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1 Introduction

• Check of the predictions of superstring theories

The situation where the effects of quantum gravity become important

⇒ Black holes（singularity）
Early universe（singularity）

It is urgent to see whether and how these problems are resolved and
if superstrings can give realistic models of particles and their interaction
including gravity, not to mention finding evidence of string theories.

Here we consider black holes. ———————————–

• We need dilaton!!

Many studies of black holes have been performed by using low-energy
effective theories inspired by string theories, which typically involve not
only the metric but also the dilaton field (as well as several gauge fields).

There are studies of such solutions in Einstein theories with dilaton.

• What about higher order corrections?

It is known that there are correction terms of higher orders in the curva-
ture to the lowest effective supergravity action coming from superstrings.
The simplest correction is the Gauss-Bonnet (GB) term coupled to the
dilaton field.
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Black holes in Einstein-GB theories have been studied much but WITH-
OUT DILATON!
In order to understand properties of black holes in string theories, we

should include dilaton!
Incorporation of each of these are tractable. But when both are in-

cluded, the problem becomes enormously difficult! We need numerical
study. (Actually complicated but not difficult numerically.)
• Another motivation:
Many people consider the application to the calculation of shear vis-

cosity in strongly coupled gauge theories using black hole solutions in
five-dimensional Einstein-GB theory via AdS/CFT correspondence, but
without dilaton. In order to see this in the context of superstrings, we
should again include dilaton.
We obtained asymptotically flat solution for spherically symmetric space

(curvature of the space k = +1) without cosmological constant, and then
extended the work to all possible cases in various dimensions up to 10,
with possible AdS/CFT application in mind (for negative cosmological
constant)!
There are several sources of (negative) cosmological constant in super-

strings. e.g. RR 10-form. Don’t worry about the CC.
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2 Dilatonic Einstein-GB theory

2.1 Basic equations

The action:

S =
1

2κ2
D

∫
dDx

√
−g

[
R− 1

2
(∂µφ)

2 + α2e
−γφR2

GB − Λeλφ
]
,

R: the scalar curvature, φ: a dilaton field,
R2

GB = RµνρσR
µνρσ − 4RµνR

µν +R2: the GB combination,
κ2
D = 8πGD: a D-dimensional gravitational constant,

α2 = α′/8: α is the Regge slope parameter α′, γ = 1/2,
Λ: (zero, negative or positive) cosmological “constant.”

Line element in D-dimensional static spacetime

ds2D = −Be−2δdt2 +B−1dr2 + r2hijdx
idxj,

where hijdx
idxj represents the line element of a (D−2)-dimensional hyper-

surface with constant curvature of signature k and volume Σk for k = ±1, 0.
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Master equations:[
(k −B)r̃D−3

]′D − 2

r̃D−4
h− 1

2
Br̃2φ′2 − (D − 1)4 e

−γφ(k −B)2

r̃2

+4(D − 2)3 γe
−γφB(k −B)(φ′′ − γφ′2)

+2(D − 2)3 γe
−γφφ′(k −B)[(D − 3)k − (D − 1)B]

r̃
− r̃2Λ̃eλφ = 0 ,

δ′(D − 2)r̃h +
1

2
r̃2φ′2 − 2(D − 2)3 γe

−γφ(k −B)(φ′′ − γφ′2) = 0 ,

(e−δr̃D−2Bφ′)′ = γ(D − 2)3e
−γφ−δr̃D−4

[
(D − 4)5

(k −B)2

r̃2
+ 2(B′ − 2δ′B)B′

−4(k −B)BU(r)− 4
D − 4

r̃
(B′ − δ′B)(k −B)

]
+ e−δr̃D−2λΛ̃eλφ,

3 eqs. for 3 unknown: B, δ, φ.
Parameters: k,D,Λ (for fixed γ and λ). Boundary conditions: φH, rH.

