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Outline
• Scales in QCD--brief history of “QCD string”

• QCD “Closed String” as Metric Fluctuations in AdS space

• Graviton is a Regge cut in AdS

• Pomeron as a Reggeized Massive Graviton

• Pomeron Vertex Operator

• Transverse AdS_3 and High Energy Scattering

• Anti-Symmetric Forms -- Odderon

• Beyond Graviton exchange -- Eikonalization

• Deep Inelastic Scattering at Small-x

• Summary
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I. Scalar Dependence of  QCD 
and History of Hadron 

Scattering at High Energies

Asymptotic Freedom

perturbative

Confinement 

non-perturbative

Force at Long Distance--Constant    

Tension/Linear Potential, Coupling 

increasing, Quarks and Gluons 

strongly bound <==> “Stringy 

Behavior”

Test of Perturbative QCD-- Deep Inelastic 

Scattering (DIS)

Anomalous Dimension of 

Leading twist operator

DGLAP evolution

Regge Behavior and Regge 
Trajectory
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1 Formula

A ∼ sJ(t) = sα(0)+α′t (1)

2 Executive Summary: 9/16/06

Working in the j-plane, our kernel is K0(u, u′, j, t) = (1/2)
∫ ∞
−∞ dν ψ(ν,u)ψ∗(ν,u′)

j+ν2 , where nor-

malized wave-functions are ψ(ν, u) =
√

2/πqiνKiν(z0

√

|t|e−u)/Γ(iν). Kernel in coordinate
space, is defined by, with t = −$q2,

K̃0(u,$b, j, u′,$b′) =

∫

d2$q

2π
ei$q·($b−$b′)K0(u, u′, j, t). (2)

This can be done in two ways: (1) taking Fourier transform directly, or (2) expressing in
terms of transforms of the wave functions. [The j-dependence will be adjusted to take into
account of BFKL factor, j0, by changing j + ν2 to c(j − j0) + ν2, where c = 2

√
λ.] Here are

the results:

(1) Direct Fourier transform, (using G-R: 6.578.10), leads to, after ν-integration,

K̃(u,$b, j, u′,$b′) ≡ e−(u+u′)K̃0(u,$b, j, u′,$b′) =
e−η

√
c(j−j0)

4πz2
0 sinh η

(3)

where z = z0e−u, z′ = z0e−u′

, and cosh η = z2+z′2+($b−$b′)2

2zz′

(2) Using wave-function in coordinate space, ψ̃(ν, u,$b) =
[

√

2/π iν
2−iνz0e−u

][

z0e−u

|$b|2+(z0e−u)2

]1+iν
,

we arrive at

K̃(u,$b, j, u′,$b′) = e−(u+u′)

∫

d2$b0

8π2

∫ ∞

−∞
dν

ψ̃(ν, u,$b−$b0) ψ̃∗(ν, u′,$b′ −$b0)

c(j − j0) + ν2

=

∫

d2$b0

4π3

∫ ∞

−∞
dν (

ν2

c(j − j0) + ν2
)
[ e−u

|$b −$b0|2 + (z0e−u)2

]1+iν [ e−u′

|$b′ −$b0|2 + (z0e−u′)2

]1−iν
(4)

1



HE scattering after AdS/CFT

Genesis of String Theory
continued

! This is not the end of the story.

! Unitarity requires closed string.

! Virasoro amplitude:

A(s, t, u) = β
Γ((1− αρ(s))/2)

Γ(1− (αρ(t) + αρ(u))/2)

× Γ((1− αρ(t))/2)
Γ(1− (αρ(s) + αρ(u))/2)

× Γ((1− αρ(u))/2)
Γ(1− (αρ(s) + αρ(t))/2

Chung-I — High Energy Scattering after AdS/CFT Introduction 6/12

A(s, t, u) = β
Γ((1− αρ(s))/2)Γ((1− αρ(t))/2)Γ((1− αρ(u))/2)

Γ(1− (αρ(t) + αρ(u))/2)Γ(1− (αρ(s) + αρ(u))/2)Γ(1− (αρ(s) + αρ(t))/2)
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Genesis of String Theory

Genesis of String Theory

! Duality between direct-channel resonances and Regge behavior at
high energies

∑

r

g2
r (t)

s− (Mr − iΓr)2
" β(t)(−α′s)α(t)

! Expressed mathematically (Veneziano)

Aπ+π−→π+π−(s, t) = g2
0
Γ(1− αρ(t))Γ(1− αρ(s))

Γ(1− αρ(t)− αρ(s))

! Interpret as quantum theory of open string.

Chung-I — High Energy Scattering after AdS/CFT Introduction 5/12



Genesis of String Theory
continued

! This is not the end of the story.

! Unitarity requires closed string.

! Virasoro amplitude:

A(s, t, u) = β
Γ((1− αρ(s))/2)

Γ(1− (αρ(t) + αρ(u))/2)

× Γ((1− αρ(t))/2)
Γ(1− (αρ(s) + αρ(u))/2)

× Γ((1− αρ(u))/2)
Γ(1− (αρ(s) + αρ(t))/2
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Birth of Classic String Theory!

A(s, t, u) = β
Γ(1− α(s)/2)Γ(1− α(t)/2)Γ(1− α(u)/2)

Γ(1− (α(t) + α(u))/2)Γ(1− (α(s) + α(u))/2)Γ(1− (α(t) + α(s))/2)



Aclosed(s, t)→ exp
[
− 1

2
α′(s ln s + t ln t + u lnu)

]
9

s,−t,−u >> 1/α′

s,−t,−u >> 1/α′

Death and Resurrection of  QCD string

(i) ZERO MASS STATE (gauge/graviton)
 (ii) SUPER SYMMETRY
 (iii) EXTRA DIMENSION    4+6 = 10
(iv) NO HARD PROCESSES! (totally wrong

dynamics)
 Stringy Rutherford Experiment

At Wide Angle:  s,-t,-u >> 1/α’



AdS?? Graviton??

