Gauge/String Duality and High Energy Scattering

Chung-I Tan, Brown U.
August 7, 2010 , Summer Institute 2010
Fuji Calm
talk based on
R. Brower, J. Polchinski, M. Strassler, and C-I Tan, hep-th/0603 I I 5, hep-th/0707.2408, hep-th/07I0.4378;
R. Brower, S. Mathur, and C-I Tan, hep-th/0003II5, hep-th/9908I96
R. Brower, M. Djuric and C-I Tan, hep-th/08I2.0354
R. Brower, M. Djuric, I. Sarcevic and C-I Tan, hep-ph/I007.2259

Outline

- Scales in QCD--brief history of "QCD string"
- QCD "Closed String" as Metric Fluctuations in AdS space
- Graviton is a Regge cut in AdS
- Pomeron as a Reggeized Massive Graviton
- Pomeron Vertex Operator
- Transverse AdS_3 and High Energy Scattering
- Anti-Symmetric Forms -- Odderon
- Beyond Graviton exchange -- Eikonalization
- Deep Inelastic Scattering at Small-x
- Summary

Asymptotic Freedom
perturbative

$\alpha_{s}(q) \equiv \frac{\bar{\sigma}(q)^{2}}{4 \pi}=\frac{c}{\ln (q / \Lambda)}+$

Confinement
non-perturbative

Force at Long Distance--Constant Tension/Linear Potential, Coupling increasing, Quarks and Gluons strongly bound <==> "Stringy Behavior"

Test of Perturbative QCD-- Deep Inelastic Scattering (DIS)

Anomalous Dimension of Leading twist operator DGLAP evolution $\operatorname{tr}\left(F_{+\mu} D_{+}^{j-2} F_{+}^{\mu}\right)$

Regge Behavior and Regge Trajectory

$$
\mathcal{A} \sim s^{J(t)}=s^{\alpha(0)+\alpha^{\prime} t}
$$

[^0]
Genesis of String Theory

Genesis of String Theory

- Duality between direct-channel resonances and Regge behavior at high energies

$$
\sum_{r} \frac{g_{r}^{2}(t)}{s-\left(M r-i \Gamma_{r}\right)^{2}} \simeq \beta(t)\left(-\alpha^{\prime} s\right)^{\alpha(t)}
$$

- Expressed mathematically (Veneziano)

$$
A_{\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}}(s, t)=g_{0}^{2} \frac{\Gamma\left(1-\alpha_{\rho}(t)\right) \Gamma\left(1-\alpha_{\rho}(s)\right)}{\Gamma\left(1-\alpha_{\rho}(t)-\alpha_{\rho}(s)\right)}
$$

- Interpret as quantum theory of open string.

Genesis of String Theory

continued

- This is not the end of the story.
- Unitarity requires closed string.
- Virasoro amplitude:

10

$$
A(s, t, u)=\beta \frac{\Gamma(1-\alpha(s) / 2) \Gamma(1-\alpha(t) / 2) \Gamma(1-\alpha(u) / 2)}{\Gamma(1-(\alpha(t)+\alpha(u)) / 2) \Gamma(1-(\alpha(s)+\alpha(u)) / 2) \Gamma(1-(\alpha(t)+\alpha(s)) / 2)}
$$

Birth of Classic String Theory!

Death and Resurrection of QCD string

(i) ZERO MASS STATE (gauge/graviton)
(ii) SUPER SYMMETRY
(iii) EXTRA DIMENSION $4+6=10$
(iv) NO HARD PROCESSES! (totally wrong dynamics)

Stringy Rutherford Experiment
At Wide Angle: s,-t,-u >> 1/ α '

$$
A_{\text {closed }}(s, t) \rightarrow \exp \left[-\frac{1}{2} \alpha^{\prime}(s \ln s+t \ln t+u \ln u)\right]
$$

HE scattering after AdS/CFT

Open-string Scattering

$0\left(N^{-2}\right)$
Closed-string Scattering

In this talk, will focus on "closed strings" only. For "open-string" in AdS/CFT, e.g., mesons and baryons, see talks by Koji Hashimoto and others.

What is the (bare) Pomeron anyway?

Definition:

The Pomeron ' the vacuum exchange contribution to scattering at high energies at leading order in $1 / \mathrm{N}_{\mathrm{c}}$ expansion.
$A(s, t)=g_{s}^{2} A_{1}(s, t, \lambda)+g_{s}^{4} A_{2}(s, t, \lambda)+\cdots$
Where $\lambda=g^{2} \mathrm{~N}_{\mathrm{c}} \quad \& \mathrm{~g}_{\mathrm{s}}=1 / \mathrm{N}_{\mathrm{c}}$

Total Cross Sections

BFKL: Balitsky \& Lipatov; Fadin,Kuraev,Lipatov‘75

\square Sum diagrams $1^{\text {st }}$ order in $g^{2} N_{c}$ \& all orders $\left(g^{2} N_{c} \operatorname{logs}\right)^{n}$

- BKFL equation for 2 "reggized" gluon ladder is $L=2$ SL(2,C) spin chain to one loop order
\square Accidentally "planar" diagrams (e.g. $\mathrm{N}_{\mathrm{c}}=1$) and conformal.

2-GLUONS in 4d = GRAVITON in 5d

Emergence of 5-dim AdS-Space

Let $z=1 / r, \quad 0<z<z_{0}, \quad$ where $\quad z_{0} \sim 1 / \bigwedge_{\text {qcd }}$
"Fifth" co-ordinate is size \mathbf{z} / \mathbf{z} ' of proj/target

5 kinematical Parameters:

2-d Longitudinal

$$
\begin{aligned}
& \mathrm{p}^{ \pm}=\mathrm{p}^{0} \pm \mathrm{p}^{3} \simeq \exp \left[\pm \log \left(\mathrm{s} / \Lambda_{q c d}\right)\right] \\
& \mathrm{x}^{\prime}-\mathrm{x}_{\perp}=\mathrm{b}_{\perp} \\
& \mathrm{z}=1 / \mathrm{Q}\left(\text { or } \mathrm{z}^{\prime}=1 / \mathrm{Q}^{\prime}\right)
\end{aligned}
$$

2-d Transverse space:
1-d Resolution:

Trajectories are different in QCD:

What can we learn from AdS/QCD?

II: Gauge/String Duality

QCD Pomeron as "metric fluctuations" in AdS

- Strong <==> Weak duality
- Geometry of AdS/CFT and Scale Invariance
- High Energy Scattering
- Confinement and Glueball Spectrum
- Pomeron as Reggeized Massive Graviton

Ila: Degrees of Freedom

Weak Coupling:

Gluons and Quarks:

$$
\begin{aligned}
& A_{\mu}^{a b}(x), \psi_{f}^{a}(x) \\
& \bar{\psi}(x) \psi(x), \quad \bar{\psi}(x) D_{\mu} \psi(x) \\
& S(x)=\operatorname{Tr} F_{\mu \nu}^{2}(x), O(x)=\operatorname{Tr} F^{3}(x) \\
& T_{\mu \nu}(x)=\operatorname{Tr} F_{\mu \lambda}(x) F_{\lambda \nu}(x), \quad \text { etc. }
\end{aligned}
$$

$\mathcal{L}(x)=-\operatorname{Tr} F^{2}+\bar{\psi} \not D \psi+\cdots$

Strong Coupling:

Metric tensor:

$$
G_{m n}(x)=g_{m n}^{(0)}(x)+h_{m n}(x)
$$

Anti-symmetric tensor (Kalb-Ramond fields):
Dilaton, Axion, etc.
Other differential forms: $b_{m n}(x)$
$\phi(x), a(x)$, etc $C_{m n \ldots(x)}$

$$
\mathcal{L}(x)=\mathcal{L}(G(x), b(x), C(x), \cdots)
$$

$\mathcal{N}=4 \mathrm{SYM}$ Scattering at High Energy in StrongCoupling

$$
\left\langle e^{\int d^{4} x \phi_{i}(x) \mathcal{O}_{i}(x)}\right\rangle_{C F T}=\mathcal{Z}_{\text {string }}\left[\left.\phi_{i}(x, z)\right|_{z \sim 0} \rightarrow \phi_{i}(x)\right]
$$

Bulk Degrees of Freedom from type-IIB Supergravity on AdS $_{5}$:

- metric tensor: $G_{M N}$
- Kalb-Ramond 2 Forms: $B_{M N}, C_{M N}$
- Dilaton and zero form: ϕ and C_{0}

$$
\lambda=g^{2} N_{c} \rightarrow \infty
$$

Supergravity limit

Strong coupling
Conformal
Pomeron as Graviton in AdS

Conformal Invariance and Pomeron Interaction from AdS/CFT

Technique: Summing generalized witten Diagrams

Freedman et al., hep-th/9903196
Brower, Polchinski, Strassler, and Tan, hep-thl 000311s

- Draw all "Witten-Feynman" Diagrams in AdS_{5},
- High Energy Dominated by Spin-2 Exchanges:

One Graviton Exchange at High Energy

 $T^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=g_{s}^{2} \int \frac{d z}{z^{5}} \int \frac{d z^{\prime}}{z^{\prime 5}} \tilde{\Phi}_{\Delta}\left(p_{1}^{2}, z\right) \tilde{\Phi}_{\Delta}\left(p_{3}^{2}, z\right) \mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{2}^{2}, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{4}^{2}, z^{\prime}\right)$

$$
\mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right)=\left(z^{2} z^{\prime 2} s\right)^{2} G_{++,--}\left(q, z, z^{\prime}\right)=\left(z z^{\prime} s\right)^{2} G_{\Delta=4}^{(5)}\left(q, z, z^{\prime}\right)
$$

- Strong Coupling Pomeron has $J=2$
- Need to consider λ finite.
- For QCD, needs confinement to introduce a scale.

Geometry of AdS/CFT and Scale Invariance

What is the curved space?

Maldacena: UV (large r) is (almost) an $A d S_{5} \times X$ space

$$
d s^{2}=r^{2} d x_{\mu} d x^{\mu}+\frac{d r^{2}}{r^{2}}+d s_{X}^{2}
$$

Captures $Q C D$'s approximate $U V$ conformal invariance

$$
x \rightarrow \zeta x, r \rightarrow \frac{r}{\zeta} \quad(\text { recall } r \sim \mu)
$$

Confinement: IR (small r) is cut off in some way

$$
r \sim \mu>r_{\min } \sim \Lambda_{Q C D}
$$

For Pomeron: string theory on cut-off $A d S_{5}$ (X plays no role)

Cutoff AdS 5

Large Sizes
$z=1 / r$,
"Fifth" co-ordinate is size \mathbf{z} / \mathbf{z} ' of proj/target

2-d Longitudinal 2-d Transverse space: 1-d Resolution:

$$
\begin{aligned}
& \mathrm{p}^{ \pm}=\mathrm{p}^{0} \pm \mathrm{p}^{3} \simeq \exp \left[\pm \log \left(\mathrm{s} / \Lambda_{q c d}\right)\right] \\
& \mathrm{x}_{\perp}^{\prime}-\mathrm{x}_{\perp}=\mathrm{b}_{\perp} \\
& \left.\mathrm{z}^{\prime}=1 / \mathrm{Q} \text { (or } \mathrm{z}^{\prime}=1 / \mathrm{Q}^{\prime}\right)
\end{aligned}
$$

Confinement Deformation: Glueball Spectrum

Four-Dimensional Mass:
5-Dim Massless Mode:

$$
E^{2}=\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)+M^{2}
$$

$$
0=\mathrm{E}^{2}-\left(\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}+\mathrm{p}_{3}^{2}+\mathrm{p}_{\mathrm{r}}^{2}\right)
$$

Confinement Deformation: Glueball Spectrum

Table 1: IIA Classification for $Q C D_{4}$. Subscripts to $J^{P C}$ designate $P_{\tau}=-1$.

Approx. Scale Invariance and the $5^{\text {th }}$ dimension

IIb: Pomeron as Diffusion in AdS

Conformal Pomeron in Target Space:

Ultra-local approximation in AdS:

$$
\begin{gathered}
\tilde{s}=\frac{R^{2}}{r^{2}} s, \quad \tilde{t}=\frac{R^{2}}{r^{2}} t, \quad \alpha_{\text {eff }}^{\prime}(r)=\frac{R^{2} \alpha^{\prime}}{r^{2}} \\
\mathcal{T}_{10}^{(\pm)}(\tilde{s}, \tilde{t}) \sim f^{(\pm)}\left(\alpha^{\prime} \tilde{t}\right)\left(\alpha^{\prime} \tilde{s}\right)^{\alpha_{ \pm}(0)+\alpha^{\prime} \tilde{t} / 2} \sim s^{\alpha \pm(0)+\alpha_{e f f}^{\prime}(r) t / 2}
\end{gathered}
$$

Flat Space String Scattering -- Regge Behavior

Diffusion in AdS

AdS, $C=+1$:

$$
s^{2+\alpha^{\prime} \tilde{t} / 2}=\int \frac{d j}{2 \pi i} s^{j} G(j) \quad \text { with } \quad G(j)=\frac{1}{j-2-\alpha^{\prime} \Delta_{P} / 2}
$$

Effective Schrodinger Equation:

$$
\left(j-2-\alpha^{\prime} \Delta_{P} / 2\right) G\left(j ; z, z^{\prime}, t\right)=\delta\left(z-z^{\prime}\right)
$$

Fixed cut in J-plane:

$$
\text { At } t=0 \text { and } z=e^{-u}
$$

$$
\left[-\partial_{u}^{2}+4+2 \sqrt{\lambda}(\dot{\jmath}-2)\right]=e^{u} \delta\left(u-u^{\prime}\right)
$$

Strong coupling: $\quad j_{0}=2-\frac{2}{\sqrt{\lambda}}$

Comparison of strong vs weak coupling kernel at $\mathrm{t}=0$

Strong Coupling:

$$
\mathcal{K}\left(r, r^{\prime}, s\right)=\frac{s^{j_{0}}}{\sqrt{4 \pi \mathcal{D} \ln s}} e^{-\left(\ln r-\ln r^{\prime}\right)^{2} / 4 \mathcal{D} \ln s}
$$

Diffusion in "warped co-ordinate"

$$
j_{0}=2-\frac{2}{\sqrt{g^{2} N}}+O\left(1 / g^{2} N\right) \quad \mathcal{D}=\frac{1}{2 \sqrt{g^{2} N}}+O\left(1 / g^{2} N\right)
$$

Weak Coupling: $\quad K\left(s, k_{\perp}, k_{\perp}^{\prime}\right) \approx \frac{s^{\alpha(0)-1}}{\sqrt{\pi \ln s}} e^{-\left[\left(\ln k_{\perp}^{\prime}-\ln k_{\perp}\right)^{2} / 4 \mathcal{D} \ln s\right]}$

$$
j_{0}=1+\ln (2) g^{2} N / \pi^{2} \quad \mathcal{D}=\frac{14 \zeta(3)}{\pi} g^{2} N / 4 \pi^{2}
$$

Pomeron Propagator at Finite Coupling λ :

Due to Diffusion in AdS

- Pomeron becomes cut at

$$
j_{0}=2-2 / \sqrt{\lambda}
$$

- Conformal: No scale and No Regge trajectory

$\mathcal{N}=4$ Strong vs Weak BFKL

Hardwall Spectrum:

solving an effective Schrodinger equation

Pomeron in QCD

Running UV, Confining IR (large N)

The hadronic spectrum is little changed, as expected.
The BFKL cut turns into a set of poles, as expected.

