Gauge/String Duality and High Energy Scattering

Chung-I Tan, Brown U. August 7, 2010, Summer Institute 2010 Fuji Calm

talk based on

R. Brower, J. Polchinski, M. Strassler, and C-I Tan, hep-th/0603115, hep-th/0707.2408, hep-th/0710.4378;

R. Brower, S. Mathur, and C-I Tan, hep-th/0003115, hep-th/9908196

R. Brower, M. Djuric and C-I Tan, hep-th/0812.0354

R. Brower, M. Djuric, I. Sarcevic and C-I Tan, hep-ph/1007.2259

HE scattering after AdS/CFT

Outline

- Scales in QCD--brief history of "QCD string"
- QCD "Closed String" as Metric Fluctuations in AdS space
 - Graviton is a Regge cut in AdS
 - Pomeron as a Reggeized Massive Graviton
 - Pomeron Vertex Operator
 - Transverse AdS_3 and High Energy Scattering
- Anti-Symmetric Forms -- Odderon
- Beyond Graviton exchange -- Eikonalization
- Deep Inelastic Scattering at Small-x
- Summary

Regge Behavior and Regge Trajectory

$$\mathcal{A} \sim s^{J(t)} = s^{\alpha(0) + \alpha' t}$$

7

HE scattering after AdS/CFT

Genesis of String Theory

Genesis of String Theory

 Duality between direct-channel resonances and Regge behavior at high energies

$$\sum_{r} \frac{g_r^2(t)}{s - (Mr - i\Gamma_r)^2} \simeq \beta(t) (-\alpha' s)^{\alpha(t)}$$

Expressed mathematically (Veneziano)

$$A_{\pi^+\pi^- \to \pi^+\pi^-}(s,t) = g_0^2 \frac{\Gamma(1-\alpha_\rho(t))\Gamma(1-\alpha_\rho(s))}{\Gamma(1-\alpha_\rho(t)-\alpha_\rho(s))}$$

Interpret as quantum theory of open string.

Genesis of String Theory continued

- This is not the end of the story.
- Unitarity requires closed string.
- Virasoro amplitude:

$$A(s,t,u) = \beta \frac{\Gamma(1-\alpha(s)/2)\Gamma(1-\alpha(t)/2)\Gamma(1-\alpha(u)/2)}{\Gamma(1-(\alpha(t)+\alpha(u))/2)\Gamma(1-(\alpha(s)+\alpha(u))/2)\Gamma(1-(\alpha(t)+\alpha(s))/2)}$$

Birth of Classic String Theory!

HE scattering after AdS/CET

 ${\sf Chung-I-High\ Energy\ Scattering\ after\ AdS/CFT}$

Introduction

Stringy Rutherford Experiment

At Wide Angle: s,-t,-u >> $1/\alpha$ '

$$A_{closed}(s,t) \rightarrow \exp\left[-\frac{1}{2}\alpha'(s\ln s + t\ln t + u\ln u)\right]$$

î

In this talk, will focus on "closed strings" only. For "open-string" in AdS/CFT, e.g., mesons and baryons, see talks by Koji Hashimoto and others.

Emergence of 5-dim AdS-Space

Let z=1/r, $0 < z < z_0$, where $z_0 \sim 1/\Lambda_{qcd}$ "Fifth" co-ordinate is size z / z' of proj/target

Trajectories are different in QCD:

What can we learn from AdS/QCD?

II: Gauge/String Duality

QCD Pomeron as "metric fluctuations" in AdS

Strong <==> Weak duality
Geometry of AdS/CFT and Scale Invariance
High Energy Scattering
Confinement and Glueball Spectrum
Pomeron as Reggeized Massive Graviton

Ila: Degrees of Freedom

Weak Coupling:

Gluons and Quarks: Gauge Invariant Operators:

 $A^{ab}_{\mu}(x), \psi^a_f(x)$ $\bar{\psi}(x)\psi(x), \ \bar{\psi}(x)D_{\mu}\psi(x)$ $S(x) = TrF_{\mu\nu}^2(x), \ O(x) = TrF^3(x)$ $T_{\mu\nu}(x) = TrF_{\mu\lambda}(x)F_{\lambda\nu}(x), etc.$

$$\mathcal{L}(x) = -TrF^2 + \bar{\psi}\mathcal{D}\psi + \cdots$$

Strong Coupling:

 $G_{mn}(x) = g_{mn}^{(0)}(x) + h_{mn}(x)$ Metric tensor: Anti-symmetric tensor (Kalb-Ramond fields): Dilaton, Axion, etc. Other differential forms:

 $b_{mn}(x)$ $\phi(x), a(x), etc.$ $C_{mn}(x)$

 $\mathcal{L}(x) = \mathcal{L}(G(x), b(x), C(x), \cdots)$

 $\mathcal{N} = 4 \text{ SYM Scattering at High Energy in StrongCoupling}$

$$\langle e^{\int d^4 x \phi_i(x) \mathcal{O}_i(x)} \rangle_{CFT} = \mathcal{Z}_{string} \left[\phi_i(x, z) |_{z \sim 0} \to \phi_i(x) \right]$$

Bulk Degrees of Freedom from type-IIB Supergravity on AdS₅:

- metric tensor: G_{MN}
- Kalb-Ramond 2 Forms: B_{MN}, C_{MN}
- Dilaton and zero form: ϕ and C_0

$$\lambda = g^2 N_c \to \infty$$

Supergravity limit

- Strong coupling
- Conformal
- Pomeron as Graviton in AdS

- Draw all "Witten-Feynman" Diagrams in AdS₅,
- High Energy Dominated by Spin-2 Exchanges:

 $\lambda = g^2 N_c \to \infty$

One Graviton Exchange at High Energy

$$T^{(1)}(p_1, p_2, p_3, p_4) = g_s^2 \int \frac{dz}{z^5} \int \frac{dz'}{z'^5} \,\tilde{\Phi}_{\Delta}(p_1^2, z) \tilde{\Phi}_{\Delta}(p_3^2, z) \mathcal{T}^{(1)}(p_i, z, z') \tilde{\Phi}_{\Delta}(p_2^2, z') \tilde{\Phi}_{\Delta}(p_4^2, z')$$

$$\mathcal{T}^{(1)}(p_i, z, z') = (z^2 z'^2 s)^2 G_{++, --}(q, z, z') = (z z' s)^2 G_{\Delta=4}^{(5)}(q, z, z')$$

- Strong Coupling Pomeron has J=2
- Need to consider λ finite.
- For QCD, needs confinement to introduce a scale.

Geometry of AdS/CFT and Scale Invariance

What is the curved space?

Maldacena: UV (large r) is (almost) an $AdS_5 \times X$ space

$$ds^{2} = r^{2}dx_{\mu}dx^{\mu} + \frac{dr^{2}}{r^{2}} + ds_{\chi}^{2}$$

Captures QCD's approximate UV conformal invariance

$$x \to \zeta x , \ r \to \frac{r}{\zeta}$$
 (recall $r \sim \mu$

Confinement: IR (small r) is cut off in some way

$$r \sim \mu > r_{min} \sim \Lambda_{QCD}$$

For Pomeron: string theory on cut-off AdS_5 (X plays no role)

Confinement Deformation: Glueball Spectrum

 $\mathbf{E}^2 = (\mathbf{p}_1^2 + \mathbf{p}_2^2 + \mathbf{p}_3^2) + \mathbf{M}^2$

5-Dim Massless Mode:

$$0 = E^2 - (p_1^2 + p_2^2 + p_3^2 + p_r^2)$$

Confinement Deformation: Glueball Spectrum

Table 1: IIA Classification for QCD_4 . Subscripts to J^{PC} designate $P_{\tau} = -1$.

Approx. Scale Invariance and the 5th dimension

IIb: Pomeron as Diffusion in AdS

Conformal Pomeron in Target Space:

Ultra-local approximation in AdS:

Flat Space String Scattering -- Regge Behavior

$$\begin{split} & \mathrm{Im}\,\mathcal{A} \sim \sum_{i} s^{J_{i}(t)} \\ & J(t) = \alpha(t) = \alpha_{0} + \alpha't \\ & t \leftrightarrow \nabla_{b}^{2} \end{split}$$