HE scattering after AdS/CFT

12
13

4-Dim Massive Graviton

0= E0= E22 - (p - (p11
22 + p + p22

22 + p + p33  22 + p + prr
22))

5-Dim 5-Dim Massless Massless Mode:Mode:

If, due to Curvature in fifth-dim, pIf, due to Curvature in fifth-dim, prr
22  !!  0,0,

  EE22  =  (p=  (p11
22 + p + p22

22 + p + p33
22) + M) + M22

Four-Dimensional Mass:Four-Dimensional Mass:

Total Cross Sections 

Figure 1: γγ, γp and p̄p(pp) total cross sections as a function of the center of mass
energy

√
s, which stands respectively for Wγγ ,

√
sγp and

√
spp. Note that we have used

three different units. The bottom curves were calculated in Ref.[17] and for the data
points (close circles for pp and triangles for p̄p) see Ref.[18]. The middle curve was
calculated in Ref.[16] and the higher energy data points are from Refs.[19, 20]. The
top curves are the impact-picture prediction compared to the LEP data, Ref.[1] (open
circles), Ref.[2](close circles, preliminary data), solid curve with AL = 8.5.10−6 and
Ref. [3] (stars, preliminary data) dotted curve with AO = 10−5.
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(IR) Pomeron as Closed String??
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In this talk, will focus on “closed strings” only. For “open-string” in AdS/CFT, e.g., mesons and baryons, 
see talks by Koji Hashimoto and others.
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•!   Jcut = 2 (J-1) + 1 = 1 

Two gluon exchange  

(Low-Nussinov Pomeron!) 

F.E. Low. Phys. Rev. D 12 (1975), p. 163.  

S. Nussinov. Phys. Rev. Lett. 34 (1975), p. 1286.  

BFKL: Balitsky & Lipatov; Fadin,Kuraev,Lipatov‘75 

!! Sum diagrams  1st order in g2 Nc  & all orders  (g2 Nc logs)n 

!! BKFL equation for 2 “reggized” gluon ladder is L = 2  

SL(2,C) spin chain to one loop order .  

!! Accidentally  “planar” diagrams (e.g. Nc = 1) and conformal.  

k1 

k2 

k’1 

k’2 

ln s 

t = - (k1 + k2)
2 

λ = g2Nc ∼ 0

What is the (bare) Pomeron anyway? 

The Pomeron ´ the vacuum exchange 

contribution to scattering at high energies  

at leading order in 1/Nc expansion.  

Where    = g2Nc    &  gs = 1/Nc 

Definition:  

λ

Total Cross Sections 

Figure 1: γγ, γp and p̄p(pp) total cross sections as a function of the center of mass
energy

√
s, which stands respectively for Wγγ ,

√
sγp and

√
spp. Note that we have used

three different units. The bottom curves were calculated in Ref.[17] and for the data
points (close circles for pp and triangles for p̄p) see Ref.[18]. The middle curve was
calculated in Ref.[16] and the higher energy data points are from Refs.[19, 20]. The
top curves are the impact-picture prediction compared to the LEP data, Ref.[1] (open
circles), Ref.[2](close circles, preliminary data), solid curve with AL = 8.5.10−6 and
Ref. [3] (stars, preliminary data) dotted curve with AO = 10−5.
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K̃(u,&b, j, u′,&b′) = e−(u+u′)

∫

d2&b0

8π2

∫ ∞

−∞
dν

ψ̃(ν, u,&b−&b0) ψ̃∗(ν, u′,&b′ −&b0)

c(j − j0) + ν2

=

∫

d2&b0

4π3

∫ ∞

−∞
dν (

ν2

c(j − j0) + ν2
)
[ e−u

|&b −&b0|2 + (z0e−u)2

]1+iν [ e−u′

|&b′ −&b0|2 + (z0e−u′)2

]1−iν

(6)

1

1 Formula

A ∼ sJ(t) = sα(0)+α′t (1)

σtotal ∼ A(s, 0)/s ∼ SJ(0)−1 ∼ sα(0)−1 (2)

α(0) > 1 (3)

2 Executive Summary: 9/16/06

Working in the j-plane, our kernel is K0(u, u′, j, t) = (1/2)
∫ ∞
−∞ dν ψ(ν,u)ψ∗(ν,u′)

j+ν2 , where nor-

malized wave-functions are ψ(ν, u) =
√

2/πqiνKiν(z0

√

|t|e−u)/Γ(iν). Kernel in coordinate
space, is defined by, with t = −&q2,

K̃0(u,&b, j, u′,&b′) =

∫

d2&q

2π
ei$q·($b−$b′)K0(u, u′, j, t). (4)

This can be done in two ways: (1) taking Fourier transform directly, or (2) expressing in
terms of transforms of the wave functions. [The j-dependence will be adjusted to take into
account of BFKL factor, j0, by changing j + ν2 to c(j − j0) + ν2, where c = 2

√
λ.] Here are

the results:

(1) Direct Fourier transform, (using G-R: 6.578.10), leads to, after ν-integration,

K̃(u,&b, j, u′,&b′) ≡ e−(u+u′)K̃0(u,&b, j, u′,&b′) =
e−η

√
c(j−j0)

4πz2
0 sinh η

(5)

where z = z0e−u, z′ = z0e−u′

, and cosh η = z2+z′2+($b−$b′)2

2zz′
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1

(IR) Pomeron as Closed String??



HE scattering after AdS/CFT

2-GLUONS in 4d = GRAVITON in 5d

CFT = AdS

?



Emergence of 5-dim AdS-Space

17

Let    z=1/r,           0 < z <  z0,    where     z0 ~ 1/Λqcd       
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II: Gauge/String Duality
QCD Pomeron as “metric fluctuations” in AdS

Strong <==> Weak duality

Geometry of AdS/CFT and Scale Invariance 

High Energy Scattering

Confinement and Glueball Spectrum 

Pomeron as Reggeized Massive Graviton



IIa: Degrees of Freedom

Aab
µ (x), ψa

f (x)

Weak Coupling:
Gluons and Quarks:
Gauge Invariant Operators: ψ̄(x)ψ(x), ψ̄(x)Dµψ(x)

S(x) = TrF 2
µν(x), O(x) = TrF 3(x)

Tµν(x) = TrFµλ(x)Fλν(x), etc.

Strong Coupling:
Metric tensor:
Anti-symmetric tensor (Kalb-Ramond fields):

Gmn(x) = g(0)
mn(x) + hmn(x)

bmn(x)

Other differential forms: Cmn···(x)

L(x) = L(G(x), b(x), C(x), · · · )

Dilaton, Axion, etc. φ(x), a(x), etc.

