PLANCK

launched on 14 May, 2009

full-sky survey started on 27 Aug, 2009

Angular resolution

CMB Fluctuations (μK)

WMAP 2years

300 μK

-300

WMAP 8years

📕 300 μK

-300 (

Planck 1year

300 µK

300

Planck 1yr Map

The Planck one-year all-sky survey

·eesa

(c) ESA, HFI and LFI consortia, July 2010

Scalar spectral index: $P_R(k) \propto k^{n_s}$

determination of spectral index to within 1 % accuracy

Tensor (gravitational wave) modes

In a "standard" (chaotic inflation) model, r~0.1

B-mode (odd parity) polarization

B-mode is a unique signature of tensor modes

Detection of r > 0.05 proves inflation at V^{1/4} \approx 10¹⁶GeV

Non-Gaussianity

Curvature perturbation (gravitational potential):

 $\Phi = \Phi_G + f_{NL} \Phi_G^2$ Gaussian perturbation: $\Phi_G \sim 10^{-5}$ current WMAP bound: $-10 < f_{NL} < 74$ (95% CL)

Planck's sensitivity: $|f_{NL}| \gtrsim 5$

Standard single-field slow-roll inflation gives $|f_{NL}| \ll 1$

Detection of non-zero f_{NL} implies non-conventional inflation

Tests of Fundamental Theory

extra-dims, string landscape, ...

Cosmology in 21st Century

High Precision Cosmology

- gravitational waves from Inflation
- non-Gaussian perturbations
- extra dimensions / string cosmology
- origin of dark energy
- • •

fundamental laws of nature may be revealed. (final theory?)

Cosmological perturbation theory will play a major role