QCD Pomeron <===> Graviton (metric) in AdS

Flat-space String

Conformal Invariance
Fixed cut in J-plane:

Weak coupling:
(BFKL)

$$
j_{0}=1+\frac{4 \ln 2}{\pi} \alpha N
$$

Strong coupling:

$$
j_{0}=2-\frac{2}{\sqrt{\lambda}}
$$

Confinement

IIc: String Theoretic Approach:

OPE ==> Pomeron Vertex Operator

$$
(L-1) V_{P}=(\bar{L}-1) V_{P}=0
$$

Pomeron Vertex Operator Approach:

work by Brower, Polchinski, Strassler and Tan. First we'll briefly describe flat space scattering.

- At tree level, string theory scattering amplitude is given by an integral over vertex operators

$$
A_{n} \sim \int d^{2} w_{2} d^{2} w_{3} \cdots d^{2} w_{n-2}<V_{1} V_{2} \cdots V_{n}>
$$

- We will be interested in 2-2 scattering, where this is given by

$$
A_{4}=\int d^{2} w<V_{1}(0) V_{2}(w, \bar{w}) V_{3}(1) V_{4}(\infty)>
$$

Introduction to High Energy Scattering in String Theory
Flat Space

Using OPE, and imposing

$$
\begin{gathered}
(L-1) V_{p}=(L-1) V_{p}=0 \\
A_{4}=\int d^{2} w<V_{1}(0) V_{2}(w, \bar{w}) V_{3}(1) V_{4}(\infty)>
\end{gathered}
$$

- BPST showed that in the Regge limit of $s \rightarrow \infty$ and $s \gg t$ we can calculate the scattering amplitude by introducting a 'Pomeron vertex operator'

$$
A_{4} \sim<V_{1} V_{2} V_{P}^{-}><V_{P}^{+} V_{3} V_{4}>
$$

Introduction to High Energy Scattering in String Theory

Flat Space continued

- Here

$$
V_{P}^{ \pm}=\left(\frac{2}{\alpha^{\prime}} \partial X^{ \pm} \bar{\partial} X^{ \pm}\right)^{1+\frac{\alpha^{\prime} t}{4}} e^{\mp i k X}
$$

- This simplifies calculations, and leads to an interpretation of scattering being mediated by Pomeron exchange.
- This was derived in light cone coordinates, where in the Regge limit we can separate the states into the ones with a large + component and the ones with a large - component.

Introduction to High Energy Scattering in String Theory
Flat Space continued

- Here

$$
V_{P}^{ \pm}=\left(\frac{2}{\alpha^{\prime}} \partial X^{ \pm} \bar{\partial} X^{ \pm}\right)^{1+\frac{\alpha^{\prime} t}{4}} e^{\mp i k X}
$$

- However, flat space string theory is not enough for a connection with QCD.
- This is where the AdS/CFT correspondence comes in.

The AdS/CFT Correspondence

The metric for $A d S$ space is

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}+d z^{2}\right)+d \Omega_{5}
$$

We can introduce a new coupling λ, where

$$
\lambda \equiv \frac{R^{4}}{\alpha^{\prime 2}}
$$

The correspondence relates λ to the Yang-Mills coupling constant via the relation

$$
\lambda=g_{Y M}^{2} N_{c},
$$

therefore we see that λ is the 't Hooft coupling.

Introduction to High Energy Scattering in String Theory

AdS space
The basic idea is the same as in flat space.

$$
(L-1) V_{P}=(\bar{L}-1) V_{P}=0
$$

- We begin by introducing the $A d S$ space Pomeron vertex operator

$$
V_{P}(j, \pm)=\left(\partial X^{ \pm} \bar{\partial} X^{ \pm}\right)^{\frac{j}{2}} e^{\mp i k X} \phi_{j}(z)
$$

- We see that we now have a wave function that depends on the $A d S$ coordinate z. For the Pomeron this function is

$$
\phi_{+j}(z) \sim z^{2-j} K_{2 i \nu}\left(|t|^{\frac{1}{2}} z\right)
$$

- With this in mind, we can express the amplitude as

$$
\begin{gathered}
A_{4} \sim \int \frac{d j}{2 \pi i} \int d \nu \frac{\nu \sinh 2 \pi \nu}{\pi} \frac{\Pi(j) s^{j}}{j-j_{0}+\rho \nu^{2}} \\
\times<V_{1} V_{2} V_{P}(j, \nu, k,-)><V_{P}(j, \nu, k,+) V_{3} V_{4}>
\end{gathered}
$$

where $\rho=\frac{2}{\sqrt{\lambda}}$ and $j_{0}=2-\rho$. V_{i} are the state dependent vertex operators.

In gauge theories with string-theoretical dual descriptions, the Pomeron emerges unambiguously.

Pomeron can be associated with a Reggeized Massive Graviton.

Both the IR (soft) Pomeron and the UV (BFKL) Pomeron are dealt in a unified single step.
R. Brower, J. Polchinski, M. Strassler, and C-I Tan,
"The Pomeron and Gauge/String Duality", (hep-th/0603115.)

Gauge/String Duality:

 QCD at Strong Coupling

- $\mathrm{C}=+1$: Pomeron <=> Graviton:

$$
\begin{aligned}
& \alpha_{0}^{(+)}=2-2 / \sqrt{\lambda}+O(1 / \lambda) \\
& \left(\text { symmetric tensor }: g_{\mu \nu}\right)
\end{aligned}
$$

- $\mathrm{C}=-1$: Odderon <=> Kalb-Ramond

$$
\begin{aligned}
& \alpha_{0}^{(-)}=1-m_{a d s}^{2} / 2 \sqrt{\lambda}+O(1 / \lambda) \\
& \left(\text { anti }- \text { symmetric tensor }: b_{\mu \nu}\right)
\end{aligned}
$$

- New Questions: New realization of conformal inv., Confinement, Unitarity, Saturation, Confinement, Froissart, etc.?