L(x) = −TrF 2 + ψ̄ "Dψ + · · ·
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Bulk Degrees of Freedom from 
type-IIB Supergravity on AdS5:

〈e
R

d4xφi(x)Oi(x)〉CFT = Zstring [φi(x, z)|z∼0 → φi(x)]

Supergravity limit

Strong coupling

Conformal

Pomeron as Graviton in AdS

in StrongCoupling



One Graviton Exchange at High Energy

• Draw all “Witten-Feynman” 
Diagrams in AdS5, 

• High Energy Dominated by Spin-2 
Exchanges:

1 Introduction

Paper I: AdS5 Witten Diagrams at high energy. Effective Lagragian. Remark on BPST

Pomeron paper. Eikonal anzats.

Paper I: Box diagram and Shock wave eikonal sum

Here we reformulate the computaiton of Witten diagrams in AdS5 space with and without a IR

cut-off suitable for the study of hight energy scattering. This provides a framework for going

beyond the leading large N limit studied in BPST Regge limit in the extreme super gravity

approximaiton.

2 Basics

p1 + p2 → p3 + p4 (2.1)

S =

∫

dz
√

g
{

∂Mφ(z)gMN∂Nφ(z) + ∆(∆ − d)φ2(z)
}

(2.2)

where d = 4, and the AdS5 background metric is

d2z =
1

z2
0

{

dxµdxµ + d2z0

}

(2.3)

Scalar propagator:

〈φ∆(z)φ∆(w)〉 = G(5)
∆ (z,w) (2.4)

satisfies
{

−
1
√

g
∂M

√
ggMN∂N + ∆(∆ − d)

}

G(5)
∆ (z,w) = δ5(z − w) (2.5)

Conformal Invariance leads to Isometries of ADS5, G(5)
∆ is a function of

u =
(x − y)2 + (z0 − w0)2

2z0w0
(2.6)

spin S field,

(−∂z0
z−(d−1−2S)
0 ∂z0

+ q2 z−(d+1−2S)
0 + z−(d−1−2S)

0 m2)φ(u) = 0 (2.7)

2

Figure 9: The t-channel exchange graph

As in the past, we simplify the integral by using translation invariance to translate x1 to
0, and then performing an inversion. As a result,

A(w, x1, x3) = |x13|−2∆3I(w′ − x′
13) , I(w) =

∫

H

d5z

z5
0

G∆(w, z)
z∆1+∆3
0

z2∆3
(7.32)

We now use the fact that G∆ is a Green function and satisfies ( w +∆(∆−d))G∆(w, z) =
δ(w, z), so that

( w + ∆(∆ − d))I(w) =
w∆1+∆3

0

w2∆3
(7.33)

In terms of the scale invariant combination ζ = w2
0/w

2, we have I(w) = w∆13
0 fS(ζ), ∆13 =

∆1 − ∆3 and the function fS now satisfies the following differential equation

4ζ2(ζ − 1)f ′′
S + 4ζ [(∆13 + 1)ζ − ∆13 + d/2 − 1]f ′

S (7.34)

+(∆ − ∆13)(∆ + ∆13 − d)fS = ζ∆3

Making the change of variables σ = 1/ζ , we find that the new differential equation is
manifestly of the hypergeometric type and is solved by

fS(ζ) = F
(

∆ − ∆13

2
,
d − ∆ − ∆13

2
;
d

2
; 1 − 1

ζ

)
(7.35)

The other linearly independent solution to the hypergeometric equation is singular as
ζ → 1, which is unacceptable since the original integral was perfectly regular in this limit
(which corresponds to $w → 0).

It is easier, however, to find the solutions in terms of a power series, fS(ζ) =
∑

k fSkζk.
Upon substitution into (7.34), we find solutions that truncate to a finite number of terms
in ζ , provided ∆1 +∆3−∆ is a positive integer. Notice that k need not take integer values,
rather k −∆3 must be integer. The series truncates from above at kmax = ∆3 − 1, so that
fSk = 0 when k ≥ ∆3, and

fSk =
Γ(k)Γ(k + ∆13)Γ(1

2{∆1 + ∆3 − ∆})Γ(1
2{∆ + ∆1 + ∆3 − d})

4Γ(∆1)Γ(∆3)Γ(k + 1 + 1
2{∆13 − ∆})Γ(k + 1 + 1

2{∆13 + ∆ − d})
(7.36)

Still under the assumption that ∆1 +∆3 −∆ is a positive integer, the series also truncates
from below at kmin = 1

2(∆ − ∆13).
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• Strong Coupling Pomeron has

• Need to consider         finite.

• For QCD, needs confinement to introduce a scale.

J = 2

λ



 Geometry of AdS/CFT and Scale Invariance

Add Confining IR wall!

Cutoff AdS5

Large Sizes

z=1/r,



Confinement Deformation: Glueball Spectrum

5-Dim Massless Mode:

0= E2 - (p1
2 + p2

2 + p3 2 + pr
2)

Four-Dimensional Mass:

 E2 =  (p1
2 + p2

2 + p3
2) + M2



Confinement Deformation: Glueball Spectrum

2.1 Spin and Degeneracy of Glueball States

In M theory the supergraviton is a single multiplet in 11-d with two bosonic fields - a

graviton, GMN , and a 3-form field, AMNL, as designated in Table 1. After restricting

all indices and co-ordinate dependence to AdS7, we have a graviton, Gµν , a dilaton φ,

and an NS-NS tensor field Bµν . In addition there are two RR fields, a one-form Cµ

and a three-form Cµνλ. Furthermore, we will also consider the scalar modes coming

from “volume” fluctuations for S4. The relationship between M theory and IIA string

theory nomenclature, after restricting to the AdS7 subspace, is presented in Table 1. The

table gives the JPC quantum numbers for all glueball states. The pattern of degeneracy

(explained below) is indicated by the rows ending with the lowest eigenvalue for each of

the six wave equations, Eq. (9): T4, V4, etc.

The task is to find all the quadratic fluctuations in the AdS7 black hole background that

might survive for QCD4 in the scaling (weak coupling) limit, ignoring any Kaluza-Klein

mode in compact manifolds (compactified S1 for x11, for τ and the spheres S4). They

are charge states in their own superselection sector that are clearly absent in the putative

target theory. Additional “spurious” states will be discussed in Sec. 4 where we treat

discrete symmetries.