r̃ ≡ r
√
α2

, m̃ ≡ Gm

α
(D−3)/2
2

, (D −m)n ≡ (D −m)(D −m− 1)(D −m− 2) · · · (D − n),

h ≡ 1 + 2(D − 3)e−γφ
[
(D − 4)

k −B

r̃2
+ γφ′3B − k

r̃

]
,

h̃ ≡ 1 + 2(D − 3)e−γφ
[
(D − 4)

k −B

r̃2
+ γφ′2B

r̃

]
,
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U(r) ≡ 1

2h̃

[
(D − 3)4

k −B

r̃2B
− 2

D − 3

r̃

(B′

B
− δ′

)
− 1

2
φ′2

+(D − 3)e−γφ

[
(D − 4)6

(k −B)2

r̃4B
− 4(D − 4)5

k −B

r̃3

(B′

B
− δ′ − γφ′

)
−4(D − 4)γ

k −B

r̃2

(
γφ′2 +

D − 2

r̃
φ′ − Φ

)
+ 8

γφ′

r̃

{(B′

2
− δ′B

)(
γφ′ − δ′ +

2

r̃

)
−D − 4

2r̃
B′

}
+ 4(D − 4)

(B′

2B
− δ′

)B′

r̃2
− 4

γ

r̃
Φ(B′ − 2δ′B)

]]
,

Φ ≡ φ′′ +
(B′

B
− δ′ +

D − 2

r̃

)
φ′.

This is valid in all dimensions and for any value of cc.

2.2 Symmetries in asymptotically flat case with Λ = 0

If we set B = 1− 2Gm(r̃)

r̃D−3
, the system has a symmetry under

φ → φ− φ∞, r̃ → e
1
2γφ∞r̃, δ → δ, m̃ → e

D−3
2 γφ∞m̃.

⇒ the asymptotic value of the dilaton field = zero
Another shift symmetry

δ → δ − δ∞, t → e−δ∞t,

⇒ the asymptotic value of δ = 0.
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2.3 Symmetries for k = 0 with a cosmological constant

1. Scaling transf. B → a2B, r̃ → ar̃, (a: an arbitrary constant).
⇒ generate solutions with different horizon radii r̃H but the same Λ̃.
⇒ The mass scales like

M̃0 ∝ r̃ D−1
H , Λ̃: fixed

2. Scaling of c.c.:

φ → φ− φ∗, Λ̃ → e(λ−γ)φ∗Λ̃, B → e−γφ∗B ,

⇒ generate solutions for different cosmological constants Λ̃ but with
the same horizon radius r̃H. ⇒ The mass scales as

M̃0 ∝ |Λ̃|γ/(γ−λ), r̃H: fixed

3. Another shift symmetry

δ → δ − δ∞, t → e−δ∞t,

⇒ the asymptotic value of δ = 0.
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2.4 Boundary conditions

1. The existence of a regular horizon r̃H:

B(r̃H) = 0, |δH| < ∞, |φH| < ∞ .

2. The nonexistence of singularities outside the event horizon (r̃ > r̃H):

B(r̃) > 0, |δ| < ∞, |φ| < ∞ . This is important.

3. “asymptotic behavior” (r̃ → ∞):

B ∼ (b̃2r̃
2+)1− 2M̃

r̃µ
, (r̃2 term for Λ 6= 0), δ(r) ∼ δ0 +

δ1
r̃σ
, φ ∼ φ0 +

φ1

r̃ν
,

with finite constants b̃2 > 0, M̃ , δ0, δ1, φ0, φ1 and positive constant µ, σ,
ν.

