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Concordance Parameters

h Hubble’s “constant” When we are looking

τ Reionization
First stars (gastrophysics, nuclear 

physics)

ASZ
Sunyaev-Zeldovich

Amplitude
Scattering of photons by hot gas 

in clusters

Ωb
Baryon fraction

(Mass known, #??)
Baryogenesis

(? - GUT, Electroweak?)

ΩCDM
Dark matter 

(Mass ??, #??)
TeV Scale physics??

Supersymmetry? LHC?

 ΩΛ Cosmological constant
Quantum Gravity

Magic?

As,ns Primordial Perturbations
Inflation

GUT/string physics?



Concordance Cosmology

• Requires initial perturbations

• Does not say where these perturbations come from

• Does not explain flatness, homogeneity etc.

• Previously we looked at the tree

• Now we explore the roots.



Inflation...

• Standard cosmological paradigm

• Early universe undergoes accelerated expansion

• High energy physics

• Inflation not driven by standard model fields

• Beyond Standard Model (e.g. ~TeV scale or above)

• GUT scale, in many theories

• Sourced by matter with negative pressure 



Inflation: Cartoon Version



Inflation: Cartoon Version
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Perturbation Amplitude

• Scalar field in de Sitter space  

• Klein-Gordon equation in expanding background

•  

• Expansion (e-folds)  N = log(a)
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Density Perturbations

• If field jumps “uphill”, inflation lasts a  little longer

• Inflation ends a little later, density a little higher: δN ~ δρ/ρ

• Observations: δρ ~ 10-5ρ  in early universe.

• Fixes inflationary scale (simple potentials; GUT scale)

• For simple potential δρ/ρ decreases (slowly) with time

• Metric perturbations / gravitational waves ~ H 

• Bound on gravitational wave background limits H (or ρ)



The Story So Far...

• Inflationary perturbations are a function of the potential

• Minimal inflation: potential defines the model 

• Also kinetic term, coupling to gravity, other fields. 

• MANY inflationary models

• To make predictions we need relevant value of  ϕ



Cosmological Horizon

• Key number: Hubble length: 1/H  “Hubble horizon”

• Modes with wavelength larger than 1/H do not evolve

• Comoving wavenumber k

• Physical wavenumber k/a   (decreases with expansion)

• Mode “crosses the horizon” when 

• Inflation: accelerated expansion - modes leave horizon

• After inflation: modes re-enters horizon

• Long modes leave before short modes, re-enter later

k = aH = ȧ

GR



Solves cosmological problems if 
radius of universe expands by 
50-60 “e-folds” during inflation

NH = ln

(

aRH

aH

)

! 50 − 60

The duration of inflation
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What happens after inflation?

• During inflation universe cold

• Almost (no) particles

• Successful inflationary model must reheat

• Take energy from inflaton; convert to standard model states

• Hard limit: must reheat by MeV scales (nucleosynthesis, ν)

• But inflation (potentially) at GUT scales

• Huge range of scales; largely unknown particle physics



Pivot Scale

Observable parameters 
are a function of scale! 
e.g. nS[k(Nefold)]
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Connecting measurements to model

Reheat temperature can vary 
from GUT scale (1015 GeV) to 
nucleosynthesis scale (1 MeV)!

Resulting uncertainty in 
predictions at a given “pivot”
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Matching Equation
k
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General: a-2 > ρ > a-6 



Matching Equation

• Connects horizon entry and exit

•  

•   

• Assume long matter dominated phase  (GUT - TeV)

• ΔN ~ 9; general equation of state, to MeV scale ΔN ~ 30
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Spectral Parameters

• Primordial spectrum specified by empirical parameter

•   

•  

• α is the running

• Typically |ns -1| ~ N-1, log(k) ~ N, α ~-N-2, 10-3 >|α| >10-4

• Can only be detected with very futuristic experiments
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Running: Simple V(ϕ)

• Green: Natural inflation 

• Λ4 [cos(Φ/f) + 1]

• Red: Single term

• λΦp

• Purple: Hilltop

• Λ4  - λΦ4

• Blue: Inflection

• Λ4  - λΦ3

• One parameter fixed by As
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Given that ns is a function of reheating...

• For specific inflationary model

• Measure ns and r accurately: Δns = α ΔN ~ 0.005

• Constrain post-inflationary expansion

• Constrain physics between TeV and GUT scales

• How well can we do this?

• Mortonson, Peiris & RE [ModeCode] arXiv:1007.4205

• Adshead, RE, Pritchard and Loeb arXiv:1007.3748



Spectral Index v. 
Tensor  amplitude
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Constraints for 
Quadratic Inflation

Peiris, Mortonson, Easther

Grey -- WMAP7 (data)
Blue -- Planck (simulation)



Forecasts for Future 
Experiments

W. Adshead, Pritchard and Loeb



Waiting for Thermalization

• In simple models, thermalization is naturally slow

• Inflaton self-coupling small (to protect slow roll)

• Consequently: inflaton weakly coupled to other fields

• To protect inflaton self-coupling from loop corrections

• Tree-level particle production inefficient

• Also need to look at growth of inhomogeneities

• Some models: parametric resonance, rapid thermalization



• φ is the inflaton field

• χ is a (massless) field coupled to the inflaton

• Perturbations in χ, canonically quantized
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Moduli Domination

• SUSY moduli

• Weakly coupled, masses ~ 109 GeV

• If universe thermalized early, produced naturally

• Decouple as universe expands

• Analogous to dark matter in present universe

• Must decay before nucleosynthesis

• Puts constraints on parameter space

• Or removed by thermal inflation (Stewart and Lyth) 



More Exotic Scenarios

• Temporary cosmic string domination 

• String network has negative pressure

• Density ~ a-2  

• Kination - phase dominated by scalar field kinetic term

• Density ~ a-6

• Thermal inflation - short period of secondary inflation

• Best approach (?) an effective (average) equation of state

• KEY MESSAGE: CANNOT ASSUME THERMALIZATION



What Does This Mean...

• Interpretation is subtle

• We do not probe reheating (>TeV scales) on its own

• We do not probe inflation on its own

• Inflation and reheating history are now linked

• Given assumptions about reheating (e.g. rapid thermalization)

• We can test specific inflationary models (and vice versa)

• Different inflation models require different reheating histories

• Any hint about beyond TeV scale physics is worth having!



Other Inflationary Observables

• I have focussed on the power spectrum

• And simple inflationary models

• Power spectrum is the inflaton 2-point function

• To lowest order, perturbations are Gaussian

• (2n+1)-point zero, (2n)-point known from 2-point

• But perturbations couple in early universe

• Gravitationally, and field-field in multi-field models



• Gaussianity:

• <ΔT> = 0 (definition)

• <ΔT2> ~ 10-9

• Is ΔT Gaussian?  

• Φ = Φ+fNLΦ2 (local)

• -9<fNL<80 (WMAP7)

•  Planck will improve bound

• fNL ~ O(10) observable?

• Test for violations of slow roll

Non-Gaussianity



Summary

• Have given broad overview of concordance cosmology

• Focussed on results

• And implications for particle physics

• Cosmology is becoming a data-driven science

• Early universe cosmology driven by high energy physics

• Implications for neutrino sector

• TeV - GUT scale physics

• Plus dark matter, baryogenesis, dark energy.



Very early this morning...


