Numerical study of Q-ball formation in gravity mediation

Takashi Hiramatsu

Yukawa Institute for Theoretical Physics (YITP) Kyoto University

COLLABORATION WITH

Masahiro Kawasaki (ICRR) Fuminobu Takahashi (IPMU) Masahide Yamaguchi (TITech)

TH, Kawasaki, Takahashi, JCAP 06(2010)008 [arXiv:1003.1779] TH, Takahashi, Yamaguchi, in preparation • Affleck-Dine field parametrising "flat directions"

$$H_u = \begin{pmatrix} 0 \\ \Phi \end{pmatrix}$$
 $L = \begin{pmatrix} \Phi \\ 0 \end{pmatrix}$ $F = D = 0$ $\therefore V(\Phi) = 0$

• Global U(1) symmetry conserves baryon/lepton number

- Dynamical generation of baryon/lepton number
 - Soft SUSY terms and non-renormalisable terms lift the potential, driving Φ toward the origin
 - A-term like $\Phi^n + \Phi^{*n}$ kicks Φ to angular direction

Dine, Randall, Thomas (1996)

 $\mathrm{Re}\Phi$

 $n \neq 0$

Q-ball

Scalar field with global U(1) charge : $\mathcal{L} = |\partial_{\mu}\Phi| - V(\Phi)$

In cosmological context,

- ✓ dark matter candidate
- baryon/lepton number inside Q-balls protected from spharelon process

decay rate, evaporation rate, etc....

crucially depends on charge

Equations

Field equation and potential of Affleck-Dine field in gravity mediation

$$\ddot{\Phi} + 3H\dot{\Phi} - \frac{1}{a^2}\nabla^2\Phi = -V'(\Phi)$$
$$V(\Phi) = m^2 |\Phi|^2 \left[1 + K \log\left(\frac{|\Phi|^2}{M_*^2}\right)\right] - cH^2 |\Phi|^2 + (N.R.)$$

1-loop correction from gauginos

$$K = -0.1 \sim -0.01$$

Enqvist, McDonald, PLB(1998)

 $V(\Phi)/|\Phi|^2$ has a minimum at $\Phi \neq 0$ Hence this system has Q-ball solution

Numerical setup

Initial condition (situation after starting to rotate in the phase space)

$$\Phi_{in} = M_*$$
$$\dot{\Phi}_{in} = imM_*\epsilon$$

adding small fluctuations as seed of Q-balls

$$\left. \frac{\delta \Phi}{\Phi} \right|_{in} = O(10^{-7})$$

Kasuya, Kawasaki, PRD (2000)

6th-order symplectic integrator by Yoshida (time)+ finite difference (space) (supported by Aphrodite code)

Regarding a region where $|q(t,x)| > q_c$ as a Q-ball with $q_c = q(t_{form})/5$

Numerical study of *Q*-ball formation in gravity mediation

Numerical study of *Q*-ball formation in gravity mediation

 $N = 128^{3}$

charge density

Filaments

Enqvist, et al. , PRD(2001) Multamaki, Vilja, PLB(2002)

Numerical study of *Q*-ball formation in gravity mediation

 $N = 128^{3}$

charge density

Large Q-balls at intersections

Numerical study of *Q*-ball formation in gravity mediation

 $N = 128^{3}$

charge density

Torn to small pieces

Numerical study of *Q*-ball formation in gravity mediation

 $N = 128^{3}$

charge density

Relaxation

$$f_{NQ} = aQ^b e^{-cQ^2}$$

$$a = 71.2, b = 1.29, c = 1.86 \times 10^3$$

$$Q_{\text{peak}} = 1.9 \times 10^{-2} |\Phi_{in}|^2 m^{-2}$$

~60% larger than existing result :

$$Q_{\rm max}^{\rm KK} = 1.2 \times 10^{-2} |\Phi_{in}|^2 m^{-2}$$

Kasuya, Kawasaki, PRD (2000)

Result : relations

Result : 2^{nd} stage formation in $\epsilon = 0.01$ case

Recall :
$$\Phi_{in} = M_*$$
 $\dot{\Phi}_{in} = imM_*\epsilon$

(a) $\tau = 1500$

(b) $\tau = 2500$

(c) $\tau = 5000$

1st generation Q-ball : POSITIVE, EXCITED
 2nd generation Q-ball : POSITIVE=NEGATIVE, mildly excited

Excited Q-balls release their excessive energy, producing negative Q-balls

Result : relations

 For small \$\varepsilon\$, # of +/- Q-balls eventually become the same.

Peak charge of 1st-gen Q-balls scales as

 $Q \sim |\Phi \dot{\Phi}| \propto \varepsilon$

The scaling becomes no longer valid for 2nd-gen Q-balls

cf. this scaling is broken down also in gauge mediation.

Kasuya, Kawasaki, PRD (2001)

Gravitational waves

- Q-balls could be a promising source of GWs
 - First numerical simulation : Kusenko et al.

```
Kusenko, Mazumdar, PRL (2008)
Kusenko, Mazumdar, Multamaki, PRD (2009)
```

• Analytical estimation with 'thermal-log term' contributions

Chiba, Kamada, Yamaguchi, PRD (2010)

Gravitational wave energy and spectrum

$$\rho_{\rm GW} = \frac{1}{32\pi G} \langle \dot{h}_{ij} \dot{h}_{ij} \rangle \qquad \Omega_{\rm GW} = \frac{1}{\rho_c} \frac{d\rho_{\rm GW}}{d\log k}$$

The basic structure of the spectrum is reflected by the existence of the filamentary structure before Q-ball formation epoch.

Numerical study of Q-ball formation in gravity mediation

Box size effect

$\varepsilon = 0.01$: early time $mt \le 1000$

Time evolution of amplitude for $\varepsilon = 0.01$

- ▶ 3D simulations for Q-ball formation in gravity mediation.
- Charge distribution of Q-balls TH, Kawasaki, Takahashi, JCAP 06(2010)008
 - 'circular' case : the peak charge is slightly larger than existing results
 - 'elliptic' case : eventually the same numbers of +/- Q-balls appear, and peak charge, scaling , ...
- Power spectrum of GWs from Q-balls
 - TH, Takahashi, Yamaguchi, in preparation
 early epoch: large scale GWs may be associated with filamentary structure. But it remains unclear now.
 - <u>formation(fragmentation) epoch</u> : small scale significantly grows.
 - <u>relaxation epoch</u> : no more grows even during 2nd-formation process, though it's crucial for the final shape of charge distribution.
- Filamentary structure plays a crucial role for both charge distributions and the peak amplitude of GWs.