Given the b.c. at the horizon, φ′
H is determined (k = 0):

BH = 0, hH = h̃H = 1,

B′
H = − Λ̃

D − 2
r̃He

λφH ,

φ′
H = − 1

r̃H

[
2γ(D − 3)Λ̃e(λ−γ)φH + (D − 2)λ

]
,

δ′H = − 1

2(D − 2)
r̃H(φ

′
H)

2. ⇒ no solution without c.c.
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3 Asymptotically flat solutions (D = 4 for example)

Start with Λ = 0, k = 1.
Give b. c. on φH and δH at the horizon ⇒ φ′

H is determined.
Only the smaller solution gives regular BH.
Use the shift symmetry to set the asymptotic value of the dilaton to zero.
Regular black hole solutions exist only for r̃H ≥ 1.47126 in D = 4. (Gap)

(depends on the dilaton coupling and frame.)
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Figure 1: Black hole solutions in the four-dimensional Einstein-GB-dilaton system with γ = 1
2. The be-

haviours are for four different radii of event horizon: r̃H = rH/
√
α2 = 2.68697 (solid (black) line), 2.90965

(dashed (red) line), 3.19148 (dotted (green) line) and 3.52851 (dash-dotted (blue) line). (d) The mass
versus horizon radius in the dilatonic case (solid line) and in the non-dilatonic case (dashed line). The
masses M̃ for these cases are found to be 1.47251, 1.53808, 1.65113, and 1.80161, respectively.
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Properties in general dimensions:
In four dim., solution disappears below certain radius, but the regular

black hole solutions exist for all r̃H > 0 beyond D = 4.
The mass of the dilatonic black holes approaches a non-zero constant

in D = 5 but goes to zero in higher dims.
5 dimension is very special!
There is no solution for k = 0.

4 Asymptotically AdS solutions with Λ < 0

The most interesting case is k = 0.
Effective potential picture
The dilaton field equation

2φ− dṼeff

dφ
= 0,

with the “effective potential”

Ṽeff = −e−γφR̃2
GB + Λ̃eλφ.

For the asymptotic AdS behavior for B, this gives

Ṽeff = −(D)3 b̃
2
2 e−γφ + Λ̃eλφ. (⇒ λ > 0 or λ < 0 ?)
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Figure 2: The effective potentials of the dilaton field in the Liouville potential case with (a) λ > 0 and (b) λ < 0.

When λ > 0, the effective potential has a maximum (Fig. 1 (a)), and
the dilaton field would approach a finite constant φ0 at r = ∞. Otherwise,
the dilaton diverges, and we consider only the case of λ > 0.

For Λ 6= 0, the asymptotic forms of the fields are

φ ∼ φ0 +
φ+

r̃ν+
+ · · · , B ∼ b̃2r̃

2 − 2M̃+

r̃ν+−2
− 2M̃0

r̃D−3
+ · · · , δ ∼ δ0 +

δ+
r̃ν+

+ · · · .

where

ν± =
D − 1

2

[
1±

√
1− m̃2

m̃2
BF

]
, m̃2

BF = −(D − 1)2

4˜̀2AdS
= −(D − 1)2

4
b̃2,

There is a term 1/rν− (non-normalizable); we tune the boundary condition
such that this term disappears.
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We choose the following parameters in our numerical analysis:

γ =
1

2
, λ =

1

3
, Λ̃ < 0, φ− = 0, δ0 = 0,

In D = 4, for the horizon radius r̃H = 1 and Λ̃ = −3/2 (˜̀ = 2) with the
additional boundary conditions, we find φH = 2.33422 in order to obtain
φ− = 0, and δH = −0.02893, φ0 = 2.43279 and M̃0 = 0.28014.

5 10 15 20
-0.04

-0.03

-0.02

-0.01

0.00

0.01

r�

∆

5 10 15 20
2.32

2.34

2.36

2.38

2.40

2.42

2.44

r�

Φ

(a) (b) (c)

Figure 3: The configurations of the field functions (a) m̃g, (b) δ and (c) φ in four dimensions for r̃H = 1 and Λ̃ = −3/2.