States from 11-d GMN States from 11-d AMNL

Gµν Gµ,11 G11,11 m0 (Eq.) Aµν,11 Aµνρ m0 (Eq.)

Gij Ci φ Bij C123

2++ 1++
(−) 0++ 4.7007 (T4) 1+− 0+−

(−) 7.3059 (N4)

Giτ Cτ Biτ Cijτ

1−+
(−) 0−+ 5.6555 (V4) 1−−

(−) 1−− 9.1129 (M4)

Gττ Gα
α State

0++ 2.7034 (S4) 0++ 10.7239 ( L4 )

Table 1: IIA Classification for QCD4. Subscripts to JPC designate Pτ = −1 .

To count the number of independent fluctuations for a field of given spin, we adopt the

following method. We imagine harmonic plane waves propagating in the AdS radial di-

rection, r, with Euclidean time, x4. For example metric fluctuation,

Gµν = ḡµν + hµν(x), (3)

6

Pomeron trajectory

Odderon trajectory



Approx. Scale Invariance and the 5th dimension

r  ! 1r 
rmin

r-Δ

r-Δ

rΔ -4

Hadron Glueball Massive Onium CurrentΦ(r)

IR WALL

==> Hard Scattering (Polchinski-Strassler)

rmin



IIb: Pomeron as 
Diffusion in AdS 



2
0

Conformal Pomeron in Target Space:

Ultra-local approximation in AdS:



⇐    Diffusion in Impact Space

Flat Space  String Scattering -- Regge Behavior



Diffusion in AdS

30

AdS, C=+1:

s2+α′ t̃/2 =
∫

dj

2πi
sjG(j) G(j) =

1
j − 2− α′∆P /2

(j − 2− α′∆P /2)G(j; z, z′, t) = δ(z − z′)

with

Effective Schrodinger Equation:

At t = 0 and z = e−u

[
−∂2

u + 4 + 2
√

λ(j − 2)
]

= euδ(u− u′)

Fixed cut in J-plane:

Weak coupling:
(BFKL)

Strong coupling:Te
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Comparison of strong  vs weak coupling kernel at t=0 

Strong Coupling: 

Diffusion in “warped co-ordinate” 

Weak  Coupling: 



 Pomeron Propagator at Finite Coupling    :

Due to Diffusion in AdS 

• Pomeron becomes cut at

• Conformal: No scale and No Regge trajectory
j0 = 2− 2/

√
λ

j0 = 2− 2/
√

λ

λ
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N = 4 Strong vs Weak BFKL 

2 4 6 8

0.5

1

1.5

2

j0

αN

Strong 

weak 1st 

weak 2nd 



Hardwall Spectrum:
solving an effective Schrodinger equation



Pomeron in QCD



QCD Pomeron <===> Graviton (metric) in AdS
Flat-space String Confinement

Conformal Invariance Pomeron in AdS Geometry

Fixed cut in J-plane:

Weak coupling:
(BFKL)

Strong coupling:Te



HE scattering after AdS/CFT

IIc:  String Theoretic Approach:

OPE ==> Pomeron V ertex Operator

(L− 1)VP = (L̄− 1)VP = 0



HE scattering after AdS/CFT

Introduction to High Energy Scattering in String Theory
Flat Space

The approach adopted in this talk to string theory scattering is based on
work by Brower, Polchinski, Strassler and Tan. First we’ll briefly describe
flat space scattering.

! At tree level, string theory scattering amplitude is given by an integral
over vertex operators

An ∼
∫

d2w2d
2w3 · · · d2wn−2 < V1V2 · · · Vn >

! We will be interested in 2-2 scattering, where this is given by

A4 =
∫

d2w < V1(0)V2(w, w̄)V3(1)V4(∞) >

! BPST showed that in the Regge limit of s→∞ and s$ t we can
calculate the scattering amplitude by introducting a ’Pomeron vertex
operator’

A4 ∼< V1V2V
−
P >< V +

P V3V4 >

Djurić — DIS after AdS/CFT String Theory Setup 15/37

Pomeron Vertex Operator Approach:
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Introduction to High Energy Scattering in String Theory
Flat Space

The approach adopted in this talk to string theory scattering is based on
work by Brower, Polchinski, Strassler and Tan. First we’ll briefly describe
flat space scattering.

! At tree level, string theory scattering amplitude is given by an integral
over vertex operators

An ∼
∫

d2w2d
2w3 · · · d2wn−2 < V1V2 · · · Vn >

! We will be interested in 2-2 scattering, where this is given by

A4 =
∫

d2w < V1(0)V2(w, w̄)V3(1)V4(∞) >

! BPST showed that in the Regge limit of s→∞ and s$ t we can
calculate the scattering amplitude by introducting a ’Pomeron vertex
operator’

A4 ∼< V1V2V
−
P >< V +

P V3V4 >

Djurić — DIS after AdS/CFT String Theory Setup 15/37

Using OPE, and imposing

(L− 1)Vp = (L̄− 1)Vp = 0



HE scattering after AdS/CFT

Introduction to High Energy Scattering in String Theory
Flat Space continued

! Here

V ±P = (
2
α′∂X±∂̄X±)1+

α′t
4 e∓ikX

! This simplifies calculations, and leads to an interpretation of
scattering being mediated by Pomeron exchange.

! This was derived in light cone coordinates, where in the Regge limit
we can separate the states into the ones with a large + component
and the ones with a large − component.

! However, flat space string theory is not enough for a connection with
QCD.

! This is where the AdS/CFT correspondence comes in.

Djurić — DIS after AdS/CFT String Theory Setup 16/37
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HE scattering after AdS/CFT

The AdS/CFT Correspondence

The AdS/CFT correspondence was first introduced by Maldacena. It gives
a one-to-one mapping between states in 10 dimensional string theory on
AdS5 × S5 and N = 4 SYM operators living on the boundary of AdS5.
The metric for AdS space is

ds2 =
R2

z2
(ηµνdxµdxν + dz2) + dΩ5

We can introduce a new coupling λ, where

λ ≡ R4

α′2

The correspondence relates λ to the Yang-Mills coupling constant via the
relation

λ = g2
Y MNc,

therefore we see that λ is the ’t Hooft coupling.