Diffusion in AdSAdS, C=+1:
$$\alpha'\tilde{t} \rightarrow \alpha'\Delta_P \equiv \frac{\alpha'R^2}{r^2}\nabla_b^2 + \alpha'\Delta_{\perp P}$$
 $s^{2+\alpha'\tilde{t}/2} = \int \frac{dj}{2\pi i}s^j G(j)$ with $G(j) = \frac{1}{j-2-\alpha'\Delta_P/2}$ Effective Schrodinger Equation:($j-2-\alpha'\Delta_P/2)G(j;z,z',t) = \delta(z-z')$ Effective Schrodinger Equation: $(j-2-\alpha'\Delta_P/2)G(j;z,z',t) = \delta(z-z')$ At $t=0$ and $z=e^{-u}$ (e^{FKL}) $_{j_0=1+\frac{4\ln 2}{\pi}\alpha N}$ Strong coupling: $j_0=2-\frac{2}{\sqrt{\lambda}}$ $_{30}$

Comparison of strong vs weak coupling kernel at t=0

Strong Coupling: $\mathcal{K}(r,r',s) = \frac{s^{j_0}}{\sqrt{4\pi \mathcal{D} \ln s}} e^{-(\ln r - \ln r')^2/4\mathcal{D} \ln s}$ Diffusion in "warped co-ordinate" $j_0 = 2 - \frac{2}{\sqrt{g^2 N}} + O(1/g^2 N)$ $\mathcal{D} = \frac{1}{2\sqrt{g^2 N}} + O(1/g^2 N)$. Weak Coupling: $K(s, k_{\perp}, k'_{\perp}) \approx \frac{s^{\alpha(0)-1}}{\sqrt{\pi \ln s}} e^{-\left[(\ln k'_{\perp} - \ln k_{\perp})^2/4\mathcal{D} \ln s\right]}$ $\mathcal{D} = \frac{14\zeta(3)}{\pi} g^2 N / 4\pi^2.$ $j_0 = 1 + \ln(2)q^2 N/\pi^2$

31

$\mathcal{N} = 4$ Strong vs Weak BFKL

33

Hardwall Spectrum: solving an effective Schrodinger equation

Running UV, Confining IR (large N)

The hadronic spectrum is little changed, as expected. The BFKL cut turns into a set of poles, as expected.

QCD Pomeron <===> Graviton (metric) in AdS

Flat-space String

Conformal Invariance

Confinement

Pomeron in AdS Geometry

IIc: String Theoretic Approach:

$OPE ==> Pomeron \ Vertex \ Operator$

$$(L-1)V_P = (\bar{L}-1)V_P = 0$$

HE scattering after AdS/CFT

Pomeron Vertex Operator Approach:

work by Brower, Polchinski, Strassler and Tan. First we'll briefly describe flat space scattering.

 At tree level, string theory scattering amplitude is given by an integral over vertex operators

$$A_n \sim \int d^2 w_2 d^2 w_3 \cdots d^2 w_{n-2} < V_1 V_2 \cdots V_n >$$

▶ We will be interested in 2-2 scattering, where this is given by

$$A_4 = \int d^2 w < V_1(0) V_2(w, \bar{w}) V_3(1) V_4(\infty) >$$

HE scattering after AdS/CFT

î

Introduction to High Energy Scattering in String Theory Flat Space

Using OPE, and imposing

$$(L-1)V_p = (\bar{L}-1)V_p = 0$$

5

$$A_4 = \int d^2 w < V_1(0) V_2(w, \bar{w}) V_3(1) V_4(\infty) >$$

► BPST showed that in the Regge limit of s → ∞ and s ≫ t we can calculate the scattering amplitude by introducting a 'Pomeron vertex operator'

 $A_4 \sim < V_1 V_2 V_P^- > < V_P^+ V_3 V_4 >$

HE scattering after AdS/CFT

Introduction to High Energy Scattering in String Theory Flat Space continued

Here

$$V_P^{\pm} = \left(\frac{2}{\alpha'}\partial X^{\pm}\bar{\partial}X^{\pm}\right)^{1+\frac{\alpha't}{4}}e^{\mp ikX}$$

- This simplifies calculations, and leads to an interpretation of scattering being mediated by Pomeron exchange.
- This was derived in light cone coordinates, where in the Regge limit we can separate the states into the ones with a large + component and the ones with a large - component.

î

Introduction to High Energy Scattering in String Theory Flat Space continued

► Here

$$V_P^{\pm} = \left(\frac{2}{\alpha'}\partial X^{\pm}\bar{\partial}X^{\pm}\right)^{1+\frac{\alpha't}{4}}e^{\mp ikX}$$

- However, flat space string theory is not enough for a connection with QCD.
- ► This is where the AdS/CFT correspondence comes in.

