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What’s “G”?

Galileon field



The Galileon field

L1 = φ

L2 = (∇φ)2

L3 = (∇φ)2 �φ

L5 = (∇φ)2
�
(�φ)3 + · · ·

�
Nicolis et al. ’09;
Deffayet et al. ’09

Galilean shift symmetry in flat space 

∂µφ→ ∂µφ + bµL4 = (∇φ)2
�
2(�φ)2

−2(∇µ∇νφ)2 − R

2
(∇φ)2

�

Field equations are 2nd order

Ln ∼ ∂2(n−1)φn



Our Lagrangian

L =
R

2
+ K(φ, X)− F (φ, X)�φ

X := −1
2
(∇φ)2where

Deffayet, Pujolas, Sawicki, Vikman 1008.0048;
TK, Yamaguchi, Yokoyama 1008.0603

Field equations are 2nd order



Simple motivation

The Galileon field has been used to explain 
current cosmic acceleration

Antonio De Felice talk yesterday

Why don’t we use the Galileon field to 
drive inflation in the early universe?
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G-inflation



Standard picture of 
inflation

L = X − V (φ), X = −1
2
(∂φ)2

3M
2
PlH

2 � V (φ)

One (or more) canonical scalar field(s) 
rolling slowly down a nearly flat potential



Kinematically driven 
inflation

d

dt

�
a3KX φ̇

�
= 0

K = K(X)

K(X)
X

3M
2
PlH

2 � −K

Armendariz-Picon et al. ’99;

“k-inflation”

“Ghost condensate”

Arkani-Hamed et al. ’04

L = K(φ, X)



G-inflation: background
Lφ = K(φ, X)− F (φ, X)�φ

3H
2 = ρ

−3H
2 − 2Ḣ = p

ρ = 2XKX −K + 3FXHφ̇
3 − 2FφX

p = K − 2
�
Fφ + FX φ̈

�
X

Scalar field EOM is 
automatically satisfied+



de Sitter G-inflation

H = const
φ̇ = const

Look for exactly de Sitter solution:

satisfying:

3H
2 = −K

KX = −3fHφ̇
K = − 1

6f2

(KX)2

X

X

K(X)

− 1
6f2

(KX)2

X

φ̇ > 0

K = K(X), F = fX, f = const



Example

K = −X +
X2

2M3µ
, F =

X

M3

H
2

M
2
Pl

� 1
6

M
3

M
3
Pl

µ

MPl

µ�MPl

X �
�

1−
√

3µ

MPl

�
µM3



Quasi-dS G-inflation
K = K(X), F = f(φ)X

H
2 � −K(X)

KX � −3f(φ)Hφ̇

Quasi-de Sitter solution:

H = H(t), φ̇ = φ̇(t)

satisfying:
� = − Ḣ

H2
� 1

η = − φ̈

Hφ̇
� 1

Small rate of change

Required to get ns − 1 �= 0



Numerical Example

K = −X +
X2

2M3µ
, F =

eαφ

M3
X
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H2
�= 0

φ̇ �= const



Graceful exit & Reheating
Basic idea

K = −A(φ)X + · · ·

A = tanh [λ(φend − φ)] �1.0

�0.5

0.0

0.5

1.0
φend

Inflation

φ � φ̇t
kination

Example:

ρ � p � X ∝ a−6

~ massless, canonical field
(normal sign)

Reheating through gravitational 
particle production

Ford ’87



Phase diagram 3

FIG. 1: Schematic phase space diagram of G-inflation. The
line Ḣ = 0 does not coincide with the line c2

s
= 0 in general,

and therefore stable violation of the null energy condition is
possible.

density of φ dilutes more rapidly as ρφ ∝ a−6. Finally one

finds ρφ = ρr at a =
√
3MPlHinf (ρr|end)

−1/2. Defining
the reheating temperature by ρr = ρφ = (π2/30)g′∗T

4
R,

one can estimate

TR !
H2

inf

MPl
. (20)

The phase space diagram of G-inflation is depicted in
Fig. 1. It is interesting to note that in G-inflation the
null energy condition may be violated, i.e., 2M2

PlḢ =
−(ρ + p) > 0. The null energy condition violation can
occur stably [13, 14], in the sense that the squared sound
speed (to be defined shortly) is positive.
We now move on to study scalar perturbations in this

model. The convenient gauge will be such that the metric
is written as

ds2 = −(1 + 2α)dt2 + 2a2∂iβdtdx
i

+a2(1 + 2Rφ)δijdx
idxj , (21)

and the fluctuation of the scalar field, δφ, vanishes (the
unitary gauge). In this gauge we have δT 0

i = −FX φ̇3∂iα,
and hence the δφ = 0 gauge does not coincide with the
comoving gauge δT 0

i = 0. That is, the comoving cur-
vature perturbation Rc differs in general from Rφ. This
point highlights the difference between the present model
and the standard k-inflationary model described simply
by Lφ = K(φ, X) [15]. It will turn out that the vari-
able Rφ is subject to an analogous wave equation to the
familiar Sasaki-Mukhanov equation.
Expanding the action (2) to second order in the pertur-

bation variables and then substituting the Hamiltonian
and momentum constraint equations to eliminate α and
β, we obtain the following quadratic action for Rφ:

S(2) =
1

2

∫

dτd3x z2
[

G(R′
φ)

2 −F()∇Rφ)
2
]

, (22)

where

z :=
aφ̇

H − FX φ̇3/2M2
Pl

, (23)