Djurić — DIS after AdS/CFT String Theory Setup 17/37



HE scattering after AdS/CFT

Introduction to High Energy Scattering in String Theory
AdS space

The basic idea is the same as in flat space.
! We begin by introducing the AdS space Pomeron vertex operator

VP (j,±) = (∂X±∂̄X±)
j
2 e∓ikXφj(z)

! We see that we now have a wave function that depends on the AdS
coordinate z. For the Pomeron this function is

φ+j(z) ∼ z2−jK2iν(|t|
1
2 z)

! With this in mind, we can express the amplitude as

A4 ∼
∫

dj

2πi

∫
dν

ν sinh 2πν

π

Π(j)sj

j − j0 + ρν2

× < V1V2VP (j, ν, k,−) >< VP (j, ν, k,+)V3V4 >

where ρ = 2√
λ

and j0 = 2− ρ. Vi are the state dependent vertex
operators.

Djurić — DIS after AdS/CFT String Theory Setup 18/37

(L− 1)VP = (L̄− 1)VP = 0



“2-Gluons” = “Graviton” 
In gauge theories with string-theoretical dual 
descriptions, the Pomeron emerges 
unambiguously.

Pomeron can be associated with a Reggeized 
Massive Graviton.

Both the IR (soft) Pomeron and the UV 
(BFKL) Pomeron are dealt in a unified single 
step.

R. Brower, J. Polchinski, M. Strassler, and C-I Tan, 
“The Pomeron and Gauge/String Duality”, (hep-th/0603115.)



•  New Questions: New 
realization of conformal inv., 
Confinement, Unitarity, 
Saturation, Confinement, 
Froissart, etc.?

N = 4 Strong vs Weak BFKL 

2 4 6 8

0.5

1

1.5

2

j0

αN

Strong 

weak 1st 

weak 2nd 

• C=+1: Pomeron   <=> Graviton:

α(+)
0 = 2− 2/

√
λ + O(1/λ)

• C=-1: Odderon <=> Kalb-Ramond

α(−)
0 = 1−m2

ads/2
√

λ + O(1/λ)

Pomeron Parameter Space 

Q » 1/z 

1/Nc 

0 

1/3 

Low Nuissinov 

BFKL BPST 

AdS Graviton 

??? 

QCD 

λ = g2Nc

∞

(symmetric tensor : gµν)

(anti− symmetric tensor : bµν)

Gauge/String Duality:
QCD at Strong Coupling



HE scattering after AdS/CFT

Conformal limit:  

Confinement:

IId. Conformal Invariance at HE 
and Graviton

* Reduction to AdS_3

* New Realization of Conformal Invariance

∆(J) curve



HE scattering after AdS/CFT

Symmetry ↔ Isometry



HE scattering after AdS/CFT

propagator = (J −M+−)−1



HE scattering after AdS/CFT

Finite Strong Coupling Pomeron Propagator--

Conformal Limit 

• Spin 2 and Reduction to AdS_3

• Spin 2 ------->  J by Using Complex 
angular momentum representation



HE scattering after AdS/CFT

One Graviton in Momentum 
Representation at High Energy

Figure 9: The t-channel exchange graph

As in the past, we simplify the integral by using translation invariance to translate x1 to
0, and then performing an inversion. As a result,

A(w, x1, x3) = |x13|−2∆3I(w′ − x′
13) , I(w) =

∫

H

d5z

z5
0

G∆(w, z)
z∆1+∆3
0

z2∆3
(7.32)

We now use the fact that G∆ is a Green function and satisfies ( w +∆(∆−d))G∆(w, z) =
δ(w, z), so that

( w + ∆(∆ − d))I(w) =
w∆1+∆3

0

w2∆3
(7.33)

In terms of the scale invariant combination ζ = w2
0/w

2, we have I(w) = w∆13
0 fS(ζ), ∆13 =

∆1 − ∆3 and the function fS now satisfies the following differential equation

4ζ2(ζ − 1)f ′′
S + 4ζ [(∆13 + 1)ζ − ∆13 + d/2 − 1]f ′

S (7.34)

+(∆ − ∆13)(∆ + ∆13 − d)fS = ζ∆3

Making the change of variables σ = 1/ζ , we find that the new differential equation is
manifestly of the hypergeometric type and is solved by

fS(ζ) = F
(

∆ − ∆13

2
,
d − ∆ − ∆13

2
;
d

2
; 1 − 1

ζ

)
(7.35)

The other linearly independent solution to the hypergeometric equation is singular as
ζ → 1, which is unacceptable since the original integral was perfectly regular in this limit
(which corresponds to $w → 0).

It is easier, however, to find the solutions in terms of a power series, fS(ζ) =
∑

k fSkζk.
Upon substitution into (7.34), we find solutions that truncate to a finite number of terms
in ζ , provided ∆1 +∆3−∆ is a positive integer. Notice that k need not take integer values,
rather k −∆3 must be integer. The series truncates from above at kmax = ∆3 − 1, so that
fSk = 0 when k ≥ ∆3, and

fSk =
Γ(k)Γ(k + ∆13)Γ(1

2{∆1 + ∆3 − ∆})Γ(1
2{∆ + ∆1 + ∆3 − d})

4Γ(∆1)Γ(∆3)Γ(k + 1 + 1
2{∆13 − ∆})Γ(k + 1 + 1

2{∆13 + ∆ − d})
(7.36)

Still under the assumption that ∆1 +∆3 −∆ is a positive integer, the series also truncates
from below at kmin = 1

2(∆ − ∆13).

73

1 Introduction

Paper I: AdS5 Witten Diagrams at high energy. Effective Lagragian. Remark on BPST

Pomeron paper. Eikonal anzats.

Paper I: Box diagram and Shock wave eikonal sum

Here we reformulate the computaiton of Witten diagrams in AdS5 space with and without a IR

cut-off suitable for the study of hight energy scattering. This provides a framework for going

beyond the leading large N limit studied in BPST Regge limit in the extreme super gravity

approximaiton.

