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1. Motivation



¢ A Candidate for Beyond Standard Model
— Minimal Supersymmetric Standard [Viodel ( )

Y¢ A Generic Renormalizable Superpotential
from Gauge Invariance

Waeneric = Wynssy + War=1 +Wap=1

Wrrssym = yuuQHy — ydC?QHd —yeeLHy+ puHyHg

War=1 = ANIRLLiE, + NIELQ ), 4 1L Hy 1

Wap=1= 3\"*4;d;d,

[ Dangerous Operators! J

A Solution: Matter-parity (or R-parity)

Impose Py, = (—1)3(B-L) symmetry



O Running gauge couplings of MSSM indicate
that three gauge couplings will meet at 2 X 10'¢ GeV

— Grand Unified Theory ( )

v Matter Contents
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Y¢ Gauge Invariant Renormalizable Superpotential

Waur O yul0p100/574+yq5310355 w
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Y
Necessary Yukawa interactions

Dim-4 Proton
Decay Operators!



O For prohibiting dimension-4 proton decay operators,
it is important to distinguish ...

Cowon ]

like a matter parity.

Therefore, it is natural to ask,
“What is the origin of such a kind of symmetry ?”

Since string theory is a candidate to describe high energy
physics, we may rephrase it as
“How is that symmetry achieved in string theory?”



2. String Vacua For GUT



{ What Vacua is suitable for describing GUT ? ]

O Requirements: (i) N =1 supersymmetry
(ii) all the necessary Yukawa Couplings
(iii) decoupling gravity from gauge theory

Heterotic
SO(32)

Heterotic




Type IIB/IIA String Vacua

O Coincident D-branes can be used for the construction of
supersymmetric (S)U(5) models
O-plane D-brane
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5
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| [ \/ /
\/ 5 D-branes
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However, we cannot get ¥u,ij10%7 ;1057 :5%€abcde !

Type 1-SO(32) and Heterotic SO(32) string theory also cannot
generate the above up-type Yukawa couplings.



Heterotic Eg X Eg String Vacua
O Heterotic string has an E; X E, gauge symmetry and
then we can generate all the necessary Yukawa Couplings.

However, there is another issue.

v 4d Effective Lagrangian
Lag = — fd4:1:\/_—ge_Q‘f’V(ﬁR—l—ﬁgter—l—...)

B 62¢(al)4
Gy = 647V acuTe
‘ Gr =
82¢(al)3 N 4

OGUT = gy

We cannot decouple gravity with the GUT gauge
coupling constant fixed.

+ There is a no known mechanism to stabilize all the moduli
in Heterotic String, although this is a technical difficulty.



In fact, F-theory can generate all the Yukawa couplings
and also decouple gravity from gauge theory.




3. F-theory Model Building



What is F-theory?

F theory ~

(Vafa ‘96)

We compactify Type |IB string theory on a background
where complex coupling constant 7 = Cg + ie~? s
NOT constant, but is holomorphic.

‘ We get N=1 4d effective theory.
(NOT N=2 like CY, compacitifcations)

T has SL(2, Z) symmetry in Type |IB string theory,
so, we can think of T as compex structure of torus.




% Therefore, we can think of the background as T2-fibration
over 6 dimensional manifold whose torus shape is
different from place to place.

Y% A sketch of an internal manifold

torus

f Singular torus ‘

@ & 2dim

Not CY, <6dim| B




[ What is happening when a fiber is singular? J

At a singular point z, 1

complex structure behaves as 7(z) ~ 9 In(z — 2;)

So, when circling around z = z, T undergoes monodromy.

T—>7174+1 (ie.Co— Co+1)

C, is a magnetic charge of D7-brane,
So, we deduce that there is a D7-brane at z = z|

z = z;is a (complex) codimension 1 subspace of 6-dim mfd.
So, the dimension of the branes should be 1+3+(6-2)=1+7.
This is consistent with the dimension of D7-branes.



o cycle

([1,0] 7-brane

0|1|2|3 4|5|6|7 8|9 10|11
R* S z, Z torus
R* B torus
7-brane | X | X | X | X
pa+qfB cycle

B cyc
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¢ A [p, q] 7-brane is a 7-brane on which a (p, q) string ends.
A (p, q) string is a bound state of p fundamental strings
and q D1-strings. Gaberdiel, Zwiebach 97

i.e. (g Z)((l)):(g) 8p,q=(§ Z)ESL(Z,Z)