HE scattering after AdS/CFT
The AdS/CFT Correspondence

The metric for AdS space is

$$ds^{2} = \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2}) + d\Omega_{5}$$

We can introduce a new coupling λ , where

$$\lambda \equiv \frac{R^4}{\alpha'^2}$$

The correspondence relates λ to the Yang-Mills coupling constant via the relation

$$\lambda = g_{YM}^2 N_c,$$

therefore we see that λ is the 't Hooft coupling.

Introduction to High Energy Scattering in String Theory AdS space

The basic idea is the same as in flat space.

$$(L-1)V_P = (\bar{L}-1)V_P = 0$$

• We begin by introducing the AdS space Pomeron vertex operator

$$V_P(j,\pm) = (\partial X^{\pm} \bar{\partial} X^{\pm})^{\frac{j}{2}} e^{\mp ikX} \phi_j(z)$$

We see that we now have a wave function that depends on the AdS coordinate z. For the Pomeron this function is

$$\phi_{+j}(z) \sim z^{2-j} K_{2i\nu}(|t|^{\frac{1}{2}} z)$$

With this in mind, we can express the amplitude as

$$A_{4} \sim \int \frac{dj}{2\pi i} \int d\nu \frac{\nu \sinh 2\pi \nu}{\pi} \frac{\Pi(j)s^{j}}{j - j_{0} + \rho\nu^{2}}$$
$$\times \langle V_{1}V_{2}V_{P}(j,\nu,k,-) \rangle \langle V_{P}(j,\nu,k,+)V_{3}V_{4} \rangle$$

where $\rho = \frac{2}{\sqrt{\lambda}}$ and $j_0 = 2 - \rho$. V_i are the state dependent vertex operators.

HE scattering after AdS/CFT

"2-Gluons" = "Graviton"

In gauge theories with string-theoretical dual descriptions, the <u>Pomeron</u> emerges unambiguously.

Pomeron can be associated with a Reggeized Massive Graviton.

Both <u>the IR (soft) Pomeron</u> and <u>the UV</u> (BFKL) Pomeron are dealt in a unified single step.

R. Brower, J. Polchinski, M. Strassler, and C-I Tan, "The Pomeron and Gauge/String Duality", (hep-th/0603115.)

Gauge/String Duality: QCD at Strong Coupling

 $\mathcal{N} = 4$ Strong vs Weak BFKL

- C=+1: Pomeron <=> Graviton: $\alpha_0^{(+)} = 2 - 2/\sqrt{\lambda} + O(1/\lambda)$ (symmetric tensor : $g_{\mu\nu}$)
- C=-1: Odderon <=> Kalb-Ramond

$$\alpha_0^{(-)} = 1 - m_{ads}^2 / 2\sqrt{\lambda} + O(1/\lambda)$$

 $(anti - symmetric \ tensor : b_{\mu\nu})$

 New Questions: New realization of conformal inv., Confinement, Unitarity, Saturation, Confinement, Froissart, etc.?

IId. Conformal Invariance at HE and Graviton

* Reduction to AdS_3

* New Realization of Conformal Invariance

©Conformal limit: $\Delta(J)$ curve

@Confinement:

HE scattering after AdS/CFT

$Symmetry \leftrightarrow Isometry$

ínì

full O(4, 2) conformal group as ison 15 generators: $P_{\mu}, M_{\mu\nu}, D, K_{\mu}$

as isometries of AdS_5

collinear group $SL_L(2, R) \times SL_R(2, R)$ used in DGLAP.

generators: $D \pm M_{+-}$, P_{\pm} , K_{\mp}

SL(2,C) Möbius invariance

generators: $iD \pm M_{12}$, $P_1 \pm iP_2$, $K_1 \mp iK_2$

isometries of the Euclidean (transverse) AdS_3 subspace of AdS_5

HE scattering after AdS/CFT

$$propagator = (J - M_{+-})^{-1}$$

(III)

Lorentz boost, $\exp[-yM_{+-}]^{-1}$ $ds^2 = R^2[dz^2 + dwd\bar{w}]/z^2$

 AdS_3 is the hyperbolic space H_3 . Indeed SL(2, C) is the subgroup generated by all elements of the conformal group that commute with the boost operator, M_{+-} and as such plays the same role as the little group which commutes with the energy operator P_0 .

