}\phi^{2} - \frac{g^{2}}{2}\phi^{2}\chi^{2}$$

- φ is the inflaton field
- χ is a (massless) field coupled to the inflaton
 - Perturbations in χ , canonically quantized

$$\ddot{\chi}_k + 3H\dot{\chi}_k + \left(\frac{k^2}{a^2} + g^2\phi^2\right)\chi_k = 0$$
$$\hat{\chi}_k = \frac{1}{(2\pi)^{3/2}}\int d^3k \left(\hat{a}_k\chi_k(t)e^{-i\mathbf{k}\cdot\mathbf{x}} + \hat{a}_k^{\dagger}\chi_k^{\star}(t)e^{i\mathbf{k}\cdot\mathbf{x}}\right)$$

Moduli Domination

- SUSY moduli
 - Weakly coupled, masses ~ 10⁹ GeV
 - If universe thermalized early, produced naturally
 - Decouple as universe expands
 - Analogous to dark matter in present universe
- Must decay before nucleosynthesis
 - Puts constraints on parameter space
 - Or removed by thermal inflation (Stewart and Lyth)

More Exotic Scenarios

- Temporary cosmic string domination
 - String network has negative pressure
 - Density ~ a⁻²
- Kination phase dominated by scalar field kinetic term
 - Density $\sim a^{-6}$
- Thermal inflation short period of secondary inflation
- Best approach (?) an effective (average) equation of state
- KEY MESSAGE: CANNOT ASSUME THERMALIZATION

What Does This Mean...

- Interpretation is subtle
 - We do not probe reheating (>TeV scales) on its own
 - We do not probe inflation on its own
 - Inflation and reheating history are now *linked*
- Given assumptions about reheating (e.g. rapid thermalization)
 - We can test *specific* inflationary models (and *vice versa*)
- Different inflation models require different reheating histories
 - Any hint about beyond TeV scale physics is worth having!

Other Inflationary Observables

- I have focussed on the power spectrum
 - And simple inflationary models
- Power spectrum is the inflaton 2-point function
 - To lowest order, perturbations are Gaussian
 - (2n+1)-point zero, (2n)-point known from 2-point
- But perturbations couple in early universe
 - Gravitationally, and field-field in multi-field models

Non-Gaussianity

- Gaussianity:
 - $<\Delta T > = 0$ (definition)
 - $<\!\!\Delta T^2\!\!> \sim 10^{-9}$
- Is ΔT Gaussian?
- $\Phi = \Phi + f_{NL} \Phi^2$ (local)
 - -9<f_{NL}<80 (WMAP7)
- Planck will improve bound
 - $f_{NL} \sim O(10)$ observable?
 - Test for violations of slow roll

Summary

- Have given broad overview of concordance cosmology
 - Focussed on results
 - And implications for particle physics
- Cosmology is becoming a data-driven science
 - Early universe cosmology *driven* by high energy physics
 - Implications for neutrino sector
 - TeV GUT scale physics
 - Plus dark matter, baryogenesis, dark energy.

Very early this morning...