(i) Monodromy around a D7-brane ([1, O] 7-brane)

D7-brane




(1n)(51)=(1 m+1)=(1 )

Mi,o Monodromy matrix of 7-brane

(e m) (o 1) =(ar avtan)=(on sn)

¢ Transformation of (p, q) string
(p, q) string > pa+gP cycle

(g 6R)(§§) = (o ,81,)(
= (aL 5[,)(

=> ()=o) (%)

) (2)
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Ex. D7-brane & Fundamental string
1) (11 1) (1
0] 01 o/ \O

(ii)) Monodromy around a [p, q] 7-brane

P\ _ p 1 1
(q)—Mp,q(q) ﬂgp,q(o):Mp,qu,q(o)
1



Y¢ A[p,q] 7-brane has a branch cut which changes
the charge of a (r, s) string.

1
r (r, s) string
Mp,q ( ) ) /—‘:\(\
[

, String creation
O % [p, q] 7-brane
[p, q] 7-brane & (ps . QT) ( ]C; )

()= (1) (5) |0

String junction

Y¢ By using string junctions, we can generate Eg ¢ algebras !



EX. E6 - A>BC? Gaberdiel, Zwiebach '97
Es — SU(5) x SU(2) x U(1)

78 — (24& I)U + (1& I)U + (1& 3)0 + (10: 2)—3 + (1_0:- 2)3 + (5} 1)—6 +
| | |

| |

l

[ [

A?5 X A?5 5 A5~ 5

E. algebra 1, 0]-brane (A-brane)

1, -1]-brane (B-brane)
1, 1]-brane (C-brane)

(10}2)_3 X (10, 2)_3 — (5, 1)_5

10 @




¢ In M-theory, a (p, q) string can be thought as a M2-brane.

52

M?2-brane

In order to obtain a gauge symmetry, i.e. massless gauge fields,
the length of a (p, q) string, i.e. the size of a 2-cycle where an M2
-brane wraps should vanish.



O Therefore, a gauge symmetry is realized as a collection of
vanishing 2-cycles where each 2-cycle represents a simple
root of the corresponding Lie algebra.

Ex. Eg (A’BC?)

A7 A6 Abd

A4 A3 A2 AT B C1 cC2

[1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,-1]1[1,1] [1,1]

CA7GCA650A54CA43CASJCA2{ i 50012

—

CABC

A7

A6 A A4 A3 A2 At B C1 C2

[1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1,0] [1-1]1[1,1] [1,1]

CA76 CA65 CA54CA43CA32 Cci2

‘ CaBC

intersection form Coon

e

\

The vanishing of those
kinds of 2-cycles is called
ADE singularity

_/

Co Caze Cass Casa Casz Cazz Cage Cen

A= SU(n+1), D, - SO(2n), E, E-, E,



— Surface Singularities

2 dim > e @
| <& 4dim

' ¥y Focus here to
extract gauge theory
6dim = © & 4 dim

Ex. SU(5)
5 D7-branes <> A, singularity
[4 vanishing 2-cycles]

[ Gauge Symmetry in F-theory ]

elliptically-fibered
surface




Elliptically-fibered Calabi-Yau 4-fold equation
y2 =23+ fr+g
f, g are sections of Ky, Kg™®
The location of the 7-brane <= 1-cycle of torus shrinks
A =4f3427¢% =

O Tate form  Bershadsky, et al ‘96

y? + Arzy + Azy = 23 4 Aga? + Agz + Ag

a. is a section of K
Ex. A, (SU(5)) singularity at z=0

Al =as, Ay = zay, As = 2%a3, Ay = 23aq, As = 2°ag
‘ A = 2°(do(s1,52) + di(s1,82)z + da(s1,52)2% + O(2?))
M 5 7-branes are located at z=0

do(s1,82) =0 ‘ Intersection of other 7-brane



Ex. SU(5) GUT : Up-type Yukawa couplings

Donagi, Wijnholt 0802
Beasley, Heckman, Vafa 0802
H.H. et al 0805

E singularity

A, singularity A singularity

5 4+ 5 matters)

(10105 Yuka

(SU(5) gauge symm

SU(6) 5 SU(5): 35 — 24 + 145 + 5
SO(10) o SU(5): 45 — 24 + 1 +




Chiral matters < turning on G-flux

The number of massless matter can be counted by Hodge
number with geometric data on matter curves and G-flux.

