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Intro/Summary
Use techniques from integrable models to relate susy 

gauge theories.

Tool: Gauge/Bethe correspondence as stated by 

Nekrasov/Shatashvili.

Statement: 3 different N=(2,2) quiver gauge theories in 

2d have the same susy ground states:
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Figure 1: Quiver diagrams for the three example theories. The twisted masses for the chiral
fields are given in red.

therefore have the same supersymmetric vacua). The three theories are given as follows:

Case A A quiver gauge theory with gauge groups U(Nh + N↓) and U(Nh) (the reason
for the names of the parameters Nh and N↓ will become clear in the following), with the
following matter content:

• a bifundamental B
12 in the representation Nh ⊗ (Nh + N↓) with twisted mass ı/2,

• a bifundamental B
21 in the representation (Nh + N↓)⊗ Nh with twisted mass ı/2,

• an adjoint Φ2 for U(Nh + N↓) with twisted mass ı,

• L fundamentals and anti–fundamentals (Q2
k
, Q2

k) for U(Nh + N↓) with twisted mass
−ı/2.

The global symmetry group H (which is broken down to its maximal torus by the twisted
masses) is U(L)Q × U(L) �Q × U(1)B × U(1)�B × U(1)Φ. The quiver diagram is represented in
Figure 1(a). Using the results above, we find the following effective twisted superpotential
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The twisted masses are compatible with a superpotential of the type
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where a and b are parameters.

Case B A quiver gauge theory with gauge groups U(Nh + N↓) and U(N↓), with the
following matter content:

7

Correspondence to an integrable spin chain: tJ model
Can apply this technique in a general context.
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The Gauge/Bethe Correspondence
Relates N=(2,2) gauge theories in 2d to integrable spin 

chains.
The susy vacua of the gauge theory correspond to the 

Bethe spectrum of the spin chain.

Correspondence works for all Bethe solvable spin chains.
Spin chains with supergroup symmetry correspond to 

quiver gauge theories.

Integrable model: spectrum determined by Bethe 

equations.

Gauge theory: ground states determined by eff. twisted 

superpotential.

Generators of chiral ring correspond to commuting 

Hamiltonians. Nekrasov, Shatashvili



The Gauge/Bethe Correspondence

Here: quiver gauge theories
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Figure 2: Example quiver diagram for the Gauge/Bethe correspondence. Gauge groups are
labeled in black, matter fields in blue, the corresponding twisted masses in red.

3.3 The Dictionary

The main statement of [10, 11] is that the effective twisted superpotential �Weff(σ) can be
identified with the Yang–Yang counting function Y(λ), once the parameters of both theories
are properly matched. In this section, finally, we give the precise dictionary between the
quantities of the N = (2, 2) gauge theory and the integrable systems we have introduced.

The first observation is that the equation (2.7) for the vacua of the gauge theory and
the Bethe ansatz equation (3.25) for the rapidities have the same form. Most properties of
the gauge theory are determined by the symmetry group K of the integrable system. The
sector with particle numbers {Na}r

a=1 for each species leads to a product gauge group of
the form ∏r

a=1 U(Na). This results in a quiver gauge theory with r nodes, where the node a

carries the gauge group U(Na). Each effective length La gives rise to La fundamentals and La

anti–fundamental fields being attached to node a. The twisted masses of the bifundamental
and adjoint fields can be read off from the Cartan matrix of K. In the quiver diagram, we
only draw those lines between nodes a, b which correspond to a non–zero entry C

ab (i.e. to
non–zero twisted mass). We are thus lead to a quiver diagram of the type shown in Figure 2.
The twisted masses of the k–th fundamental and anti–fundamental field at node a are given
by the weight of the representation of the symmetry group K that the position k in the chain
is carrying, plus the possible inhomogeneity at position k. The boundary conditions for
closed spin chains, which are encoded in the ϑ̂a, enter the FI terms of the gauge theory.5

The Coulomb branch only depends on the effective twisted superpotential and is not
affected by the presence of an F–term. Nevertheless, in general the superpotential will break
(part of) the global symmetries which results in constraints on the possible values of the
twisted masses. These constraints are to be compared with those that come from the theory
of representations of the symmetry group K on the integrable model side (e.g. the Cartan
matrix containing only integer entries, or the allowed values for the highest weights).