By using the symmetry, we can generate solutions for other Λ̃ and r̃H
and the gravitational mass M̃0:

M̃0 = 0.28014

(
2|Λ̃|
3

)3

r̃ 3
H .
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For D = 5, 6, 10 solutions, the configurations of the field functions are
similar.
D = 5: For the horizon radius r̃H = 1 and Λ̃ = −3 (˜̀ = 2) with the

additional boundary conditions at the horizon, we find φH = 9.35869, δH =
−0.02188, φ0 = 9.43249 and M̃0 = 3.78189.

M̃0 = 3.7819

(
|Λ̃|
3

)3

r̃ 4
H .

D = 6:

M̃0 = 19.933

(
|Λ̃|
5

)3

r̃ 5
H .

D = 10: The gravitational mass M̃0 is given by M̃0 = 771.68

(
|Λ̃|
18

)3

r̃ 9
H .

The mass of the black hole approaches 0 as r̃H → 0.
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5 Summary of the solutions

Table 1: Summary of the black hole solutions in the dilatonic Einstein-Gauss-Bonnet theory in various
dimensions. The head “existence” shows the existence of the black hole solution which satisfy appropriate
boundary conditions. For the Λ = 0, k = −1 and the Λ = 1, k = 1 cases, “no” means that the non-existence
of the solution cannot be proved exactly but we cannot find the solution numerically (most probebly
no existence). For the Λ = 1, k = −1 case, there are solutions for D = 5, 6, and 10 but there is no
solution for D = 4. The head “asymptotics” shows the asymptotic structure of the solution. There is no
asymptotically dS solution generically. The head “lower bound” and “upper bound” show the existence
of the lower and upper bounds for the horizon radius. For the Λ = 1, k = 1 case, there is the lower bound
for D = 4, 5 but no bound for D = 6, 10. The head “paper” shows the number in the series of our paper
where the model is discussed.

k existence asymptotics lower bound upper bound paper
yes (D = 4, 5)

k = 1 yes flat
no (D = 6, 10)

no I
Λ = 0

k = 0 no —– —– —– II
k = −1 “no” —– —– —– IV
k = 1 “no” —– —– —– IV
k = 0 no —– —– —– IV

Λ = 1
yes (D ≥ 5)

k = −1
no (D = 4)

AdS yes yes IV

k = 1 yes AdS yes no III
Λ = −1 k = 0 yes AdS no no II

k = −1 yes AdS yes no III
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6 Global Structure or Singularity

We study the internal structure of our black holes by integrating the
field equations inward from the horizon.

We find that there appears non-central singularity between horizon and
the center for lower-dimensional cases (D = 4, 5) in asymptotically flat
solutions and in k = +1 and 0 asymptotically AdS solutions, where the
metric does not diverge but the Kretschmann invariant does diverge.
Hence this is a singularity, but we find the singularity is much milder

than the Schwarzschild solution and the non-dilatonic one.

Table 2: Summary of the divergent rate of the Kretschmann invariant I around the singularity in the Λ = 0
case. We also show those in GR and non-dilatonic cases for comparison.

k D I I (GR) I (non-dilatonic)
4 (r − rs)

−4

r−25.8 (M0 < 7.46)
5

(r − rs)
−4 (M0 > 7.46)

1
r−32.2 (5.18 < M0 < 120.9)

r−(2D−2) r−(D−1)

6
r−(D−1) (otherwise)

10 r−(D−1) < I < r−11.9

We call this “fat singularity” because it is weakened due to the presence
of the GB term and dilaton.

The formation mechanism of the fat singularity: the dilaton diverges.
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Table 3: Summary of the divergent rate of the Kretschmann invariant I around the singularity in the Λ = −1
case. We also show those in GR and non-dilatonic cases for comparison.

k D I I (GR) I (non-dilatonic)
4 (r − rs)

−4 r−6

r−25.8 (M0 < 8.39)
5

(r − rs)
−4 (M0 > 8.39)

1
6 r−32.2 r−(D−1)

r−(D−1) < I < r−21.0 (M0 < 1.93)
10

r−57.6 (M0 > 1.93)
r−(2D−2)

