4-14 August SI 2010

Inflationary Cosmology I Overview of Cosmological Perturbation Theory

Misao Sasaki YITP, Kyoto University

Progress in Cosmology (1)

1st stage: 1916 ~ 1980

- 1916~ General Relativity/Friedmann Universe
- 1929 Hubble's law: V=H₀ R …cosmological redshift
- 1946~ Big-Bang theory/Nuclear astrophysics
- 1960~ High redshift objects/Quasars
- 1965 Discovery of relic radiation from Big-Bang <u>Cosmic Microwave Background</u>: T₀=2.7K
- 1970~ BBNucleosynthesis vs Observed Abundance
 → Existence of Dark Matter

Friedmann equation

$$H^2 = \frac{8\pi G}{3}\rho - \frac{K}{a^2}$$

a = a(t) ... cosmic scale factor (\propto size of the universe)

$$H \equiv \frac{da/dt}{a} \quad \dots \text{ expansion rate (Hubble parameter)}$$

 ρ ... mass density (=energy density/ c^2)

$$K = \begin{cases} +1 & \dots \text{ closed universe (3-sphere)} \\ 0 & \dots \text{ flat universe (Euclid 3-space)} \\ -1 & \dots \text{ open universe (3-hyperboloid)} \end{cases}$$

Progress in Cosmology (1)

1st stage: 1916 ~ 1980

- 1916~ General Relativity/Friedmann Universe
- 1929 Hubble's law: V=H₀ R …cosmological redshift
- 1946~ Big-Bang theory/Nuclear astrophysics
- 1960~ High redshift objects/Quasars
- 1965 Discovery of relic radiation from Big-Bang <u>Cosmic Microwave Background</u>: T₀=2.7K
- 1970~ BBNucleosynthesis vs Observed Abundance
 → Existence of Dark Matter

Friedmann (Big-Bang) Universe and CMB

When we observe sky with visible light...

We can only see the cloud: last scattering surface for visible frequencies

With microwave frequencies, we can see the universe at 300,000 years old.

Photons from LSS get redshifted by ~1000

Waves / centimeter

Intensity, 10⁻⁴ ergs / cm² sr sec cm⁻¹

Establishment of homogeneous & isotropic Big-Bang Universe Model

Progress in Cosmology (2)

2nd stage: 1980 ~ 2003

- 1980~ Revelation of Large Scale Structure Cosmological Perturbation Theory Particle Cosmology/Inflationary Universe
- 1992 Detection of CMB anisotropy
 Evidence for Inflationary Universe
- 2003 Accurate CMB angular spectrum Confirmation of Flatness of the Universe Strong evidence for Dark Energy

Observed Large Scale Structure

100k Data Release

204

39

distant universe = distant past

Hubble's Universe

2dFGRS (2003)

ರಿಕ್ಷ

232

Ŋ

10 ⁹ light yr (300Mpc)

0.0

Observable Universe ~ 10¹⁰ light yr

Progress in Cosmology (2)

2nd stage: 1980 ~ 2003

- 1980~ Revelation of Large Scale Structure Cosmological Perturbation Theory Particle Cosmology/Inflationary Universe
- 1992 Detection of CMB anisotropy
 Evidence for Inflationary Universe
- 2003 Accurate CMB angular spectrum Confirmation of Flatness of the Universe Strong evidence for Dark Energy

Cosmological Perturbation Theory - extremely brief (and biased) history general formulation inflation Lifshitz-Khalatnikov (1963) Starobinsky (1980) synchronous gauge R² model/gravitational wave spectrum Gerlach-Sengupta (1979) gauge-invariant (for spherically sym space) Mukhanov (1981) scalar power spectrum for R² model Bardeen (1980) gauge-invariant (for isotropic space) Linde (1982) slow-roll inflation (new inflation) Kodama-Sasaki(1984) gauge-inv (for isotropic *n*-dim space, multi-fluid/scalar) Mukhanov (1985), Sasaki (1986) inflaton quantization/scalar power spectrum

Progress in Cosmology (2)

2nd stage: 1980 ~ 2003

- 1980~ Revelation of Large Scale Structure Cosmological Perturbation Theory Particle Cosmology/Inflationary Universe
- 1992 Detection of CMB anisotropy (COBE) Evidence for Inflationary Universe
- 2003 Accurate CMB angular spectrum (WMAP) Confirmation of Flatness of the Universe Strong evidence for Dark Energy

CMB Anisotropy Spectrum

Horizon Problem

Why detection of $\delta T/T$ at $\theta > 10^{\circ}$ (~ $\pi/20$) so important?

 Because in the standard Friedmann universe, the size of causal volume (horizon size) grows like ~ ct.

In fact, the original horizon problem is why the universe could have been so homogeneous on scales much greater than the horizon size.

Origin of Horizon Problem

$a(t) \propto t^{1/2}$ for hot bigbang universe

Horizon grows faster than the cosmic expansion in the standard Friedmann (Bigbang) Universe

Horizon Problem

Why the detection of $\delta T/T$ at $\theta > 10^{\circ}$ was so important?

• Because in the standard Friedmann universe, the size of causal volume (horizon size) grows like ~ ct.

In fact, the original horizon problem is why the universe could have been so homogeneous on scales much greater than the horizon size.

- The angle sustaining the horizon size at LSS is $\sim 1^{\circ}$.
- Thus, any causal, physical process cannot produce correlation on scales $\theta > 1^{\circ}$.
- But ($\delta T/T$) $_{\theta>10^{\circ}} \neq 0$ means there exists non-zero correlation.