2 Basics

p1 + p2 → p3 + p4 (2.1)

S =

∫

dz
√

g
{

∂Mφ(z)gMN∂Nφ(z) + ∆(∆ − d)φ2(z)
}

(2.2)

where d = 4, and the AdS5 background metric is

d2z =
1

z2
0

{

dxµdxµ + d2z0

}

(2.3)

Scalar propagator:

〈φ∆(z)φ∆(w)〉 = G(5)
∆ (z,w) (2.4)

satisfies
{

−
1
√

g
∂M

√
ggMN∂N + ∆(∆ − d)

}

G(5)
∆ (z,w) = δ5(z − w) (2.5)

Conformal Invariance leads to Isometries of ADS5, G(5)
∆ is a function of

u =
(x − y)2 + (z0 − w0)2

2z0w0
(2.6)

spin S field,

(−∂z0
z−(d−1−2S)
0 ∂z0

+ q2 z−(d+1−2S)
0 + z−(d−1−2S)

0 m2)φ(u) = 0 (2.7)

2

J = 2

Reduction to AdS-3 at High Energy 
for Near Forward Scattering

* momentum transfer q is transverse:

* AdS-3 Propagator:

* Isometry of Euclidean AdS-3 is SL(2C)  ---
the same symmetry group as BFKL kernel (spin-
chains):     2-Gluons = Graviton
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X?

z
x

(z,x? )

(z’,0)(-z’,0)

 r+
r
-

AdS-3 Propagator in Conformal Limit

Randall-Sundrum with vanishing 
Direchlet bdry condition at z=0

. . . . . . . . . . . .

J-Plane
J0

Integration Contour for Mellin Transform

. .

! (t)

.

Complex j-Plane:

Reduction to AdS-3:



Impact Representation:

j-plane Representation:

Reduction to AdS-3:

D.E. for Propagator:



Strong Coupling Pomeron Propagator--

Conformal Limit 

• Use J-dependent Dimension

• BFKL-cut: 

∆ : 4 → ∆(J) = 2 + [2
√

λ(J − J0)]
1/2 = 2 +

√

j̄ (2.8)

J0 = 2 −
2√
λ

(2.9)

3 One graviton Exchange

We begin by considering the one gravition exchange Witten diagram in Fig. for scalar sources

on the boundary of AdS at xi. The bluk co-ordiantes are written wM = (wµ, w0) where we

reserve µ, ν, .. for the standard 4-d Minkowski or Euclidean co-ordinates after Wick rotation.

Freedman et al., (hep − th/9903196), give the following expression for this diagram,

Igrav(x1, x2, x3, x4)

=
g2
s

4

∫

dz
√

g

∫

dw
√

g TMN (x1, x3, z)GMNM ′N ′(z,w)TM ′N ′
(x2, x4, w) (3.1)

where the bulk to bulk graviton propagator is given by

GMNM ′N ′(z,w) = (∂M∂M ′ u ∂N∂N ′ u + ∂M∂N ′ u ∂N∂M ′ u)G(u) + gMNgM ′N ′H(u) (3.2)

gs is the string coupling, G(u) is the scalar propagator, and H(u) a linear function of G(u). By

symmetry arguments they depend only on the geodisic distance for z = (zµ, z0) to w = (wµ, w0):

u =
(z − w)µ(z − w)µ + (z0 − w0)2

2z0w0
(3.3)

TMN (x, x′, z) is the energy momenut tensor for a scalar particle from x to x′ on the boundary

(see figure).

We find it more convenient to write Feynam rules in momentum space for the 4 flat co-ordinates,

(2π)4δ4(p1 + p2 + p3 + p4)T
(1)
4 (p1, p2, p3, p4) =

∫

Πid
4xie

−ipixiIgrav(x1, x2, x3, x4) (3.4)

Here the superscript for T (1)
4 reminds us that this is the one-graviton exchange contribution to the

four-point amplitude. Since
√

g depends only on the AdS radial variable, e.g., at z,
√

g = z−(d+1)
0 ,

one can carry out the Fourier transform, arriving at a simple “mixed-representation”,

T (1)
4 (p1, p2, p3, p4) =

1

4

∫

dz0
√

g

∫

dw0
√

g T̃MN (p1, p3, z0)G̃MNM ′N ′(q, z0, w0)T̃
M ′N ′

(p2, p4, w0)

(3.5)

3



Spin-Dimension Curve

λ = 0 Anomalous 
Dim=0  

λ = 0, BFKL

(4,2) and (0,2) have zero anomalous dimension

inversion symmetry:  Δ  4 - Δ 



• discrete spectrum 

With Confinement

Eq. (3.26) must be modified if there exists solutions to the homogeneous equations satisfying

both boundary conditions at z = 0 and at z = z0. For the case of hard-wall, it has been shown

in Ref. BPST that such discrete state does not exist for t < 0 since the confining potential is

repulsive. This corresponds to the fact that, for t < 0, the j-plane singularity consists of nothing

but a branch point at j = j0. However, for t > 0, the confining potential turns attractive,

discrete solutions can emerge through the BFKL branch cut as t increases and positive. These

features are illustrated in Fig. 6. At sufficiently large value of t, there exist a sequence of parallel

j!2

t

Figure 6: The analytic behavior of Regge trajectories in the hard-wall model, showing the

location of the bound-state poles at j = 2 and the continuum cut at j = j0 = 2 − 2/
√

λ into

which the Regge trajectories disappear. The lowest Regge trajectory intersects the cut at a small

positive value of t. At sufficiently large t each trajectory attains a fixed slope, corresponding to

the tension of the model’s confining flux tubes.

Regge trajectories. Denote tcr as the value of t when the leading trajectory crosses the value

j = j0. The j-plane singularity structure is illustrated in Fig. XXX, for −∞ < t < tcr, and

for two values of t where tcr < t < ∞. The spectral properties in j has been fully explored in

Ref. BPST, and a spectral presentation analogous to Eq. (8.7) for the case of hard-wall was

also obtained. For completeness, it is summarized here in Appendix C.

An important change in dealing with confined background can be gleamed from Fig. 6. At

fiex j > j0, the propagator G(j, t, z, z′), as a function of t, consists of an infinite set poles, with

locations, (t1(j), t2(j), · · · ), determined by each trajectory crossing a particular value of j. In

particular, all poles will lie to the right of tcr, the value when the leading Regge trajectory

crosses the BFKL cut. Furthermore, G no longer has a singularity at t = 0, as is the case in the

26





Pomeron Propagator in momentum 
represention

--with or without Confinement

of a string in this limit. In strong coupling one should visualize the Pomeron as a tight binding

(or mean field) description of the exchange of an infinite number of gluonic “string bits”. (Blaa

Blaa make this more precise in a future article?)