4 r−6

5
(r − rs)

−3

0
6 r−32.2 r−(D−1)

10 r−57.6

4 r−6 (M0 6= 0), r0 (M0 = 0)
5 (r − rs)

−4 (M0 6= 0) r−(2D−2) (M0 6= 0) (r − rb)
−3 (M0 < 0)−1

6 r0 (M0 = 0) r0 (M0 = 0) r0 (M0 = 0)
10 r−(D−1) (M0 > 0)

Other cases: singularity at the center, much stronger than usual.
All these singularities are spacelike, and our black hole solutions have

only three different types of the global structures; the Schwarzschild,
Schwarzschild-AdS and “regular AdS black hole” types.
The singularity in the theory exists for positive mass whereas that for

pure GB term exists only for the unphysical case of negative mass.

So much for the solutions. Now application.
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7 Shear viscosity

This solution has been used to study higher order corrections to shear
viscosity to entropy density and the naive lower bound 1/4π as well as the
new bound 4/25π from GB correction (without dilaton) may be violated.

R. G. Cai, Z. Y. Nie, N. O. and Y. W. Sun, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421 [hep-th]].

Field theories behave hydrodynamically at large distances and time
scales.

An interesting example is the ratio of shear viscosity to entropy den-
sity η/s, which is measurable in quark-gluon plasma (QGP) produced at
RHIC. This value is unusually small, roughly ∼ 1/4π.

The shear viscosity comes from hydrodynamic description of a field
theory at larger distances and time-scales.

In the lowest order, the stress tensor is given by the familiar formula
for ideal fluids:

T µν = (ε + P )uµuν + Pgµν
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At the next order, one has

T µν = (ε + P )uµuν + Pgµν − σµν

where σ is proportional to derivatives of T (x) (temp.) and uµ(x) and is
termed the dissipative part of Tµν.

According to the linear response theory, the shear viscosity can be
calculated by the Kubo formula:

η = i lim
ω→0

1

ω
ImGR

xy,xy(ω, 0)

where GR is the zero spatial momentum, low-frequency limit of the re-
tarded Green’s function of Txy

GR
xy,xy(ω, 0) =

∫
dtdxeiωtθ(t)〈[Txy(t,x), Txy(0, 0)]〉 = −iηω +O(ω2)

Consider a massless scalar field ∂µ(
√
−ggµν∂νφ) = 0 in AdS5 black hole

ds2 =
(πTR)2

u2
(−f (u)dt2 + dx2) +

R2

4u2f (u)
du2 +R2dΩ2

5, (f (u) = 1− u2)

The solution to this equation with the boundary condition φ = φ0 at
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u = 0 is φ(p, u) = fpφ0(p) with

f ′′
p − 1 + u2

uf
f ′
p +

w2

uf 2
fp −

q2

uf
fp = 0, w =

ω

2πT
, q =

k

2πT

The action of the scalar field:

S =

∫
d4p

(2π)4
φ0(−p)F(p, u)φ0(p)

∣∣∣∣u=uH

u=0

The Green function:

GR(p) = 2 lim
u→0

F(p, u)

We can apply this idea to Txy, which is dual to gxy.
The equation of motion for φ = hx

y is just the one of massless scalar filed:

φ′′
p −

1 + u2

uf
φ′
p +

w2 − q2f

uf 2
φp = 0

The solution, incoming at the horizon and normalized at u = 0, is

fp(z) = (1− u2)−iw/2 +O(w2, q2)

From the action

S = −π2N 2T 4

8

∫
du

f

u
φ′2 ⇒ GR

xy,xy(ω, k) = −π2N 2T 4

4
iw ⇒ η =

π

8
N 2T 3
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via the Kubo formula.

s =
S

V
=

π2

2
N 2T 3 ⇒ η

s
=

1

4π
Next order correction

W = ChmnkCpmnqCh
rspCq

rsk +
1

2
ChkmnCpqmnCh

rspCq
rsk ⇒ η

s
=

1

4π

(
1 +

135ζ(3)

8(g2N)3/2

)
To summarize the procedure:

1. Solve the equation of motion with the following boundary conditions:

(a) impose the infalling boundary condition at the horizon

(b) at the infinity φa(r; k)|r=1/ε = Ja(k), k = (ω, q) where ε → 0 gives an
infrared cutoff near the infinity of spacetime, and Ja(k) is an in-
finitesimal boundary source for the bulk source φa(r; k).