All the relevant parameters and their matching are collected in Table 1.

5Periodic spin chains give rise to U(N) gauge groups, while open chains result in SO(N) or Sp(N) gauge
groups, depending on the boundary condition. The boundary conditions for open spin chains are not described
by ϑ̂a–parameters, which corresponds to the fact that the SO(N) and Sp(N) groups do not have a central
U(1)–factor and thus have no FI–terms.
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What are the parameters?

number of nodes bifundamental fields

fundamental and 
antifundamental fields

adjoint fields

twisted masses

gauge groups

flavor groups

exp

�
2π

∂�Weff(σ)
∂σi

�
= 1

Vacuum equation: low energy eff. twisted superpotential



The Gauge/Bethe Correspondence

What are the parameters of a spin chain?

boundary conditions

length of chain

number of particle species

symmetry group
inhomogeneities Cartan

rank of symm. group
representation 

spectrum is given by solutions of

e2πi dY (λ) = 1

Yang counting fn (potential for Bethe 
equations)

rapidities

12 L



gauge theory integrable model

number of nodes in the

quiver
r r rank of the symmetry group

gauge group at a–th node U(Na) Na number of particles of species a
effective twisted

superpotential

�Weff(σ) Y(λ) Yang–Yang function

equation for the vacua e2πd �Weff = 1 e2πıdY = 1 Bethe ansatz equation

flavor group at node a U(La) La effective length for the species a
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τa ϑ̂a boundary twist parameter for
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Table 1: Dictionary in the Gauge/Bethe correspondence.

3.4 Example: tJ model

The tJ model [24] describes a system of electrons on a lattice with a Hamiltonian that

describes nearest–neighbor hopping (with coupling t) and spin interactions (with coupling

J). Consider a lattice of length L with periodic boundary conditions. Each site can be either

free (◦) or occupied by a spin up (↑) or down (↓) electron. Excluding double occupancy, the

Hilbert space at each point k is:

Hk = C(1|2)
, (3.27)

which corresponds to the fundamental representation of sl(1|2). It is convenient to introduce

anticommuting creation–annihilation pairs c†

k,s, ck,s, s = { ↑, ↓ } at each site, acting as

|s�k = c†

k,s |◦�k , for s = { ↑, ↓ }, (3.28)

where |◦�k is the vacuum, annihilated by ck,s. Let nk,s = c†

k,sck,s be the number of s electrons

at position k and nk = nk,↑ + nk,↓. We can further introduce sl(2) spin operators at each site:

S−
k = c†

k,↑ck,↓ , S+
k = c†

k,↓ck,↑ , Sz
k =

1

2

�
nk,↑ − nk,↓

�
. (3.29)
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Figure 2: Example quiver diagram for the Gauge/Bethe correspondence. Gauge groups are
labeled in black, matter fields in blue, the corresponding twisted masses in red.
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is carrying, plus the possible inhomogeneity at position k. The boundary conditions for
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The Gauge/Bethe Correspondence





Properties:

* spin chain of length L

* periodic boundary conditions

* 3 particle species: spin up, spin down, empty

* sl(1|2) symmetry

* most important feature: 3 inequivalent choices of 

  Cartan matrix

* 3 different (but equivalent) sets of Bethe equations

* spectrum the same for all 3 cases

* fundamental rep. (spin 1/2) at each lattice point

* no inhomogeneities 

Essler, Korepin

The tJ model



The tJ model

|s�k = c†k,s|◦�k

↑, ↓, ◦Electrons on a lattice of length L, 

Hk = C(1|2)Hilbert space:
Fundamental representation of sl(1|2)

c†k,s, ck,s , s = {↑, ↓}creation/annihilation operators:
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spin interaction

projector on single occupancy

nk,s = c†k,sck,s

nk = nk,↑ + nk,↓

S−k = c†k,↑ck,↓ , S+
k = c†k,↓ck,↑ , Sz
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1
2

(nk,↑ − nk,↓)



The tJ model

Nh =
L�

k=1

(1− nk) , N↑ =
L�

k=1

nk,↑ , N↓ =
L�

k=1

nk,↓ , Ne = N↑ + N↓ .

