Numerical study of Q-ball formation in gravity mediation

Takashi Hiramatsu
Yukawa Institute for Theoretical Physics (YITP)
Kyoto University

COLLABORATION WITH
Masahiro Kawasaki (ICRR)
Fuminobu Takahashi (IPMU)
Masahide Yamaguchi (TITech)

TH, Takahashi, Yamaguchi, in preparation
Affleck-Dine mechanism

- Affleck-Dine field parametrising “flat directions”
 - In MSSM, there are a large number of fields like quarks, leptons, gauges, Higgs, and their superpartners.

\[
H_u = \begin{pmatrix} 0 \\ \Phi \end{pmatrix}, \quad L = \begin{pmatrix} \Phi \\ 0 \end{pmatrix}, \quad F = D = 0 \quad \therefore \quad V(\Phi) = 0
\]

- Global U(1) symmetry conserves baryon/lepton number

\[
n_{B,L} = i \beta (\Phi^* \dot{\Phi} - \Phi \dot{\Phi}^*)
\]

- Dynamical generation of baryon/lepton number
 - Soft SUSY terms and non-renormalisable terms lift the potential, driving Φ toward the origin
 - A-term like $\Phi^n + \Phi^{*n}$ kicks Φ to an angular direction

Affleck, Dine, NPB (1985)
Dine, Randall, Thomas (1996)
Scalar field with global U(1) charge: \(\mathcal{L} = |\partial_\mu \Phi| - V(\Phi) \)

If \(\frac{V(\Phi)}{|\Phi|^2} \) has a minimum for \(\Phi \neq 0 \), non-topological soliton with a given charge, \textit{Q-ball}, exists

In cosmological context,

- dark matter candidate
- baryon/lepton number inside Q-balls protected from spharelon process
- decay rate, evaporation rate, etc.

\textit{crucially depends on charge}

Numerical study of \textit{Q-ball} formation in gravity mediation
Field equation and potential of Affleck-Dine field in gravity mediation

\[\ddot{\Phi} + 3H \dot{\Phi} - \frac{1}{a^2} \nabla^2 \Phi = -V'(\Phi) \]

\[V(\Phi) = m^2 |\Phi|^2 \left[1 + K \log \left(\frac{|\Phi|^2}{M_*^2} \right) \right] - cH^2 |\Phi|^2 + (\text{N.R.}) \]

1-loop correction from gauginos

\[K = -0.1 \sim -0.01 \]

Enqvist, McDonald, PLB(1998)

\[\frac{V(\Phi)}{|\Phi|^2} \text{ has a minimum at } \Phi \neq 0 \]

Hence this system has Q-ball solution
Numerical setup

Initial condition
(situation after starting to rotate in the phase space)

\[
\Phi_{in} = M_*, \\
\dot{\Phi}_{in} = i m M_* \epsilon
\]

adding small fluctuations as seed of Q-balls

\[
\left| \frac{\delta \Phi}{\Phi} \right|_{in} = O(10^{-7})
\]

Kasuya, Kawasaki, PRD (2000)

6th-order symplectic integrator by Yoshida (time) + finite difference (space)
(supported by Aphrodite code)

Regarding a region where \(|q(t, x)| > q_c\) as a Q-ball with \(q_c = q(t_{form})/5\)
Numerical study of Q-ball formation in gravity mediation

Result: 2D

\[\epsilon = 1 \]

\[N = 512^2 \]
Result: 3D

$N = 128^3$

charge density

Filaments

Enqvist, et al., PRD(2001)
Multamaki, Vilja, PLB(2002)
Result: 3D

$N = 128^3$

charge density

Large Q-balls at intersections

Numerical study of Q-ball formation in gravity mediation
Result: 3D

\[N = 128^3 \]

charge density

Torn to small pieces
Result: 3D

\[N = 128^3 \]

charge density

Relaxation

Numerical study of Q-ball formation in gravity mediation
Results: charge distributions

\[f_{NQ} = aQ^b e^{-cQ^2} \]

\[a = 71.2, b = 1.29, c = 1.86 \times 10^3 \]

\[Q_{\text{peak}} = 1.9 \times 10^{-2} |\Phi_{in}|^2 m^{-2} \]

\[\hat{Q} \equiv \frac{Q}{|\Phi_{in}|^2 m^{-2}} \]

~60% larger than existing result:

\[Q_{\text{KK}}^{\text{max}} = 1.2 \times 10^{-2} |\Phi_{in}|^2 m^{-2} \]