An important observation for the simplicity of Eq. (3.10) is the fact that the propagator vanishes

at large separation in impact parameter space as a power,

K(j, x⊥ − x′
⊥, z, z′) ∼ [(x⊥ − x′

⊥)2]−1−
√

c(j−j0) (3.13)

where we have used the fact that ∆+(j) = 2 +
√

c(j − j0). As a function of j it contains a

branch point at j = j0, the BFKL singularity in the strong coupling limit. For j = j0,

K(j0, x⊥ − x′
⊥, z, z′) ∼ 1

(x⊥ − x′
⊥)2

, (3.14)

which simply reflects the dominance of a massless exchange at large impact separation.

The remarkable simplicity of Eq. (3.10) will be modified when confinement is taken into ac-

count. In particular, it is often not possible to solve for the Pomeron kernel in closed analytic

form. Furthermore, we expect the feature of power behavior for large impact separation will

change dramatically when confinement is taken into account. This in turn would have important

consequence on saturating the Froissart bound. In order to explore methods amenable to the

case with confinement, we develop various alternative representations for our conformal kernel

in Appendix B. We show that, in a Fourier representation, the conformal kernel can also be

expressed simply as

K(j, x⊥ − x′
⊥, z, z′) =

1

(2π)2

∫
dq⊥eiq⊥·(x⊥−x′

⊥)G(j, q⊥, z, z′)

=
1

(2π)2

∫
dq⊥eiq⊥·(x⊥−x′

⊥)I√
j̄
(qz<)K√

j̄
(qz>) , (3.15)

where z< = min (z, z′) and z> = max (z, z′), 0 < z, z′ < ∞, q = |q⊥|, and Iα and Kα are

modified Bessel functions. For notational simplicity, we have also introduced j̄ = 2
√

λ(j − j0) =

(∆+(j) − 2)2, or simply
√

j̄ = ∆+(j) − 2. This simple result can be directly related to the

spectral representation given in Ref. BPTS

G(j, q⊥, z, z′) =

∫
dq⊥e−iq⊥·(x⊥−x′

⊥)K(j, z, z′ , x⊥ − x′
⊥)

=
1

π2

∫ ∞

−∞
dν(ν sinh πν)

Kiν(qz)K−iν(qz′)

ν2 + (2
√

λ)(j − j0)
, (3.16)

which explicitly exhibits the analytic structure in j: It is real for j > j0 and has a branch point

at j = j0, the BFKL singularity. An alternative spectral representation is

G(j, t, z, z′) =

∫ ∞

0
dk k

J√
j̄
(kz)J√

j̄
(kz′)

k2 − t
(3.17)
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Spectral Rep. in Conformal limit:

Spectral Rep. with Confinement

Eq. (3.26) must be modified if there exists solutions to the homogeneous equations satisfying

both boundary conditions at z = 0 and at z = z0. For the case of hard-wall, it has been shown

in Ref. BPST that such discrete state does not exist for t < 0 since the confining potential is

repulsive. This corresponds to the fact that, for t < 0, the j-plane singularity consists of nothing

but a branch point at j = j0. However, for t > 0, the confining potential turns attractive,

discrete solutions can emerge through the BFKL branch cut as t increases and positive. These

features are illustrated in Fig. 6. At sufficiently large value of t, there exist a sequence of parallel

j!2

t

Figure 6: The analytic behavior of Regge trajectories in the hard-wall model, showing the

location of the bound-state poles at j = 2 and the continuum cut at j = j0 = 2 − 2/
√

λ into

which the Regge trajectories disappear. The lowest Regge trajectory intersects the cut at a small

positive value of t. At sufficiently large t each trajectory attains a fixed slope, corresponding to

the tension of the model’s confining flux tubes.

Regge trajectories. Denote tcr as the value of t when the leading trajectory crosses the value

j = j0. The j-plane singularity structure is illustrated in Fig. XXX, for −∞ < t < tcr, and

for two values of t where tcr < t < ∞. The spectral properties in j has been fully explored in

Ref. BPST, and a spectral presentation analogous to Eq. (8.7) for the case of hard-wall was

also obtained. For completeness, it is summarized here in Appendix C.

An important change in dealing with confined background can be gleamed from Fig. 6. At

fiex j > j0, the propagator G(j, t, z, z′), as a function of t, consists of an infinite set poles, with

locations, (t1(j), t2(j), · · · ), determined by each trajectory crossing a particular value of j. In

particular, all poles will lie to the right of tcr, the value when the leading Regge trajectory

crosses the BFKL cut. Furthermore, G no longer has a singularity at t = 0, as is the case in the

26

Ref. Brower, Polchinski, Strassler, Tan, 
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HE scattering after AdS/CFT



III: Odderon in AdS

 Massless modes of a closed string theory: 
metric tensor, 

Kolb-Ramond anti-sym. tensor, 
dilaton, etc.

Gmn = g0
mn + hmn

bmn = −bnm
φ, χ, · · ·



3
2

Born-Infeld Action

Bulk Degrees of Freedom from Supergravity:
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Confinement gives a discrete spectrum of Glueballs: 

Lattice Data vs AdS IIA Gravity dual Gauge  (!’ = 0 ) 

Lattice QCD 

Glueball Spectrum 

By Morningstar and 

Peardon 

Mass Gap 

Pom Odd 



flat-space expectation

64Massless Modes at t=0
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Massless Modes in Flat-Space String 
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Flat-Space String Theory
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Conformal Pomeron and Odderon in Target Space:

Ultra-local approximation:
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Diffusion in AdS

AdS5, C=+1:

AdS5, C=-1:

Flat Space:



Diffusion in AdS

69

AdS5, C=+1:

AdS5, C=-1:

Flat Space:
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Gauge/String Duality: Conformal Limit

• C=+1: Pomeron   <===> Graviton

• C=-1: Odderon <===> Kalb-Ramond Field

72
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J-Plane Structure
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Formal Treatment via OPE
• Flat Space Pomeron Vertex Operator

• Flat Space Odderon Vertex Operator

• Pomeron Vertex Operator in AdS

• Odderon Vertex Operator in AdS
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IV. Beyond Pomeron

Sum over all Pomeron graph (string perturbative, 
1/N2)

Eikonal summation in AdS3

Constraints from Conformal Invariance, Unitarity, 
Analyticity, Confinement, Universality, etc.

Froissart Bound?