Therefore, it is enough to concentrate on the 2-cycles which

vanishes somewhere on the surface S in order to extract the

Information of matters and Yukawa couplings in GUT models.
- “(Semi-)Local Model Building”

1 x Beasley, Heckman, Vafa 0802, 0806

KO

O
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After focusing on relevant “small” 2-cycles, those 2-cycles just

form ADE dynkin diagrams.

Ex. SU(5) up-type Yukawa case
E¢ — Ds

Es = Aq O'z” s Ec— As

Ose

From the effective field theory on 7-brane point of view,

this can be captured by gauge
symmetry breaking by the VEV of adjoint-valued fields which
corresponds to normal modes of 7-branes.

The VEV of the adjoint Higgs fields varies over the surface S



O 8D gauge theory with varying VEV of adjoint Higgs fields
> ”Higgs bundle” H.H. et al 0901
Ex. Eg Higgs bundle (E; D SU(5) X (U(2)))

(O?m)mg'")@(w)

= 5ot

(o) = s1t1
E, > SU(6)

!
!

p) =0

/]\ S E. unbroken

(p) = s1t1 + s2t2l

(t, and t, are Cartan generators of U(2)) $'=0
=

Matter wave function localizes here
like the domain wall fermions.



¢ Necessary Ingredients for SU(5) GUT
(i) Up-type Yukawa Couplings - E¢ Singularity .
(ii) Down-type Yukawa Couplings = D¢ Singularity ’

Eg
D¢

We need at least E-, Higgs bundle. .“;.'

O Maximal one is an E; Higgs bundle.
In case of E; Higgs bundle model, the adjoint Higgs fields
take values at SU(5),,,.n @and the space which their
eigenvalues sweep is called “spectral surface”.

E8 - SU(S)GUT X <SU(5)broken >

det(élsxs — (©)) = agt® +ané3 +aze? +asé +as =0



4. Dimension-4 Proton Decay Problem
in F-theory



¢ As an ordinary SU(5) theory, this SU(5) GUT local model also
suffers from the dimension-4 proton decay problem.
Therefore, we need to distinguish 57 <> 517 .

¢ Proposed Solutions so far

(i) to consider a global compactifications with Z, symmetry
Tatar, Tsuchiya, Watari 0905

H.H. et al 0910

(ii) rank5- GUT Scenario with U(1) Flux

Tatar, Watari 0602

Tatar, Tsuchiya, Watari 0905
Marsano, Saulina, Schafer-Nameki 0906
... etc

> (iii) factorized spectral surface scenario

((iii)* spontaneous R-parity violating scenario )

Tatar, Watari 0602
Tatar, Tsuchiya, Watari 0905
Blumenhagen et al 0908

Today’s Talk target



O Set up: Eg D SU(5)5ur X (SU(5)40ken )
Adjoint Higgs fields take values at SU(5),,,..n @and we naively

expect SU(5)g, 7 X U(1)* gauge symmetry on the surface S.
However, those U(1)* generators are acted by the Weyl

group Sc C SU(5),,0ken @Nd no U(1) symmetry is left in general.
Ex. Monodromy of Rank 2 Spectral Surface (SU(2))

ag(det(€lnxo — (¢))) = a2 +ax =0 — §==,/32

@, @2,
(p(s1,82)) = SO @ - ( go @ )
ap a,O

Y=y

a,(s,, s,)=0



Therefore, it is important to reduce the monodromy for
unbroken U(1) symmetry.

Marsano, Saulina, Schafer-Nameki 0906

Y¢ Factorized spectral surface scenario:
Use an U(1) symmetry generated by reducing monodromy

Ex. (4 + 1) Factorization ( S(U(4) X U(1)))

ap€> +ax83 +azé?+asé+as # (co€* 4 c1€3 + 262 + 36 + ca)(doé + d1)
Weyl group Weyl group

S — S4

Then, there seems to be one U(1) symmetry which might be
useful for prohibiting dimension-4 proton decay operators.



O We consider global E, Higgs bundle with (4+1) factorization.