IUd. Conformal Invariance at $H E$ and Graviton

* Reduction to $A d 5-3$
* New Realization of Conformal Invariance
© Conformal limit: $\Delta(J)$ curve
© Confinement:

HE scattering after AdS/CFT

Symmetry \leftrightarrow Isometry

full $O(4,2)$ conformal group as isometries of $\operatorname{AdS} S_{5}$ 15 generators: $P_{\mu}, M_{\mu \nu}, D, K_{\mu}$
collinear group $S L_{L}(2, R) \times S L_{R}(2, R)$ used in DGLAP generators: $D \pm M_{+-}, P_{ \pm}, K_{\mp}$
$S L(2, C) \quad$ Möbius invariance
generators: $i D \pm M_{12}, P_{1} \pm i P_{2}, K_{1} \mp i K_{2}$
isometries of the Euclidean (transverse) $A d S_{3}$ subspace of $A d S_{5}$

$$
\text { propagator }=\left(J-M_{+-}\right)^{-1}
$$

Lorentz boost, $\exp \left[-y M_{+-}\right]$

$$
d s^{2}=R^{2}\left[d z^{2}+d w d \bar{w}\right] / z^{2}
$$

$A d S_{3}$ is the hyperbolic space H_{3}. Indeed $S L(2, C)$ is the subgroup generated by all elements of the conformal group that commute with the boost operator, M_{+-}and as such plays the same role as the little group which commutes with the energy operator P_{0}.

$$
\begin{array}{ll}
J_{0}=w \partial_{w}+\frac{1}{2} z \partial_{z}, J_{-}=-\partial_{w}, & J_{+}=w^{2} \partial_{w}+w z \partial_{z}-z^{2} \partial_{\bar{w}} \\
\bar{J}_{0}=\bar{w} \partial_{\bar{w}}+\frac{1}{2} z \partial_{z}, \quad \bar{J}_{-}=-\partial_{\bar{w}}, & \bar{J}_{+}=\bar{w}^{2} \partial_{\bar{w}}+\bar{w} z \partial_{z}-z^{2} \partial_{w} \\
M_{+-}=2-H_{+-} /(2 \sqrt{\lambda})+O(1 / \lambda) & H_{+-}=-z^{3} \partial_{z} z^{-1} \partial_{z}-z^{2} \nabla_{x_{\perp}}^{2}+3 . \\
{\left[H_{+-}+2 \sqrt{\lambda}(j-2)\right] G_{3}(j, v)=z^{3} \delta\left(z-z^{\prime}\right) \delta^{2}\left(x_{\perp}-x_{\perp}^{\prime}\right)}
\end{array}
$$

Finite Strong Coupling Pomeron Propagator--
Conformal Limit

- Spin 2 and Reduction to AdS_3
- Spin 2-.....-> J by Using Complex angular momentum representation

One Graviton in Momentum Representation at High Energy

$$
J=2
$$

$$
T^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=g_{s}^{2} \int \frac{d z}{z^{5}} \int \frac{d z^{\prime}}{z^{\prime}} \tilde{\Phi}_{\Delta}\left(p_{1}^{2}, z z \tilde{\Phi}_{\Delta}\left(p_{3}^{2}, z\right) T^{(1)}\left(p_{i}, z, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{2}^{2}, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{1}^{2}, z^{\prime}\right)\right.
$$

$$
\begin{aligned}
& p_{1}+p_{2} \rightarrow p_{3}+p_{4} \\
& \mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right)=\left(z^{2} z^{\prime 2} s\right)^{2} G_{++,--}\left(q, z, z^{\prime}\right)=\left(z z^{\prime} s\right)^{2} G_{\Delta=4}^{(5)}\left(q, z, z^{\prime}\right)
\end{aligned}
$$

Reduction to AdS-3 at High Energy for Near Forward Scattering

* momentum transfer g is transverse:

$$
\left(z z^{\prime}\right) G_{\Delta=3}^{(3)}\left(x^{\perp}, z, z^{\prime}\right)=\int \frac{d q^{\perp}}{(2 \pi)^{2}} e^{i x^{\perp} q^{\perp}} G_{\Delta=4}^{(5)}\left(q^{ \pm}=0, q^{\perp}, z, z^{\prime}\right)
$$

* Ads-3 Propagator:

$$
\frac{\mathcal{K}\left(s, x^{\perp}, z, z^{\prime}\right)=\left(z z^{\prime} s\right)^{2}\left(z z^{\prime}\right) G_{3}^{(3)}\left(x^{\perp}, z, z^{\prime}\right)}{\left\{-\partial_{z} z^{-1} \partial_{z}-z^{-1} \partial_{x \perp}^{2}+3 z^{-3}\right\} G_{3}^{(3)}\left(x_{\perp}, x_{\perp}^{\prime}, z, z^{\prime}\right)=\delta\left(z-z^{\prime}\right) \delta^{(2)}\left(x_{\perp}-x_{\perp}^{\prime}\right)}
$$

* Isometry of Euclidean $A d S-3$ is $S \angle(2 C)$ the same symmetry group as BFKL Kernel (spin(Mains):
2-Gluons = Graviton

$$
\mathcal{K}\left(j, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)=\left(z z^{\prime} / R^{4}\right) G_{3}(j, v)
$$

$A d S_{3}$ Green's function which has a simple closed form,

$$
G_{3}(j, v)=\frac{1}{4 \pi} \frac{[1+v+\sqrt{v(2+v)}]^{\left(2-\Delta_{+}(j)\right)}}{\sqrt{v(2+v)}} .
$$

Impact Representation:

$$
\begin{aligned}
T^{(1)}\left(s ; x_{\perp}-y_{\perp}\right) & =(1 / 2 \pi)^{2} \int d^{2} q_{\perp} e^{i\left(x_{\perp}-y_{\perp}\right) \cdot q_{\perp}} T^{(1)}\left(s,-q_{\perp}^{2}\right) \\
T^{(1)}\left(s ; x_{\perp}-y_{\perp}\right) & =g_{s}^{2} \int \frac{d z d z^{\prime}}{z^{5} z^{5}} \tilde{\Phi}_{\Delta}\left(p_{1}^{2}, z\right) \tilde{\Phi}_{\Delta}\left(p_{3}^{2}, z^{\prime}\right) \mathcal{K}\left(s, x_{\perp}-y_{\perp}, z, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{2}^{2}, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{4}^{2}, z^{\prime}\right)
\end{aligned}
$$

j-plane Representation:
$\mathcal{K}\left(s, x_{\perp}-y_{\perp}, z, z^{\prime}\right)=\left(z z^{\prime}\right) \int \frac{d j}{2 \pi i} \frac{\left(1+e^{-i \pi j}\right)}{\sin \pi j}(\tilde{s})^{j} G_{\Delta_{2}}^{(3)}\left(j, x_{\perp}-y_{\perp}, z, z^{\prime}\right)$
Reduction to AdS-3:

$$
G_{\Delta_{2}}^{(3)}\left(j, x_{\perp}-y_{\perp}, z, z^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \int d^{2} q_{\perp} e^{i\left(x_{\perp}-y_{\perp}\right) \cdot q_{\perp}} \tilde{G}_{\Delta_{2}}^{(3)}\left(j,-q_{\perp}^{2}, z, z^{\prime}\right)
$$

D.E. for Propagator:

$$
\left\{2 \sqrt{\lambda}(j-2)-z^{3} \partial_{z} z^{-1} \partial_{z}-z^{2} \partial_{x^{\perp}}^{2}+3\right\} G_{(\Delta(j)-1)}^{(3)}\left(x_{\perp}, x_{\perp}^{\prime}, z, z^{\prime}\right)=z^{3} \delta\left(z-z^{\prime}\right) \delta^{(2)}\left(x_{\perp}-x_{\perp}^{\prime}\right)
$$

Strong Coupling Pomeron Propagator--
Conformal Limit

- Use J-dependent Dimension
$\Delta: \quad 4 \rightarrow \Delta(J)=2+\left[2 \sqrt{\lambda}\left(J-J_{0}\right)\right]^{1 / 2}=2+\sqrt{\bar{j}}$
- BFKL-cut: $\quad J_{0}=2-\frac{2}{\sqrt{\lambda}}$

Spin-Dimension Curve

$(4,2)$ and $(0,2)$ have zero anomalous dimension

Dim=0
inversion symmetry: $\Delta \rightarrow 4-\Delta$

With Confinement

- discrete spectrum

Cutoff at large b:

Conformal:

$$
\begin{aligned}
& \mathcal{K}\left(j, x_{\perp}-x_{\perp}^{\prime}, z, z^{\prime}\right) \sim\left[\left(x_{\perp}-x_{\perp}^{\prime}\right)^{2}\right]^{-1-\sqrt{c\left(j-j_{0}\right)}} \\
& \mathcal{K}\left(j_{0}, x_{\perp}-x_{\perp}^{\prime}, z, z^{\prime}\right) \sim \frac{1}{\left(x_{\perp}-x_{\perp}^{\prime}\right)^{2}}
\end{aligned}
$$

Confining:

$$
\begin{aligned}
\mathcal{K}\left(j, x_{\perp}-x_{\perp}^{\prime}, z, z^{\prime}\right) & \simeq \frac{\left|d_{0}\right|^{2} J_{\sqrt{j}}\left(m_{0} z\right) J_{\sqrt{j}}\left(m_{0} z^{\prime}\right)}{2 \pi} K_{0}\left(m_{0}\left|x_{\perp}-x_{\perp}^{\prime}\right|\right) \\
& \simeq \frac{\left|d_{0}\right|^{2} J_{\sqrt{j}}\left(m_{0} z\right) J_{\sqrt{j}}\left(m_{0} z^{\prime}\right)}{2 \pi} e^{-m_{0}\left|x_{\perp}-x_{\perp}^{\prime}\right|} \\
\mathcal{K}\left(j_{0}, x_{\perp}-x_{\perp}^{\prime}, z, z^{\prime}\right) & \simeq \frac{\left|d_{0}\right|^{2} J_{0}\left(m_{0} z\right) J_{0}\left(m_{0} z^{\prime}\right)}{2 \pi} e^{-m_{0}\left|x_{\perp}-x_{\perp}^{\prime}\right|}
\end{aligned}
$$

AdS Graviton Propagator in Confined Background

* Infinite number of Images charges
* Easier using spectral representation in momentum

Pomeron Propagator in momentum represention
-with or without Confinement
spectral Rep. in Conformal limit:
$G\left(j, t, z, z^{\prime}\right)=\int_{0}^{\infty} d k k \frac{J \sqrt{\sqrt{j}}(k z) J \sqrt{\sqrt{j}}\left(k z^{\prime}\right)}{k^{2}-t}$
Spectral Rep. with Confinement
$G\left(j, q, z, z^{\prime}\right)=\sum_{n} \frac{\Phi_{n}(z) \Phi_{n}\left(z^{\prime}\right)}{m_{n}^{2}(j)-t}$
Ref. Brower, Polchinski, Strassler, Tan,

III: Odderon in AdS

Massless modes of a closed string theory: metric tensor, $\quad G_{m n}=g_{m n}^{0}+h_{m n}$
Kolb-Ramond anti-sym. tensor, $\quad b_{m n}=-b_{n m}$ dilaton, etc. $\quad \phi, \chi, \cdots$

$\mathcal{N}=4$ SYM Scattering at High Energy

```
AdS\mp@subsup{S}{\textrm{y}}{}}\mathrm{ boundary, z 
\[
\left\langle e^{\int d^{d x} x \phi_{l}(x) O_{t}(z)}\right\rangle_{C F T}=\mathcal{Z}_{\text {string }}\left[\left.\phi_{r}(x, z)\right|_{z \sim 0} \rightarrow \phi_{s^{\prime}}(x)\right],
\]
```


Bulk Degrees of Freedom from Supergravity:

- metric tensor: $G_{M N}$
- Kalb-Ramond 2 Forms: $B_{M N}, C_{M N}$
- Dilaton and zero form: ϕ and C_{0}

Born-Infeld Action

$$
\left.S=\int d^{4} x \operatorname{det}\left[G_{\mu \nu}+e^{-\phi / 2}\left(B_{\mu \nu}+F_{\mu \nu}\right)\right]+\int d^{4} x\left(C_{0} F \wedge F+C_{2} \wedge F+C_{4}\right)\right\rangle
$$

Dimension	State $J^{P C}$	Operator	Supergravity
$\Delta=4$	0^{++}	$\operatorname{Tr}(F F)=\vec{E}^{a} \cdot \vec{E}^{a}-\vec{B}^{a} \cdot \vec{B}^{a}$	ϕ
$\Delta=4$	2^{++}	$T_{i j}=E_{i}^{a} \cdot E_{j}^{a}+B_{i}^{a} \cdot B_{j}^{a}-$ trace	$G_{i j}$
$\Delta=4$	0^{-+}	$\operatorname{Tr}(F F)=E^{a} \cdot B^{a}$	C_{0}
$\Delta=6$	1^{+-}	$\operatorname{Tr}\left(F_{\mu \omega}\left\{F_{\rho \rho,}, F_{\lambda_{n}}\right\}\right) \sim d^{\text {abe }} F^{a} F^{b} F^{c}$	$B_{i j}$
$\Delta=6$	1^{--}	$\operatorname{Tr}\left(\bar{F}_{\mu \omega}\left\{F_{\rho \sigma}, F_{\lambda \eta}\right\}\right) \sim d^{a k} \vec{F}^{a} F^{b} F^{c}$	$C_{2, i j}$

Confinement gives a discrete spectrum of Glueballs: Lattice Data vs AdS IIA Gravity dual Gauge $\left(\alpha^{\prime}=0\right)$

flat-space expectation

$$
\begin{aligned}
F_{\bar{c} b \rightarrow \bar{a} d} & \equiv \bar{F}=F^{+}+F^{-} & {\left[\sigma_{T}(\bar{a} b)+\sigma_{T}(a b)\right] \sim(2 / s) \operatorname{Im} F^{+} } \\
F_{a b \rightarrow c d} & \equiv F=F^{+}-F^{-} & {\left[\sigma_{T}(\bar{a} b)-\sigma_{T}(a b)\right] \sim(2 / s) \operatorname{Im} F^{-} }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{T}_{10}^{(+)}(s, t) \rightarrow f^{(+)}\left(\alpha^{\prime} t\right)\left[\frac{\left(-\alpha^{\prime} s\right)^{2+\alpha^{\prime} t / 2}+\left(\alpha^{\prime} s\right)^{2+\alpha^{\prime} t / 2}}{\sin \pi\left(2+\alpha^{\prime} t / 2\right)}\right] \\
& \mathcal{T}_{10}^{(-)}(s, t) \rightarrow f^{(-)}\left(\alpha^{\prime} t\right)\left[\frac{\left(-\alpha^{\prime} s\right)^{1+\alpha^{\prime} t / 2}-\left(\alpha^{\prime} s\right)^{1+\alpha^{\prime} t / 2}}{\sin \pi\left(1+\alpha^{\prime} t / 2\right)}\right]
\end{aligned}
$$

$$
\alpha_{+}(t)=2+\alpha^{\prime} t / 2
$$

Massless Modes in Flat-Space String

$$
\begin{aligned}
& |I, J ; k\rangle=a_{1, I}^{\dagger} \tilde{a}_{1, J}^{\dagger}|N S\rangle_{L}|N S\rangle_{R}|k\rangle \\
& |h\rangle=\sum_{I, J} h^{I J}|I, J ; k\rangle, \quad|B\rangle=\sum_{I, J} B^{I J}|I, J ; k\rangle, \quad|\phi\rangle=\sum_{I, J} \eta^{I J}|I, J ; k \perp\rangle
\end{aligned}
$$

fluctuations of the metric $G_{M N}$
anti-symmetric Kalb-Ramond background $B_{M N}$
dilaton, ϕ