“non-perturbative” (e.g., blackhole production)
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Eikonal  Expansion

++ +

“sum” to get

Born term



•  Eikonal Sum: derived both via Cheng-Wu or by Shock-wave method

• Saturation:

• Universality:

transverse AdS3 space !!



r  ! 1r 
rmin

r-Δ

r-Δ

rΔ -4

Hadron Glueball Massive Onium CurrentΦ(r)

IR WALL

By choosing wave functions,    ,  can treat
DIS, Higgs Production, Proton-Proton, etc., on equal 
footing. 

• Universality:

rmin
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• Phase space: 

• Conformal Invariance: 

Saturation:



Use the condition:

Scattering in Conformal Limit:

No Froissart

Elastic Ring:

Inner Absorptive Disc:

Inner Core:  “black hole” production ?



With Confinement:

Unitarity, Confinement and Froissart Bound

discrete spectrum

Mass of the lightest tensor 
Glueball provides scale

Elastic Ring:

Absorptive Disc:

Inner Core:



Saturation of Froissart Bound

• The Confinement 
deformation gives an 
exponential cutoff for b 
> bmax ~c log (s/s0), 

• Coefficient c ~ 1/m0,  m0 
being the mass of 
lightest tensor glueball.

• There is a shell of  
“conformal region” of 
width 

Froissart is respected and 
saturated.

Disk picture

bmax

bmax determined by confinement.



V. Deep Inelastic Scattering (DIS)

Provide meaning for Pomeron non-perturbatively from 
first principles.

Realization of conformal invariance beyond perturbative 
QCD

New starting point for unitarization, saturation, etc.

Phenomenological consequences, Diffractive Higgs 
production at LHC (in progress).



DIS
General Setup

Let us look in a little more detail at DIS.

The basic kinematical variables we need for describing this process are

! the center of mass energy

s = −(P + q)2 > 0
! the virtual photon mass squared:

−Q2 = q2 = qµqµ = (k − k′)2 < 0
! the scaling variable

0 < x ≈ Q2

s
< 1

Djurić — DIS after AdS/CFT Introduction 11/20



General Setup
The cross section

We can write the cross section for this process in the form

dσ2

dxdQ2
=

2πα2

xQ4
(Y+F2 − x2FL)

Y+ = 1 + (1− x)2,

In parton model, it is customary to introduce quark and gluon distribution
functions:

! F2(x, Q2) = x
∑

q e2
q [q(x, Q2) + q̄(x, Q2)]

! FL(x, Q2) ∼ F2 − xg(x, Q2)
! F2 is what we get from most experiments, since FL vanishes at LO in

pQCD.
! It is also customary to express F2 as, σ = σT + σL,

F2(x, Q2) = Q2

4π2ασ(x, Q2) .

Djurić — DIS after AdS/CFT Introduction 12/20



HE scattering after AdS/CFT

F2(x, Q2) =
Q2

4π2αem
[σT (γ∗p) +L (γ∗p)]

Optical Theorem

σtotal(s, Q2) = (1/s)Im A(s, t = 0;Q2)

x ≡ Q2

s

Deep Inelastic Scattering (DIS)

Small x :
Q2

s
→ 0



F2(x, Q2) ∼ (1/x)εeffective)

Puzzles? εeff (Q2)



Questions on HERA DIS small-x data:

! Why αeff = 1 + εeff (Q2)?

! Confinement? (Perturbative vs. Non-perturbative?)

! Saturation? (evolution vs. non-linear evolution?)

Djurić — DIS after AdS/CFT Introduction 5/11



Review of High Energy Scattering in String Theory
DIS in AdS

Recall that, for two-to-two scattering involving on-shell hadrons, the
amplitude in an eikonal sum can be expressed as

A(s, t) = 2is
∫

d2bei!q·!b
∫

dzdz′P13(z)P24(z′)
{
1− eiχ(s,b,z,z′)

}
,

where, for scalar glueball states,

Pij(z) =
√
−g(z)(z/R)2φi(z)φj(z)

involves a product of two external normalizable wave functions. To first
order in the eikonal,

A4(s, t) "
∫

d2be−ibq⊥

∫
dzdz′P13(z)P24(z′) (2sχ) ,

where

χ(s, b, z, z′) =
g2
0R

4

2(zz′)2s
K(s, b, z, z′)

K is the BPST Pomeron kernel.
Djurić — DIS after AdS/CFT Introduction 13/20



High Energy Scattering and DIS in String Theory
AdS space continued

! We are interested in calculating the structure function F2(x, Q2),
which is simply the cross section for an off-shell photon. Using the
optical theorem we obtain

σtot ! 2
∫

d2b

∫
dzdz′P13(z)P24(z′) Im χ

! For DIS, P13 should present a photon on the boundary that couples
to a spin 1 current in the bulk. This current then propagates through
the bulk, and scatters off the target.

! The wave function, in the conformal limit, is

P13(z) =
1
z
(Qz)4(K2

0 (Qz) + K2
1 (Qz))

! For the proton, one for now treats it as a glueball of mass
∼ Λ =1 /Q′, which in string theory appears as a Kaluza-Klein mode
of the massless dilaton, after the compactification of S5.

Djurić — DIS after AdS/CFT Introduction 15/20



Moments and Anomalous Dimension
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DIS after AdS/CFT

59









F2(x, Q2) ∼ (1/x)εeffective)

Puzzles? εeff (Q2)



““Phase diagramPhase diagram”” as a summaryas a summary

E
n
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y
  

(l
o
w

 !
h

ig
h

)

Transverse resolution

(low !high)

BFKL

Parton gas

BFKL,

BK

DGLAP

Standard expectation 
(from Itakura’s RIKEN lectures)

AdS/CFT expectation 
(from BDST: hep-ph/1007.2259)



VI. Summary and Outlook

Provide meaning for Pomeron non-perturbatively from 
first principles.

Realization of conformal invariance beyond perturbative 
QCD

New starting point for unitarization, saturation, etc.

Phenomenological consequences, DIS at small-x, 
Diffractive Higgs production at LHC (in progress), etc.



The QCD Pomeron
Have shown that in gauge theories with 
string-theoretical dual descriptions, the 
Pomeron emerges unambiguously.

Pomeron can be identified as Reggeized 
Massive Graviton.

Both the IR Pomeron and the UV Pomeron 
are dealt in a unified single step.

Both conceptual and practical advantages.



Diffractive Production of Higgs at LHC
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