Adj Eg - SU(5)gur X SU(5)p,0ren
248 — (24,1) + (1,24) + (10,5) + (5,10) + (10,5) + (5, 10)

Ex. [(4+1) factorization] SU(5),,oken = S(U(4) X U(1))

(10, €) (i=1, ..., 5) { ggm, Ea)g(f):\=1,---,4)
otherr 55

(5,6+) (i<il=1,..,5) e o e

(€.: fundamental weights of SU(5),,.rer)

Matter | 1057 | 10other | 507 | 51 |
'U(1) charge| 1 | -4 | -3 | 2 |

W41y~ 100/10355+5310055+100ther5H5H

[ No 5,/10)5) terms! |




Two Caveats

H.H. et al 1004

O Factorized spectral surface scenario seems work well
at first sight. However, there are two caveats.

(i) Higgs bundle itself is an approximate description which
captures the low energy physics of F-theory.
Since the prohibition of proton decay operators requires
very high accuracy, we need to know whether an
approximation does not hurt an U(1) symmetry.

(i) When a,~0, the two roots of spectral surface equation
run off to the infinity. This indicates that global Eg; Higgs
bundle description fails around a,~ 0. We have to make
sure that dimension-4 proton decay operators are
forbidden around the region.



3¢ In order to see whether there is indeed an unbroken U(1)
symmetry with high precision, we have to go back to the
origin where an unbroken U(1) symmetry comes.

> Remember that a gauge field comes from an M2-brane
which wraps a “globally well-defined” 2-cycle.

X Not globally well-defined 2-cycle monodromy
DOQ(’ X

! 1

; s & 5

l




Y¢ Since Higgs bundle configuration only cut off the relevant
2-cycles for GUT model building, it may misses some
monodromy contribution which, by nature, is a global effect.

Therefore, in order to ensure an unbroken U(1) symmetry,
we have to look for a monodromy invariant 2-cycle by
considering a global compactification structure.

O The Method for the Analysis
(i) consider a global defining equation of CY,
(For simplicity, we use K3-fibered CY,)
(ii) identify the 2-cycles of a K3 surface from the defining
equation of CY,
(iii) Trace the movement of fibered 2-cycle when we we
go around a monodromy point of a base surface S




(i) Set Up

H.H. et al 1004

v Eg > Eg X (SU(3) ) Example

Rank 3 Spectral Surface ao&3 + asé +a3 =0

Elliptic-fibered CY, with E; singularity at z=0
y? = 2% + (a22® + foza)z + (7032* + aozs + goze + af2")

(a0,2,3, fo. 90, a$ are sections over S )

The dependence of spectral surface parameters on the defining

equation of CY, can be read from Heterotic-F theory Duality.

Berglund, Mayr ‘98
Donagi, Wijnholt 0802
H.H. et al 0805



(ii) Identifying 2-cycles

We are now considering an elliptic-fibered K3 surface.

A K3 surface has 22 2-cycles in general. Two of them are
now an elliptic-fiber and a zero section, which is not relevant
in the present discussion. So, we need to indentify 20 2-cycles.

Q Intersection form of an elliptically- fibered K3 surface

1 0

0 0 0 )
¢‘ a-(27)

—
OOO-@

\

2-cycles which correspond
to simple roots of E; X Eg other 2-cycles
|

a zero section

L@)ﬁ— an ellipric-fiber and

1

relevant for U(1) gauge fields (20 2-cycles)



It is important to note that all those 20 2-cycles are NOT
globally well-defined 2-cycles when we fiber a K3 surface
over an surface S because of the monodromy.

¢ An easy example

—
G D &S
Monodromy of 2-cycles ¢ The Change of the locations of 7-branes

C1=C14Ch, Cor=-Cs



Remember that the location of [p, q] 7-branes are where a
1-cycle of a torus degenerates and it can be computed from

the discriminant.
| |
F G

A =4F3 4+ 27G2 = z8><fdegree 6 polynomial) A
8 7-branes at z=0 P 6 other 7-branes
(E¢ singularity) at z=z, (i=1,..,6)

™

This degree 6 polynomial governs the movement of
7-branes and it also induces the monodromy of
(p, q) strings which end on the 6 7-branes.

J

24-8-6=10 7-branes are concentrated at z=o< and it generate
Hidden Eg singularity.