Flat-Space String Theory

$$
\begin{array}{cc}
\mathcal{T}_{10}^{(+)}(s, t) \rightarrow f^{(+)}\left(\alpha^{\prime} t\right)\left[\frac{\left(-\alpha^{\prime} s\right)^{2+\alpha^{\prime} t / 2}+\left(\alpha^{\prime} s\right)^{2+\alpha^{\prime} t / 2}}{\sin \pi\left(2+\alpha^{\prime} t / 2\right)}\right] & \alpha_{+}(t)=2+\alpha^{\prime} t / 2 \\
|I, J ; k\rangle=a_{1, I}^{\dagger} \tilde{a}_{1, J}^{\dagger}|N S\rangle_{L}|N S\rangle_{R}|k\rangle &
\end{array}
$$

$$
|h\rangle=\sum_{I, J} h^{I J}|I, J ; k\rangle \quad, \quad|B\rangle=\sum_{I_{1} J} B^{I J}|I, J ; k\rangle \quad, \quad|\phi\rangle=\sum_{I_{1} J} \eta^{I J}|I, J ; k \perp\rangle
$$

$$
\mathcal{T}_{10}^{(-)}(s, t) \rightarrow f^{(-)}\left(\alpha^{\prime} t\right)\left[\frac{\left(-\alpha^{\prime} s\right)^{1+\alpha^{\prime} t / 2}-\left(\alpha^{\prime} s\right)^{1+\alpha^{\prime} t / 2}}{\sin \pi\left(1+\alpha^{\prime} t / 2\right)}\right]
$$

$$
\alpha_{-}(t)=1+\alpha^{\prime} t / 2
$$

Conformal Pomeron and Odderon in Target Space:

Ultra-local approximation:

$$
\begin{array}{ll}
\tilde{s}=\frac{R^{2}}{r^{2}} s, \quad \tilde{t}=\frac{R^{2}}{r^{2}} t, & \alpha_{\text {eff }}^{\prime}(r)=\frac{R^{2} \alpha^{\prime}}{r^{2}} \\
\mathcal{T}_{10}^{(\pm)}(\tilde{s}, \tilde{t}) \sim f^{(\pm)}\left(\alpha^{\prime} \tilde{t}\right)\left(\alpha^{\prime} \tilde{s}\right)^{\alpha_{ \pm}(0)+\alpha^{\prime} \tilde{t} / 2} \sim s^{\alpha \pm(0)+\alpha_{e f f}^{\prime}(r) t / 2}
\end{array}
$$

Diffusion in AdS

Flat Space: $\quad t \rightarrow \nabla_{b}^{2}$

$$
\tau=\log \left(\alpha^{\prime} s\right) \quad\langle\vec{b}|\left(\alpha^{\prime} s\right)^{\alpha_{ \pm}(0)+\alpha^{\prime} t / 2}\left|\overrightarrow{b^{\prime}}\right\rangle \rightarrow\left(\alpha^{\prime} s\right)^{\alpha_{ \pm}(0)} \frac{e^{-\left(\vec{b}-\vec{b}^{\prime}\right)^{2} /\left(2 \alpha^{\prime 2} \tau\right)}}{\tau^{(D-2) / 2}}
$$

AdS5, $\mathrm{C}=+1$:

$$
\begin{aligned}
& \alpha^{\prime} \tilde{t} \rightarrow \alpha^{\prime} \Delta_{P} \equiv \frac{\alpha^{\prime} R^{2}}{r^{2}} \nabla_{b}^{2}+\alpha^{\prime} \Delta_{\perp P} \\
& \tilde{s}^{2+\alpha^{\prime} / 2}=\int \frac{d j}{2 \pi i} \frac{\tilde{s}^{j}}{j-2-\alpha^{\prime} \Delta_{P} / 2}
\end{aligned}
$$

AdS5, C=-1:

$$
\tilde{s}^{1+\alpha^{\prime} \tilde{t} / 2}=\int \frac{d j}{2 \pi i} \tilde{s}^{j} G^{(-)}(j)=\int \frac{d j}{2 \pi i} \frac{\tilde{s}^{j}}{j-1-\alpha^{\prime} \Delta_{O} / 2}
$$

Diffusion in AdS

Flat Space: $\quad t \rightarrow \nabla_{b}^{2}$

$$
\tau=\log \left(\alpha^{\prime} s\right) \quad\langle\vec{b}|\left(\alpha^{\prime} s\right)^{\alpha_{ \pm}(0)+\alpha^{\prime} t / 2}\left|\overrightarrow{b^{\prime}}\right\rangle \rightarrow\left(\alpha^{\prime} s\right)^{\alpha_{ \pm}(0)} \frac{e^{-\left(\vec{b}-\vec{b}^{\prime}\right)^{2} /\left(2 \alpha^{\prime 2} \tau\right)}}{\tau^{(D-2) / 2}}
$$

AdS5, $\mathrm{C}=+1$:

$$
\begin{aligned}
& \alpha^{\prime} \tilde{t} \rightarrow \alpha^{\prime} \Delta_{P} \equiv \frac{\alpha^{\prime} R^{2}}{r^{2}} \nabla_{b}^{2}+\alpha^{\prime} \Delta_{\perp P} \\
& \tilde{s}^{2+\alpha^{\prime} / 2}=\int \frac{d j}{2 \pi i} \frac{\tilde{s}^{j}}{j-2-\alpha^{\prime} \Delta_{P} / 2}
\end{aligned}
$$

AdS5, C=-1:

$$
\tilde{s}^{1+\alpha^{\prime} \tilde{t} / 2}=\int \frac{d j}{2 \pi i} \tilde{s}^{j} G^{(-)}(j)=\int \frac{d j}{2 \pi i} \frac{\tilde{s}^{j}}{j-1-\alpha^{\prime} \Delta_{O} / 2}
$$

$$
G^{(+)}(j)=\frac{1}{j-2-\alpha^{\prime} \Delta_{2} / 2}
$$

$$
\begin{gathered}
\Delta_{2} h_{M N}=0 \\
G^{(-)}(j)=\frac{1}{j-1-\left(\alpha^{\prime} / 2 R^{2}\right)\left(\square_{M \text { axwell }}-m_{A d S, i}^{2}\right)}
\end{gathered}
$$

$$
\left(\square_{\text {Maxwell }}-(k+4)^{2}\right) B_{I J}^{(1)}=0, \quad\left(\square_{\text {Maxwell }}-k^{2}\right) B_{I J}^{(2)}=0
$$

$$
m_{A d S, 1}^{2}=16, \quad m_{A d S, 2}^{2}=0
$$

$$
(1 / 2 \sqrt{\lambda})\left\{-z \partial_{z} z \partial_{z}+z^{2} t+m_{ \pm}^{2}(j)\right\} G^{(\pm)}\left(z, z^{\prime} ; j, t\right)=z \delta\left(z-z^{\prime}\right)
$$

$$
m_{+}^{2}(j)=2 \sqrt{\lambda}(j-2)+4
$$

$$
m_{-}^{2}(j)=2 \sqrt{\lambda}(j-1)+m_{A d S, i}^{2}
$$

Gauge/String Duality: Conformal Limit

- $\mathrm{C}=+1$: Pomeron <===> Graviton

$$
j_{0}^{(+)}=2-2 / \sqrt{\lambda}+O(1 / \lambda) .
$$

- $\mathrm{C}=-1$: Odderon <===> Kalb-Ramond Field

$$
j_{0}^{[-)}=1-m_{A d S}^{2} / 2 \sqrt{\lambda}+O(1 / \lambda) .
$$

	Weak Coupling	Strong Coupling
$C=+1$	$j_{0}^{(+)}=1+(\ln 2) \lambda / \pi^{2}+O\left(\lambda^{2}\right)$	$j_{0}^{(+)}=2-2 / \sqrt{\lambda}+O(1 / \lambda)$
$C=-1$	$j_{0,(1)}^{(-)} \simeq 1-0.24717 \lambda / \pi+O\left(\lambda^{2}\right)$	$j_{0,(1)}^{(-)}=1-8 / \sqrt{\lambda}+O(1 / \lambda)$
	$j_{0,(2)}^{(-)}=1+O\left(\lambda^{3}\right)$	$j_{0,(2)}^{(-)}=1+O(1 / \lambda)$

Table 1: Pomeron and Odderon intercepts at weak and strong coupling.