Number of holes, up and down spins:

L = Nh + N↑ + N↓Single occupancy:
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2
nk .

g = g0 ⊕ g1

A superalgebra can be decomposed into an even and an 
odd part:

g0 = gl(1)⊕ sl(2)

S±, Sz, Z

sl(1|2)The even part of         is                        and is generated 
by

Q±s , s = {↑, ↓}Fermionic generators:

tJ model has supergroup symmetry!



Supergroup Symmetry

Here: three choices for Cartan matrix:

Φ+ Cab Dynkin diagram

{ δ1 − �1, �1 − �2 }
�

0 −1

−1 2

�

{ �1 − δ1, δ1 − �2 }
�

0 −1

−1 0

�

{ �1 − �2, �2 − δ1 }
�

2 −1

−1 0

�

Table 4: Non–equivalent root decompositions for sl(1|2). Positive roots, Cartan matrix and
Dynkin diagram.

where { δi − �ī } are odd roots, i.e.

(δi − �ī, δi − �ī) = 0 . (A.11)

For Lie algebras, all possible sets of positive roots can be obtained by reflection, and
the corresponding Borel subalgebras b = h+ n+ are conjugate. This is not the case for
superalgebras, since the reflection of an odd root δi − �ī → �ī − δi produces a new system
of positive roots whose associated Borel subalgebra is not conjugate to the initial one. For
sl(1|2), there are six possible choices of positive roots, which are organized into three
conjugacy classes under reflection. It is convenient to represent the positive roots by using
the Cartan matrix or, equivalently, a Dynkin diagram. Now we need to distinguish between
even roots (white nodes �) and odd roots (grey nodes ⊗). The standard Dynkin diagrams
and the other two obtained by reflection of odd roots are represented in Table 4. In the
general sl(m|n) case, there are (m+n

m ) conjugacy classes (and Dynkin diagrams), one for each
sequence of m repetitions of the symbol δ and n repetitions of the symbol �.

Kac–Dynkin diagrams. Representations of sl(m|n) are labelled uniquely by so-called Kac–
Dynkin diagrams. These are Dynkin diagrams in which a number Λa is associated to each
node. For example, the fundamental representation for sl(1|2) can be associated to three
non–equivalent Kac–Dynkin diagrams:

(case A)
0 1

(case B)
0 1

(case C)
0 1

. (A.12)

If we choose the distinguished Borel subalgebra, a representation

Λ =
Λ1 Λ2 Λm−1 Λm Λm+1 Λm+n−1

(A.13)

is finite dimensional if and only if the labels of the white nodes are non–negative integers
and the label of the grey node Λm is a real number.

27

Root decomposition. Lie algebra: reflections of positive 
root systems are conjugate to each other.

Superalgebra: reflections of odd roots lead to new 
positive root system (not conjugate).

even root

odd root



Bethe ansatz
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Nested Bethe ansatz equations:

Yang Yang counting function:
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Bethe ansatz
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Nested Bethe ansatz equations:

Yang Yang counting function:

Case B:



Bethe ansatz

Nested Bethe ansatz equations:

Yang Yang counting function:

Case C:
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gauge theory integrable model

number of nodes in the

quiver
r r rank of the symmetry group

gauge group at a–th node U(Na) Na number of particles of species a
effective twisted

superpotential

�Weff(σ) Y(λ) Yang–Yang function

equation for the vacua e2πd �Weff = 1 e2πıdY = 1 Bethe ansatz equation

flavor group at node a U(La) La effective length for the species a
lowest component of the

twisted chiral superfield
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adjoint field
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Cab non–diagonal element of the
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FI–term for U(1)–factor

of gauge group U(Na)
τa ϑ̂a boundary twist parameter for

particle species a

Table 1: Dictionary in the Gauge/Bethe correspondence.

3.4 Example: tJ model

The tJ model [24] describes a system of electrons on a lattice with a Hamiltonian that

describes nearest–neighbor hopping (with coupling t) and spin interactions (with coupling

J). Consider a lattice of length L with periodic boundary conditions. Each site can be either

free (◦) or occupied by a spin up (↑) or down (↓) electron. Excluding double occupancy, the

Hilbert space at each point k is:

Hk = C(1|2)
, (3.27)

which corresponds to the fundamental representation of sl(1|2). It is convenient to introduce

anticommuting creation–annihilation pairs c†

k,s, ck,s, s = { ↑, ↓ } at each site, acting as

|s�k = c†

k,s |◦�k , for s = { ↑, ↓ }, (3.28)

where |◦�k is the vacuum, annihilated by ck,s. Let nk,s = c†

k,sck,s be the number of s electrons

at position k and nk = nk,↑ + nk,↓. We can further introduce sl(2) spin operators at each site:

S−
k = c†

k,↑ck,↓ , S+
k = c†

k,↓ck,↑ , Sz
k =

1

2

�
nk,↑ − nk,↓

�
. (3.29)
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The Dictionary

The tJ model: 

* spin chain of length L

* periodic boundary conditions

* 3 particle species: spin up, spin down, empty

* sl(1|2) symmetry

* most important feature: 3 inequivalent choices of 

  Cartan matrix

* 3 different (but equivalent) sets of Bethe equations

* spectrum the same for all 3 cases

* fundamental rep. (spin 1/2) at each lattice point

* no inhomogeneities 

U(L) flavor group 

two nodes in quiver

masses for adj. and bifund. fields

tw. mass i/2 for fund. and antifund.

unitary gauge groups

3 gauge 
theories

same susy ground states!



Case A Case B Case C
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−ı/2
U(N↓)

U(Ne)

U(L)

−ı ı/2

−ı/2

Table 2: Comparing quiver diagrams for the three supersymmetric theories and Dynkin–Kac

diagrams for the fundamental representation. For each node in the Dynkin diagram, there is

a gauge group. For each white node, there is an adjoint field. A flavor group is attached to

the nodes with non–zero label.

• The Yang–Yang function in Eq. (3.42) corresponds to a quiver gauge theory with

the effective twisted superpotential given in Eq. (2.20) with ϑ1 =
�

Nh + N↓
�

π and

ϑ2 =
�

Nh + N↑
�

π.

• The Yang–Yang function in Eq. (3.45) corresponds to a quiver gauge theory the with

effective twisted superpotential given in Eq. (2.22) with ϑ1 =
�

N↑ + 1
�

π and ϑ2 =�
Nh + N↑

�
π.

In Table 2, the Kac–Dynkin diagrams and the quiver diagrams for the corresponding gauge

theories are shown.

We would like to stress once more the logic behind our construction. The tJ model

admits three sets of Bethe ansatz equations corresponding to the same ring of commuting

Hamiltonians. To each of these, we associate a quiver gauge theory, according to the

dictionary in Table 1. Since the commuting Hamiltonians are the same, also the three gauge

theories have the same chiral ring and, equivalently, the same supersymmetric ground states.

Having considered a supergroup symmetry, we are in the position to slightly extend the

dictionary in Section 3.3. The quiver diagrams for the supersymmetric gauge theories are to

be compared to the Kac–Dynkin diagrams of the superalgebra. For each node in the Dynkin

diagram, there is a gauge group. Furthermore, each white node carries an adjoint field. A

flavor group is attached to the nodes with non–zero label.

We would like to end this section with an observation concerning the constraints on the

mass parameters coming from the two sides of the correspondence. Consider for simplicity

the case of the distinguished Borel subalgebra of sl(m|n), whose Dynkin diagram has m − 1

white nodes, followed by a grey node and n − 1 white nodes (for sl(1|2) this is the choice

corresponding to case C), see Eq. (A.13). According to the dictionary, we have adjoint fields

Φa
for every white node, and fundamentals at each node. This means that for each white

node, we can introduce a superpotential of the type

W = Qa
k (Φ

a)Λa
Qa

k , a �= m, (3.48)
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Use Gauge/Bethe dictionary:

These 3 quiver gauge theories have the same ground 

states!

Conversely: any quiver gauge theories which can be 
associated to the same int. model have same ground 
states.

Kac Dynkin 
diagram

adjoint field

flavor group
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Figure 1: Quiver diagrams for the three example theories. The twisted masses for the chiral
fields are given in red.

therefore have the same supersymmetric vacua). The three theories are given as follows:

Case A A quiver gauge theory with gauge groups U(Nh + N↓) and U(Nh) (the reason
for the names of the parameters Nh and N↓ will become clear in the following), with the
following matter content:

• a bifundamental B
12 in the representation Nh ⊗ (Nh + N↓) with twisted mass ı/2,

• a bifundamental B
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• an adjoint Φ2 for U(Nh + N↓) with twisted mass ı,

• L fundamentals and anti–fundamentals (Q2
k
, Q2

k) for U(Nh + N↓) with twisted mass
−ı/2.