Progress in Cosmology (2)

2nd stage: 1980 ~ 2003

- 1980~ Revelation of Large Scale Structure Cosmological Perturbation Theory Particle Cosmology/Inflationary Universe
- 1992 Detection of CMB anisotropy
 Evidence for Inflationary Universe
- 2003 Accurate CMB angular spectrum Confirmation of Flatness of the Universe Strong evidence for Dark Energy

Inflationary Universe

Universe dominated by a scalar (inflaton) field

- H is almost constant ~ exponential expansion = inflation
- ϕ slowly rolls down the potential: slow-roll (chaotic) inflation Linde (1983)
- Inflation ends when ϕ starts damped oscillation.

 $\Rightarrow \phi$ decays into thermal energy (radiation)

Birth of Hot Bigbang Universe

Hubble horizon during Inflation $a(t) \sim e^{Ht}$; H~const. A small region of the universe $c H^{-1}$ Universe expands exponentially,

while the Hubble horizon size remains almost constant.

An initially tiny region can become much larger than the entire observable universe

 \rightarrow solves the horizon problem.

Seed of Cosmological Perturbations

Zero-point (vacuum) fluctuations of ϕ : $\delta\phi = \sum_{k} \delta\phi_{k}(t)e^{ik \cdot x}$ $\delta\ddot{\phi}_{k} + 3H\delta\dot{\phi}_{k} + \omega^{2}(t)\delta\phi_{k} = 0$; $\omega^{2}(t) = \frac{k^{2}}{a^{2}(t)} \equiv \left(\frac{2\pi c}{\lambda(t)}\right)^{2}$ physical wavelength $\lambda(t) \propto a(t)$

harmonic oscillator with friction term and time-dependent @

 $\delta \phi_k \rightarrow \text{const.}$... frozen when $\lambda > c H^{-1}$ (on superhorizon scales)

gravitational wave modes also satisfy the same eq.

Generation of Curvature Perturbations

curvature perturbation $\mathcal{R} \approx$ gravitational potential Ψ

- $\delta\phi$ is frozen on "flat" (\mathcal{R} =0) 3-surface (t=const. hypersurface)
- Inflation ends/damped osc starts on ϕ =const. 3-surface.

Theoretical Predictions

• Amplitude of curvature perturbation:

$$\mathcal{R} = \left. \frac{H^2}{2\pi \dot{\phi}} \right|_{k/a=H}$$
 Mukhanov (1985), Sasaki (1986)

• Power spectrum index:

$$M_{pl} \equiv \frac{1}{\sqrt{8\pi G}} \sim 2.4 \times 10^{18} \text{ GeV}$$
: Planck mass

$$\frac{4\pi k^3}{(2\pi)^3} P_{\mathcal{R}}(k) = Ak^{n_s-1} ; \ n_s - 1 = M_{pl}^2 \left(2\frac{V''}{V} - 3\frac{V'^2}{V^2} \right)$$

• Tensor (gravitational wave) spectrum:

$$\frac{4\pi k^3}{(2\pi)^3} P_T(k) = Ak^{n_T} ; \quad n_T = -3\frac{\dot{\phi}^2}{V} = -\frac{1}{8}\frac{P_R(k)}{P_T(k)} \quad \text{Liddle-Lyth (1992)}$$

CMB Anisotropy from Curvature Perturbations

Photons climbing up from gravitational potential well are redshifted.

For Planck distribution, $\frac{\Delta T}{T}(\vec{n}) \equiv \frac{T_{\text{obs}}}{T_{\text{min}}} - 1 = \Psi(\vec{x}_{\text{emit}})$ $\vec{x}_{\text{emit}} = \vec{n}d$; $\vec{n} = \text{line of sight}$

c=1 units

• In an expanding universe, this is modified to be $\frac{\Delta T}{T}(\vec{n}) = \frac{1}{3}\Psi(\vec{x}_{emit})$

Sachs-Wolfe effect

There is also the standard Doppler effect:

$$\frac{\Delta T}{T}(\vec{n}) = -\vec{n} \cdot \vec{v}(\vec{x}_{emit})$$

CMB Anisotropy Spectrum

• Amplitude of curvature perturbation:

$$\mathcal{R} = \left. \frac{H^2}{2\pi \dot{\phi}} \right|_{k/a=H}$$
Mukhanov (1985), Sasaki (1986)
$$\mathcal{R}_{\text{COBE}} \sim 10^{-5} \implies V^{1/4}(\phi) \sim 10^{16} \text{ GeV}$$

- Power spectrum index: $M_{pl} \equiv \frac{1}{\sqrt{8\pi G}} \sim 2.4 \times 10^{18} \text{ GeV: Planck mass}$ $\frac{4\pi k^3}{(2\pi)^3} P_{\mathcal{R}}(k) = Ak^{n_s-1} ; \quad n_s 1 = M_{pl}^2 \left(2\frac{V''}{V} 3\frac{V'^2}{V^2} \right)$ $n_{s,\text{WMAP}} 1 = -0.040 \pm 0.013 \iff n_s 1 \sim -0.04 \text{ for a typical model}$
- Tensor (gravitational wave) spectrum:

$$\frac{4\pi k^3}{(2\pi)^3} P_T(k) = Ak^{n_T} ; \quad n_T = -3\frac{\dot{\phi}^2}{V} = -\frac{1}{8}\frac{P_R(k)}{P_T(k)} \quad \text{Liddle-Lyth (1992)}$$

to be observed by PLANCK/CMBPOL/...