J-Plane Structure

$(1 / 2 \sqrt{\lambda})\left\{-z \partial_{z} z \partial_{z}+z^{2} t+m_{ \pm}^{2}(j)\right\} G^{(\pm)}\left(z, z^{\prime} ; j, t\right)=z \delta\left(z-z^{\prime}\right)$
$G^{(\pm)}\left(z, z^{\prime} ; j, t\right)=\frac{2}{\sqrt{\lambda} \pi^{2}} \int_{-\infty}^{\infty} d \nu \nu \sinh 2 \pi \nu \frac{K_{2 \omega}\left(|t|^{1 / 2} e^{-u}\right) K_{-2 \omega}\left(|t|^{1 / 2} e^{-u^{\prime}}\right)}{j-j_{0}^{ \pm}+\mathcal{D} \nu^{2}}$

$$
G^{(\pm)}\left(z, x^{\perp}, z^{\prime}, x^{\prime \perp} ; j\right)=\frac{1}{4 \pi z z^{\prime}} \frac{e^{\left(2-\Delta \Delta^{(\pm)}(0)\right) \xi}}{\sinh \xi} . \quad v=\frac{\left(x^{\perp}-x^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}{2 z z^{\prime}}
$$

$$
\Delta^{(\pm)}(j)=2+\sqrt{2} \lambda^{1 / 4} \sqrt{\left(j-j_{0}^{(\pm)}\right)}
$$

Formal Treatment via OPE

- Flat Space Pomeron Vertex Operator

$$
V_{P}^{ \pm}=\left(2 \theta X^{ \pm} \bar{\partial} X^{ \pm} / \alpha^{\prime}\right)^{1+\alpha^{\prime} t / 4} e^{\text {Fik. }} .
$$

- Flat Space Odderon Vertex Operator

$$
\nu_{O}^{ \pm}=\left(2 \epsilon_{ \pm, 1} \partial X^{ \pm} \bar{\theta} X^{\perp} / \alpha^{\prime}\right)\left(2 \theta X^{ \pm} \bar{\partial} X^{ \pm} / \alpha^{\prime}\right)^{\prime} t / 4 e^{\text {fik }} X
$$

- Pomeron Vertex Operator in AdS

$$
\mathcal{V}_{P}(j, \nu, k, \pm) \sim\left(\partial X^{ \pm} \bar{\partial} X^{ \pm}\right)^{\frac{1}{2}} e^{\text {fik } k} e^{(j-2) \mathrm{s}} K_{ \pm 2 i}\left(|t|^{1 / 2} e^{-\infty}\right)
$$

- Odderon Vertex Operator in AdS

IV. Beyond Pomeron

- Sum over all Pomeron graph (string perturbative, $1 / N^{2}$)
- Eikonal summation in AdS_{3}
- Constraints from Conformal Invariance, Unitarity, Analyticity, Confinement, Universality, etc.
- Froissart Bound?
- "non-perturbative" (e.g., blackhole production)

Eikonal Expansion

$$
A_{1}\left(s, t=-q_{\perp}^{2}\right) \simeq 2 s \int d^{2} b e^{-i q b} \chi(s, b)=2 s \chi\left(s, q_{\perp}\right)
$$

"sum" to get $A_{\text {eikonal }}(s, t)=-2 i s \int d^{2} b e^{-i q b}\left[e^{i \chi(s, b)}-1\right]$,

- ■ikOnのa!

$$
A_{2 \rightarrow 2}(s, t) \simeq-2 i s \int d^{2} b e^{-i b^{\perp} q_{\perp}} \int d z d z^{\prime} P_{13}(z) P_{24}\left(z^{\prime}\right)\left[e^{i \chi\left(s, b^{\perp}, z, z^{\prime}\right)}-1\right]
$$

transverse AdS_{3} space !!

$$
\begin{gathered}
P_{13}(z)=(z / R)^{2} \sqrt{g(z)} \Phi_{1}(z) \Phi_{3}(z) \quad P_{24}(z)=\left(z^{\prime} / R\right)^{2} \sqrt{g\left(z^{\prime}\right)} \Phi_{2}\left(z^{\prime}\right) \Phi_{4}\left(z^{\prime}\right) \\
\chi\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)=\frac{g_{0}^{2} R^{4}}{2\left(z z^{\prime}\right)^{2} s} \mathcal{K}\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)
\end{gathered}
$$

- Saturation:

$$
\chi\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)=O(1)
$$

- Universality:
- Universality:

By choosing wave functions, Φ, can treat DIS, Higgs Production, Proton-Proton, etc., on equal footing.

Saturation:
 $$
\chi\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)=O(1)
$$

- Phase space:

$$
\begin{aligned}
& s \leftrightarrow 1 / x \\
& x_{\perp} \leftrightarrow \text { impact space } \\
& z \leftrightarrow 1 / Q^{2} \leftrightarrow \text { virtuality }
\end{aligned}
$$

- Conformal Invariance:

$$
\chi\left(s, x^{\perp}-x^{\prime \perp}, z . z^{\prime}\right) \rightarrow G(s, v)
$$

$$
v=\frac{\left(x^{\perp}-x^{\prime \perp}\right)^{2}+\left(z-z^{\prime}\right)^{2}}{2 z z^{\prime}}
$$

Scattering in Conformal Limit:

Use the condition: $\quad \chi\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)=O(1)$
Elastic Ring:
$b_{\text {diff }} \sim \sqrt{z z^{\prime}}\left(z z^{\prime} s / N^{2}\right)^{1 / 6}$
No Froissart

$$
\sigma_{\text {total }} \sim s^{1 / 3}
$$

Inner Absorptive Disc:

$$
b_{\text {black }} \sim \sqrt{z z^{\prime}} \frac{\left(z z^{\prime} s\right)^{(j 0-1) / 2}}{\lambda^{1 / 4} N} \quad b_{\text {black }} \sim \sqrt{z z^{\prime}}\left(\frac{\left(z z^{\prime} s\right)^{j 0-1}}{\lambda^{1 / 4} N}\right)^{1 / \sqrt{2 \sqrt{\lambda}}\left(j_{0}-1\right)}
$$

Inner Core: "black hole" production ?