The global symmetry group H (which is broken down to its maximal torus by the twisted
masses) is U(L)Q × U(L) �Q × U(1)B × U(1)�B × U(1)Φ. The quiver diagram is represented in
Figure 1(a). Using the results above, we find the following effective twisted superpotential
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The twisted masses are compatible with a superpotential of the type

WA(Q
2, Q2, Φ2, B

12, B
21) = ∑

k

�
a Q

2
k
Φ2

Q2
k + b Q

2
k
B

21
B

12
Q2

k

�
, (2.19)

where a and b are parameters.

Case B A quiver gauge theory with gauge groups U(Nh + N↓) and U(N↓), with the
following matter content:

7

gauge groups

flavor grouptwisted masses

Case A: Cab =
�

0 −1
−1 2

�
, Λ = [0 1] , N1 = Nh , N2 = Nh + N↓

bifundamental fields B12 Nh ⊗ (Nh + N↓)
B21 (Nh + N↓)⊗Nh

adjoint field Φ2

fundamental and 
antifundamental fields (Q2

k, Q2
k)

U(L)Q × U(L) eQ × U(1)B × U(1) eB × U(1)Φ

Global symmetry group:

Broken down to maximal torus by twisted masses.
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Quiver Gauge Theory
Effective twisted superpotential:

Corresponds to Y.

Superpotential (compatible to eff. tw. superpotential_):



Relation via Brane Cartoons
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(e) Brane cartoon for case C

Figure 3: Brane transitions connecting the quiver gauge theories of cases A, B, C

5 Conclusions

In this note, we have used the Gauge/Bethe correspondence by Nekrasov and Shatashvili
to relate three different supersymmetric quiver gauge theories in two dimensions. These
theories, despite having different gauge groups and matter content, turn out to have the
same chiral ring and therefore the same supersymmetric ground states. We have thus used
quantum integrable systems as a tool to make statements about gauge theories. We used in
particular the fact that integrable systems with supergroup symmetry give rise to several
sets of Bethe equations, which correspond to different quiver gauge theories. In particular,
in the sl(m|n) case, there are (m+n

m ) equivalent quiver gauge theories with m + n − 1 nodes.
It is little surprising that the three gauge theories under consideration can also be related
via a string theory construction using brane movements.

While the translation of two–dimensional supersymmetric gauge theories into integrable
systems is less straight–forward than going in the opposite direction, we suggest to follow
this path in oder to gain knowledge about gauge theories via quantum integrable systems.
The parameters of the quantum integrable models translate into precise values for the
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which conserves a U(1)–symmetry, thus imposing a constraint on the twisted masses:

Λa �madj(a)
+ �mf(a)

k + �mf̄(a)
k = 0 , a �= m . (3.49)

Requiring the superpotential to be a polynomial in the fields translates to the conditions

Λa ∈ N , a �= m ; Λm ∈ R . (3.50)

This reproduces exactly the conditions that the representation Λ has to satisfy in order to be
finite–dimensional (see Appendix A). In this case, the two sides of the correspondence lead
to the same constraints.

4 Embedding in type IIA string theory

We have shown that the three quiver gauge theories introduced in Section 2.3 have the same
supersymmetric ground states. It is reasonable to expect that this connection also manifests
itself in other ways. Here we show that they can also be related to each other using a
string theory embedding. In this section, we propose a possible mechanism based on brane
transitions7 that faithfully reproduces the matter content of our three quiver gauge theories.
In the present setup, the construction corresponds to vanishing twisted masses. A complete
type i ia embedding that reproduces the twisted masses and an M–theory description of the
transition are currently under investigation.

Brane constructions such as the ones in [28, 18, 29] are likely candidates for relating the
three quiver gauge theories. Our setup (in type i ia string theory) is the following. We
consider two parallel NS5 branes NS5i, i = 1, 2 which are extended in the 012345–directions,
and another NS5–brane NS5� extended in the 012389–directions. There are Na D2–branes
(extended in the 016–directions) stretching between the NS5–branes. Furthermore, we
have L D4–branes extended in the 01789–directions. The setup is summarized in Table 4.
This configuration preserves 4 of the 32 supercharges of type i ia string theory. Note the
invariance under the rotations in the (01), (23), (45) and (89) planes: these appear as Lorentz
invariance and as global symmetries in the field theory.