2. Put the solution into the action, reducing to pure surface term

S =
1

2

∫
d4k

(2π)4
Ja(−k)Fa(k, r)Ja(k)

∣∣∣
r=1/ε

to find the retarded function Ga(k) in momentum space for the bound-
ary field dual to φa:

Ga(k) = lim
ε→0

Fa(k, r)
∣∣∣
r=1/ε
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3. Use the Kubo formula to get the shear viscosity

η = i lim
ω→0

1

ω
ImGxy,xy(ω, 0)

——————————————————
We apply this to our dilatonic EGB theory:

S =
1

16πG

∫
d5x

√
−g

[
R− 1

2
∇µφd∇µφd +

λl2

2
e−γφd(RµνρσR

µνρσ − 4RµνR
µν +R2)− 2Λeτφd

]
,

After some calculation, the effective action of the transverse gravitons
φ for this gravity theory can be written as

S =
1

16πG

(
− 1

2

)∫
d5x

√
−gg̃µν∂µφ∂νφ,

The shear viscosity is found to be

η =
1

16πG

r3+
l3

(
1− 4λe(τ−γ)φd(1)

(
1 + 2γφd

′(1)
))

.
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For this Ricci-flat black hole, the entropy still obeys the Bekenstein-
Hawking entropy area law, so the entropy density is

s =
1

4G

r3+
l3
.

The ratio of shear viscosity over entropy density

η

s
=

1

4π

(
1− 4λe(τ−γ)φd(1)

(
1 + 2γφd

′(1)
))

.

pure GB case: obtained in the limit φd(1) → 0: η
s = (1 − 4λ)/(4π), which

gives lower bound 4/(25π) lower than 1/(4π).

We find that this new shear viscosity bound (due to GB term) could be
weakly violated due to dilaton!!
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8 Discussions

We find dilatonic black holes in string theory with GB correction in
various dimensions, with and without cosmological constant.

The singularity structure exhibit new features due to the presence of
GB term and dilaton. In particular, the dilaton significantly affects the
singularity, sometimes taming it.

These solutions are expected to be useful to study strong coupling be-
haviors of field theories via AdS/CFT correspondence. We emphasize
that, without dilaton there is no foundation to rely to AdS/CFT corre-
spondence from string theory!

Remaining problems:
1. The ambiguity of the frames: We have studied the solution in the

Einstein frame.

There is, however, a possibility that the properties of solutions changes
drastically by transforming to the string frame. In particular, the
conformal transformation may become singular.

⇒ Work with Maeda and Sasagawa.

⇒ Existence of mass gap!
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2. Charged solution:

It would be also interesting to extend our analysis to dilatonic black
holes (large and small) with charges. ⇒ Work with C.M. Chen et al.

We studied BPS solutions in the system of dilatonic Einstein-Maxwell-
GB system for general dilaton coupling (common to Maxwell and GB),
and found that BH solution exists for certain range of the dilaton
coupling.

In particular, it cannot be too big; otherwise we encounter cusp type
of singularity when we integrate from the horizon toward asymptotics.

In D = 4, there is no BPS solution for heterotic value. Beyond that,
there are solutions.

One interesting feature is that from D = 7, the cusps appear in pairs,
and solutions can be continued to infinity, in contrast to lower dimen-
sions.

3. Stability:

The stability of our solutions is another important subject to study.
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We hope that our solutions have more allpications!!

Thank you!