Unitarity, Confinement and Froissart Bound

With Confinement:

discrete spectrum

Kernel for hardwall at $z=1$

Mass of the lightest tensor Glueball provides scale

$$
e^{-m_{0} b} / \sqrt{m_{0} b}
$$

Elastic Ring:

$$
b_{\text {diff }} \simeq \frac{1}{m_{0}} \log \left(s / N^{2} \Lambda^{2}\right)+\ldots
$$

Absorptive Disc:
Inner Core:

Saturation of Froissart Bound

- The Confinement deformation gives an exponential cutoff for b $>\mathrm{b}_{\text {max }} \sim \mathrm{c} \log \left(\mathrm{s} / \mathrm{s}_{0}\right)$,
- Coefficient c ~ I/mo, mo being the mass of lightest tensor glueball.
- There is a shell of "conformal region" of width

$$
\Delta b \sim \log \left(s / s_{0}\right)
$$

Froissart is respected and saturated.

Disk picture

$\mathrm{b}_{\max }$ determined by confinement.

V. Deep Inelastic Scattering (DIS)

- Provide meaning for Pomeron non-perturbatively from first principles.
- Realization of conformal invariance beyond perturbative QCD
- New starting point for unitarization, saturation, etc.
- Phenomenological consequences, Diffractive Higgs production at LHC (in progress).

DIS

General Setup

Let us look in a little more detail at DIS.

The basic kinematical variables we need for describing this process are

- the center of mass energy

$$
s=-(P+q)^{2}>0
$$

- the virtual photon mass squared:

$$
-Q^{2}=q^{2}=q^{\mu} q_{\mu}=\left(k-k^{\prime}\right)^{2}<0
$$

- the scaling variable

$$
0<x \approx \frac{Q^{2}}{s}<1
$$

General Setup

The cross section
We can write the cross section for this process in the form

$$
\begin{aligned}
\frac{d \sigma^{2}}{d x d Q^{2}} & =\frac{2 \pi \alpha^{2}}{x Q^{4}}\left(Y_{+} F_{2}-x_{L}^{2}\right) \\
Y_{+} & =1+(1-x)^{2}
\end{aligned}
$$

In parton model, it is customary to introduce quark and gluon distribution functions:

- $F_{2}\left(x, Q^{2}\right)=x \sum_{q} e_{q}^{2}\left[q\left(x, Q^{2}\right)+\bar{q}\left(x, Q^{2}\right)\right]$
- $F_{L}\left(x, Q^{2}\right) \sim F_{2}-x g\left(x, Q^{2}\right)$
- F_{2} is what we get from most experiments, since F_{L} vanishes at LO in pQCD.
- It is also customary to express F_{2} as, $\sigma=\sigma_{T}+\sigma_{L}$,

$$
F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha} \sigma\left(x, Q^{2}\right) .
$$

Deep Inelastic Scattering (DIS)

$$
\begin{aligned}
& F_{2}(x, Q 2)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left[\sigma_{T}\left(\gamma^{*} p\right)+_{L}\left(\gamma^{*} p\right)\right] \\
& x \equiv \frac{Q^{2}}{s}
\end{aligned}
$$

Small $x: \frac{Q^{2}}{s} \rightarrow 0$
Optical Theorem

$$
\sigma_{\text {total }}\left(s, Q^{2}\right)=(1 / s) \operatorname{Im} A\left(s, t=0 ; Q^{2}\right)
$$

Questions on HERA DIS small-x data:

- Why $\alpha_{e f f}=1+\epsilon_{e f f}\left(Q^{2}\right)$?
- Confinement? (Perturbative vs. Non-perturbative?)
- Saturation? (evolution vs. non-linear evolution?)

Review of High Energy Scattering in String Theory

 DIS in AdSRecall that, for two-to-two scattering involving on-shell hadrons, the amplitude in an eikonal sum can be expressed as

$$
A(s, t)=2 i s \int d^{2} b e^{i \vec{q} \cdot \vec{b}} \int d z d z^{\prime} P_{13}(z) P_{24}\left(z^{\prime}\right)\left\{1-e^{i \chi\left(s, b, z, z^{\prime}\right)}\right\}
$$

where, for scalar glueball states,

$$
P_{i j}(z)=\sqrt{-g(z)}(z / R)^{2} \phi_{i}(z) \phi_{j}(z)
$$

involves a product of two external normalizable wave functions. To first order in the eikonal,

$$
A_{4}(s, t) \simeq \int d^{2} b e^{-i \mathbf{b} \mathbf{q}_{\perp}} \int d z d z^{\prime} P_{13}(z) P_{24}\left(z^{\prime}\right)(2 s \chi)
$$

where

$$
\chi\left(s, b, z, z^{\prime}\right)=\frac{g_{0}^{2} R^{4}}{2\left(z z^{\prime}\right)^{2} s} \mathcal{K}\left(s, b, z, z^{\prime}\right)
$$

\mathcal{K} is the BPST Pomeron kernel.

High Energy Scattering and DIS in String Theory

AdS space continued

- We are interested in calculating the structure function $F_{2}\left(x, Q^{2}\right)$, which is simply the cross section for an off-shell photon. Using the optical theorem we obtain

$$
\sigma_{t o t} \simeq 2 \int d^{2} b \int d z d z^{\prime} P_{13}(z) P_{24}\left(z^{\prime}\right) \operatorname{Im} \chi
$$

- For DIS, P_{13} should present a photon on the boundary that couples to a spin 1 current in the bulk. This current then propagates through the bulk, and scatters off the target.
- The wave function, in the conformal limit, is

$$
P_{13}(z)=\frac{1}{z}(Q z)^{4}\left(K_{0}^{2}(Q z)+K_{1}^{2}(Q z)\right)
$$

- For the proton, one for now treats it as a glueball of mass $\sim \Lambda=1 / Q^{\prime}$, which in string theory appears as a Kaluza-Klein mode of the massless dilaton, after the compactification of S^{5}.

Moments and Anomalous Dimension

$$
M_{n}\left(Q^{2}\right)=\int_{0} d x x^{n-2} F_{2}\left(x, Q^{2}\right) \quad \rightarrow \quad Q^{4-\Delta^{(+)}(n)}
$$

$$
\Delta^{(\pm)}(j)=2+\sqrt{2} \lambda^{1 / 4} \sqrt{\left(j-j_{0}^{(\pm)}\right)}
$$

DIS after AdS/CFT

Standard expectation (from Itakura's RIKEN lectures)

"Phase diagram" as a summary

AdS/CFT expectation

(from BDST: hep-ph/1007.2259)

VI. Summary and Outlook

- Provide meaning for Pomeron non-perturbatively from first principles.
- Realization of conformal invariance beyond perturbative QCD
- New starting point for unitarization, saturation, etc.
- Phenomenological consequences, DIS at small-x, Diffractive Higgs production at LHC (in progress), etc.

The QCD Pomeron

Have shown that in gauge theories with string-theoretical dual descriptions, the Pomeron emerges unambiguously.

Pomeron can be identified as Reggeized Massive Graviton.

Both the IR Pomeron and the UV Pomeron are dealt in a unified single step.

Both conceptual and practical advantages.

Diffractive Production of Higgs at LHC

References:

- R. Brower, J. Polchinski, M. Strassler, and C-I Tan, "The Pomeron and Gauge/String Duality", hep-th/0603115.
- R. Brower, M. Strassler, and C-I Tan, hep-th/0707.2408.
- R. Brower, M. Strassler, and C-I Tan, hep-th/0710.4378.
- R. Brower, M. Djuric, and C-I Tan, arXiv:0812.0354.
- Other related work. e.g.. L. Cornalba, et al.. (hep-th/0710.5480).
- Y. Hatta. E. lancu. and A. H. Mueller. (hep-th/0710.2148).
- E. Levin. et al. (arXiv:0811.3586) and (arXiv:0902.3122).
- Many others.

[^0]: HE scattering after AdS/CFT