Kasuya, Kawasaki, PRD (2000)
Result: relations

\[\hat{Q} = 0.17 \hat{E}^{0.92} \]

\[\tau = 5000 \]

\[\epsilon = 1 \]

c.f gravity mediation: \(Q \propto E, \quad R \sim |K|^{-1/2} m^{-1} \)
Result: 2^{nd} stage formation in $\epsilon = 0.01$ case

Recall: $\Phi_{in} = M_*$, $\dot{\Phi}_{in} = imM_*\epsilon$

1$^{\text{st}}$ generation Q-ball: POSITIVE, EXCITED
2$^{\text{nd}}$ generation Q-ball: POSITIVE = NEGATIVE, mildly excited

Excited Q-balls release their excessive energy, producing negative Q-balls
Result: relations

\[
\begin{align*}
\Phi_{in} &= M_* \\
\dot{\Phi}_{in} &= i m M_* \epsilon \left\{ \frac{E}{mQ} \sim \frac{|\Phi|^2}{|\Phi|\dot{\Phi}} \sim \frac{1}{\epsilon} \ll 1 \rightarrow \frac{E}{mQ}\right|_{f_{in}} \sim O(10)
\end{align*}
\]
Result: charge distributions

For small ε, # of +/- Q-balls eventually become the same.

Peak charge of 1st-gen Q-balls scales as

$$Q \sim |\Phi \dot{\Phi}| \propto \varepsilon$$

The scaling becomes no longer valid for 2nd-gen Q-balls

cf. this scaling is broken down also in gauge mediation.

Kasuya, Kawasaki, PRD (2001)
Q-balls could be a promising source of GWs

- First numerical simulation: Kusenko et al.
 - Kusenko, Mazumdar, PRL (2008)
 - Kusenko, Mazumdar, Multamaki, PRD (2009)
- Analytical estimation with 'thermal-log term' contributions
 - Chiba, Kamada, Yamaguchi, PRD (2010)

Gravitational wave energy and spectrum

\[\rho_{GW} = \frac{1}{32\pi G} \langle \dot{h}_{ij} \dot{h}_{ij} \rangle \]
\[\Omega_{GW} = \frac{1}{\rho_c} \frac{d\rho_{GW}}{d \log k} \]

The basic structure of the spectrum is reflected by the existence of the filamentary structure before Q-ball formation epoch.
Energy spectrum at Q-ball formation epoch

\[N = 200^3 \]
\[\varepsilon = 1 \]
\[Lm = 1 \]

Numerical study of Q-ball formation in gravity mediation

\[\Omega_{GW} \left(|\Phi_{in}| / M_{pl} \right)^{-4} \]

GWs produced by the growth of filamentary structure
GWs produced by fragmentation

\[Q \text{-ball size} \]
\[k_Q \sim \sqrt{|K|} m \sim 0.3m \]
Box size effect

Numerical study of Q-ball formation in gravity mediation

Prediction of peak position seems robust

$\frac{k_{\text{peak}}}{m} \approx 0.06 \sim 0.07$

Peak appears at the scale that is several times larger than Q-ball size. Filaments may be crucial.

$N = 200^3$
$\varepsilon = 1$

$L = 2.0$

$L = 0.5$
Numerical study of Q-ball formation in gravity mediation

\[\varepsilon = 0.01 : \text{early time} \quad mt \leq 1000 \]

\[m t = 1000 \quad N = 200^3 \quad \varepsilon = 0.01 \quad L m = 1 \]
There are no significant change after the end of fragmentation process.
Numerical study of Q-ball formation in gravity mediation

Time evolution of amplitude for $\varepsilon = 0.01$

Even during the 2nd-formation epoch, we cannot observe extra production of GWs. 2nd-formation process is not so violent process.

$N = 200^3$
$\varepsilon = 0.01$

$k_{\text{phys}} = 0.06 \sim 1.2$
Difference between $\varepsilon = 1$ and $\varepsilon = 0.01$

In the case with elliptic orbit IC, the final GW amplitude is suppressed a bit.
Summary

- 3D simulations for Q-ball formation in gravity mediation.

- Charge distribution of Q-balls
 - 'circular' case: the peak charge is slightly larger than existing results
 - 'elliptic' case: eventually the same numbers of +/- Q-balls appear, and peak charge, scaling, ...

- Power spectrum of GWs from Q-balls
 - *early epoch*: large scale GWs may be associated with filamentary structure. But it remains unclear now.
 - formation(fragmentation) epoch: small scale significantly grows.
 - relaxation epoch: no more grows even during 2nd-formation process, though it's crucial for the final shape of charge distribution.

- Filamentary structure plays a crucial role for both charge distributions and the peak amplitude of GWs.

TH, Kawasaki, Takahashi, JCAP 06(2010)008
TH, Takahashi, Yamaguchi, in preparation