A schematic picture of our model

>[10@

1, O]-brane (A-brane)
1, -1]-brane (B-brane)
1, 1]-brane (C-brane)
3, 1]-brane (“D”-brane)




(iii) Monodromy of 2-cycles

Y¢ 8D Gauge Theory Region
First, we concentrate on the region which (semi-) local model

building is concentrated on. This is achieved by the following

scaling. apg = agQ,«€n, a2 = agj*e%eq, a3z = &3,*6%{67]

with |ars] ~ O(1), 0# |eg| << 1, 0% |ey| < 1

The locations of 6 7-branes

A £
. This part consists of Eg
O(ek € p) :
7-branes and is what we
—\ :
e | @ capture by Higgs bundle

» >

YA Y:



O Monodromy in the 8D gauge theory region
In Higgs bundle description, we only take the leading behavior
of discriminant locus.

8D gauge theory region
(degree 6 polynomial) > 2fa% + (4agag + 4a3)z + 27a32?

1

Monodromy locus A’ ~ 4a3(27aga3 + 4a3) =0

a,, a;=constant slice
L2 «

Y 0-0

p(V0—out) = WC’A76
p(v0—9) ~ Wc_,

Y 0-out

A
*&—

o EEE) S, C SU(3)



O Monodromy in the 8D gauge theory region
with (2+1) Factorization

ag€3 + axé + az = (co€? + c1€ + ¢2)(doé + d1)

—> ap = ¢}
ap = cgdy+cdo=0 & ap = cocp — c%
— dg =cg, d1 = —c3 a3 = —cico
A~ 08(40002 - C%)(COCQ + c%)2
A L.
p(vo-sc) = We,ret+c_y
p(vo-pB) = P(Yo—out)® = id
p(0—0) = p(v0_g)? ~id

m=) 7, C SU(3)

Factorization really reduces ]

monodromy “approximately”




O “Full” Monodromy without factorization

We explore into the region a; .~ | ,|* .To make the analysis
easier, we stay within the region a,” ~O(e,).

A £

O( 4 K6£ ni € K6£ n><(1/a0;e)2)

PN

¢, <j Eg 7-bra;1es

ol
4 7-branes > >

DA @ Ee

\/_/ O(e f?-])

O(E nX dg*, € ”X aor*) /\
. r

We include the movement of 4 7-branes, two of which are
missed in 8D gauge theory description.




A = 4F3 4 27G? = 28x(degree 6 polynomial)

ag+~ | ggl?

degree 4 polynomial (4 7-branes)

“Full” Modnoromy locus

({1 8D gauge theory region)
Lo +

Instead of Y, o, we have
New three other loops Y, 45 ¢!

Y 0-6

The monodromy of these
loops mix the 2-cycles within
E; with the ones without Eg!



O “Full” Modnoromy with factorization
“Full” monodromy locus

({1 8D gauge theory regEn)

(I) CO-DB SplltS into two CO—DBl’z

p(vo-sa) = We,ret+0_y p(ro-sq) = Wo,etc,
. 1,2 . _
p(v0-pB) = P(Y0—out)® = id mm p(75 pg) = P(V0—out) = W a6
p(v0—0) = p(vo_g)? ~ id
p(Y0-saG)

(18D gauge theory region) 1,2 S; ' SU(3)

p(’YO—DB)



“Full” monodromy locus
({1 8D gauge theory regigp)

(i) New 6 cy,5¢"* points

p(v0-0) = p(v0_g)° ~ id mEp P(W’o 456)

p(0-sc) = We ety —>mix the 2-cycles within Eg

p(o—pB) = p(Yo—out)® = id with the ones without Ej!
(18D gauge theory region)

Even after factorization, monodromy is NOT reduced.
i.e. NO UNBROKEN U(1) SYMMETRY!




5. Conclusion

We revisited the dimension-4 proton decay problem in F-
theory and found that a supposed unbroken U(1) symmetry in
a simple factorization limit is indeed broken.

To avoid the problem, we need to tune more parameters of
the internal space of compacitification.

Discussion

Although we show that dimension-4 proton decay operators
are likely to be generated in a factorized spectral surface
scenario, it is interesting to compute the coefficients of those

operators. There may be a chance to suppressed the dangerous
operators