0 1 2 3 4 5 6 7 8 9

NS51,2 × × × × × ×
NS5� × × × × × ×

D2 × × ×
D4 × × × × ×

Table 3: Brane setup for the type i ia embedding.

7We thank Kentaro Hori for suggesting this construction.
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Different argument for relation: brane motions
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U(Ne)
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−ı ı/2
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(c) Case C

Figure 1: Quiver diagrams for the three example theories. The twisted masses for the chiral
fields are given in red.

therefore have the same supersymmetric vacua). The three theories are given as follows:

Case A A quiver gauge theory with gauge groups U(Nh + N↓) and U(Nh) (the reason
for the names of the parameters Nh and N↓ will become clear in the following), with the
following matter content:

• a bifundamental B
12 in the representation Nh ⊗ (Nh + N↓) with twisted mass ı/2,

• a bifundamental B
21 in the representation (Nh + N↓)⊗ Nh with twisted mass ı/2,

• an adjoint Φ2 for U(Nh + N↓) with twisted mass ı,

• L fundamentals and anti–fundamentals (Q2
k
, Q2

k) for U(Nh + N↓) with twisted mass
−ı/2.

The global symmetry group H (which is broken down to its maximal torus by the twisted
masses) is U(L)Q × U(L) �Q × U(1)B × U(1)�B × U(1)Φ. The quiver diagram is represented in
Figure 1(a). Using the results above, we find the following effective twisted superpotential
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The twisted masses are compatible with a superpotential of the type
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where a and b are parameters.

Case B A quiver gauge theory with gauge groups U(Nh + N↓) and U(N↓), with the
following matter content:
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where a and b are parameters.
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masses) is U(L)Q × U(L) �Q × U(1)B × U(1)�B × U(1)Φ. The quiver diagram is represented in
Figure 1(a). Using the results above, we find the following effective twisted superpotential

�WA

eff(σ) =
L

2π
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��
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2

� �
log(σ(2)

p +
ı

2
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� �
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ı

2
)− 1

��

+
1

2π

Nh

∑
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∑
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��
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i

− σ
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2

� �
log(σ(1)

i
− σ
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2
)− 1

�

−
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σ
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i

− σ
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ı
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� �
log(−σ

(1)
i

+ σ
(2)
p − ı

2
)− 1

��

+
1

2π

Nh+N↓

∑
p,q

p �=q

�
σ
(2)
p − σ
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q − ı

� �
log(σ(2)

p − σ
(2)
q − ı)− 1

�
− ıτ1

Nh

∑
i=1

σ
(1)
i

− ıτ2

Nh+N↓

∑
p=1

σ
(2)
p . (2.18)

The twisted masses are compatible with a superpotential of the type

WA(Q
2, Q2, Φ2, B

12, B
21) = ∑

k

�
a Q

2
k
Φ2

Q2
k + b Q

2
k
B

21
B

12
Q2

k

�
, (2.19)

where a and b are parameters.

Case B A quiver gauge theory with gauge groups U(Nh + N↓) and U(N↓), with the
following matter content:

7

Hanany, Witten;
Hanany, Hori

But: difficult to turn on twisted masses!

Not surprising 

that the relation 

between the series 

can be seen in 

different ways.



Generalization/Open questions

Any spin chain with supergroup symmetry gives rise to 
several quiver gauge theories.

sl(m|n)
�

m + n

m

�
The supergroup           gives rise to               distinct 
quiver gauge theories.

Understand the meaning of twisted masses in gauge 
theory better.

Open questions:

Reproduce twisted masses in brane realizations.

Study and compare soliton solutions for the different 
quiver gauge theories corresponding to  one spin chain.



Summary

The Gauge/Bethe correspondence of Nekrasov/

Shatashvili relates the susy ground states of a 2d 

N=(2,2) gauge theory to the full spectrum of an 

integrable model.

We use this correspondence as a tool to relate 

different quiver gauge theories which correspond to 

the same integrable system.

Works for all integrable models with supergroup 

symmetry.

Window from the very well controlled integrable 

models into gauge theory.



Thank you for your attention!