F := KX + 2FX

(

φ̈+ 2Hφ̇
)

− 2
F 2
X

M2
Pl

X2

+2FXXXφ̈− 2 (Fφ −XFφX) , (24)

G := KX + 2XKXX + 6FXHφ̇+ 6
F 2
X

M2
Pl

X2

−2 (Fφ +XFφX) + 6FXXHXφ̇, (25)

and the prime represents differentiation with respect to
the conformal time τ . The squared sound speed is there-
fore c2s = F/G. To avoid ghost and gradient instabilities
we require the condition

F > 0, G > 0. (26)

One should note that the above equations have been de-
rived without assuming any specific form of K(φ, X) and
F (φ, X).
It is now easy to check whether a given G-inflation

model is stable or not. In the simplest class of models
(8), we have

F = −
KX

3
+

XK2
X

3K
, G = −KX + 2XKXX −

XK2
X

K
,(27)

where the “slow-roll” suppressed terms are ignored. For
the previous toy model (11) one obtains F = x(1 −
x)/6(1 − x/2) and G = 1 − x + (1 − x/2)−1. Since
0 < x < 1, both F and G are positive. In this
model, the sound speed is smaller than the speed of light:
c2s ≤ (4

√
2− 5)/21 & 0.031 < 1.

In the superhorizon regime where O()∇2) terms can be
neglected, the two independent solutions to the pertur-
bation equation that follows from the action (22) are

Rφ = const,

∫ τ dτ ′

z2G
. (28)

If the second one is the decaying mode and hence can be
neglected (which is indeed the case in G-inflation), then
from the momentum constraint we have α = Ṙφ/(H −
FX φ̇3/2M2

Pl) = 0, which in turn gives δρ := −δT 0
0 = 0

and δT 0
i = 0 on superhorizon scales. This shows that

the curvature perturbation in the uniform density hyper-
surfaces, the comoving curvature perturbation, and Rφ

coincide (up to sign) on large scales. Note, however, that
a nontrivial example is known in which the second solu-
tion is not a decaying mode [14].
The power spectrum of Rφ generated during G-

inflation can be evaluated as follows. It is convenient
to write the perturbation equation (in the Fourier space)
as

d2uk

dy2
+

(

k2 −
z̃,yy
z̃

)

uk = 0, (29)

Stable violation of 
null energy condition

Creminelli, Luty, Nicolis, Senatore ’06
Creminelli, Nicolis, Trincherini ’10



Primordial 
perturbations



Cosmological perturbations
ds2 = −(1 + 2α)dt2 + 2a2β,idtdxi + a2(1 + 2R)δijdxidxj

φ = φ(t)

1. Expand the action to 2nd order
2. Eliminate      and      using constraint eqs
3. Quadratic action for

α β
R

δφ = 0Unitary gauge:

δT 0
i = −FX φ̇3α,i

Uniform      hypersurfaces
≠ comoving hypersurfaces

φ



Quadratic action

S(2) =
1
2

�
dτd3x z2

�
G(R�)2 − F(�∇R)2

�

where

z =
aφ̇

H − FX φ̇3/2

F = KX + 2FX

�
φ̈ + 2Hφ̇

�
− 2F

2
XX

2

+2FXXXφ̈− 2 (Fφ −XFφX)

G = KX + 2XKXX + 6FXHφ̇ + 6F
2
XX

2

−2 (Fφ + XFφX) + 6FXXHXφ̇

No ghost and gradient instabilities if

G > 0, c2
s = F/G > 0



Stable example

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
0.0
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log a

K = −A(φ)X +
X2

2M3µ
, F =

X

M3

c2
s

G

Inflation

c2
s �

√
3

6
µ

MPl
> 0

kination



Primordial spectrum

New variables:

dy = csdτ

z̃ = (FG)1/4z

u = z̃R

d2u

dy2
+

�
k2 − z̃,yy

z̃

�
u = 0

z̃,yy

z̃
� 1

(−y)2
[2 + 3�C(X)]

C(X) =
K

KX

QX

Q

Q(X) =
(K −XKX)2

18Xc2
s

√
FG

K = K(X), F = f(φ)X

Consider G-inflation with:

ċs

Hcs
= O(�)



Primordial spectrum
Normalized mode:

Q(X) =
(K −XKX)2

18M4
PlXc2

s

√
FG

u =
√

π

2
√
−yH

(1)
3/2+�C(−ky)

PR =
Q

4π2

����
csk=1/(−τ)

, ns − 1 = −2�C

wherecan be generated even 
from exact de Sitter

* Tensor mode dynamics: unchanged

R

∝ f,φ



Tensor-to-scalar ratio
K = −X +

X2

2M3µ
, F = fX

Definition:

r � 16
√

6
3

�√
3µ

MPl

�3/2

r =
PT

PR
, PT =

8
M

2
Pl

�
H

2π

�2

M = 0.00435×MPl, µ = 0.032×MPl

PR = 2.4× 10−9, r = 0.17

Standard consistency relation is violated

r �= 16�
∝ f,φ

r can be large!

H
2 ∼ µM

3

M
2
Pl(f �M−3)



Summary & Outlook



Summary & Outlook
• G-inflation:  A novel class of inflation models

•  

• Large

• Consistency relation

• Non-Gaussianity?

Lφ = K(φ, X)− F (φ, X)�φ

TK, Yamaguchi, Yokoyama in progress

r
ns − 1 � 0



Thank you!