 k_2

 k_3

 k_4

$$J_0 = w\partial_w + \frac{1}{2}z\partial_z , \quad J_- = -\partial_w , \quad J_+ = w^2\partial_w + wz\partial_z - z^2\partial_{\bar{w}}$$

$$\bar{J}_0 = \bar{w}\partial_{\bar{w}} + \frac{1}{2}z\partial_z , \quad \bar{J}_- = -\partial_{\bar{w}} , \quad \bar{J}_+ = \bar{w}^2\partial_{\bar{w}} + \bar{w}z\partial_z - z^2\partial_w$$

$$M_{+-} = 2 - H_{+-}/(2\sqrt{\lambda}) + O(1/\lambda) \qquad H_{+-} = -z^3 \partial_z z^{-1} \partial_z - z^2 \nabla_{x_\perp}^2 + 3 .$$

$$[H_{+-} + 2\sqrt{\lambda}(j-2)]G_3(j,v) = z^3\delta(z-z')\delta^2(x_\perp - x'_\perp)$$

HE scattering after AdS/CFT

Finite Strong Coupling Pomeron Propagator --Conformal Limit · Spin 2 and Reduction to AdS_3 · Spin 2 ----> J by Using Complex angular momentum representation HE scattering after AdS/CFT

Reduction to AdS-3 at High Energy for Near Forward Scattering * momentum transfer q is transverse: $(zz')G^{(3)}_{\Delta=3}(x^{\perp},z,z') = \int \frac{dq^{\perp}}{(2\pi)^2} e^{ix^{\perp}q^{\perp}} G^{(5)}_{\Delta=4}(q^{\pm}=0,q^{\perp},z,z')$ $\mathcal{K}(s, x^{\perp}, z, z') = (zz's)^2 (zz') G_3^{(3)}(x^{\perp}, z, z')$ $\{-\partial_z z^{-1}\partial_z - z^{-1}\partial_{x^{\perp}}^2 + 3z^{-3}\}G_3^{(3)}(x_{\perp}, x'_{\perp}, z, z') = \delta(z - z')\delta^{(2)}(x_{\perp} - x'_{\perp})$ * Isometry of Euclidean AdS-3 is SL(2C) --the same symmetry group as BFKL kernel (spin-

 AdS_3 Green's function which has a simple closed form,

$$G_3(j,v) = \frac{1}{4\pi} \frac{\left[1+v+\sqrt{v(2+v)}\right]^{(2-\Delta_+(j))}}{\sqrt{v(2+v)}}$$

54

Complex j-Plane: $\mathcal{T}^{(1)}(p_i, z, z') = \int \frac{dj}{2\pi i} \frac{(1 + e^{-i\pi j})}{(1 + e^{-i\pi j})}$

$$f^{(1)}(p_i, z, z') = \int \frac{dj}{2\pi i} \frac{(1+e^{-ixj})}{\sin \pi j} (\tilde{s})^j G^{(5)}(j, q, z, z')$$

Integration Contour for Mellin Transform

Reduction to AdS-3:

$$G_{\Delta}^{(5)}(j,q^{\pm}=0,q^{\perp},z,z') \to (zz')G_{(\Delta-1)}^{(3)}(j,q_{\perp},z,z')$$

HE scattering after AdS/CFT

Impact Representation:

$$T^{(1)}(s; x_{\perp} - y_{\perp}) = (1/2\pi)^2 \int d^2 q_{\perp} e^{i(x_{\perp} - y_{\perp}) \cdot q_{\perp}} T^{(1)}(s, -q_{\perp}^2)$$
$$T^{(1)}(s; x_{\perp} - y_{\perp}) = g_s^2 \int \frac{dz dz'}{z^5 z'^5} \,\tilde{\Phi}_{\Delta}(p_1^2, z) \tilde{\Phi}_{\Delta}(p_3^2, z') \mathcal{K}(s, x_{\perp} - y_{\perp}, z, z') \tilde{\Phi}_{\Delta}(p_2^2, z') \tilde{\Phi}_{\Delta}(p_4^2, z')$$

j-plane Representation:

$$\mathcal{K}(s, x_{\perp} - y_{\perp}, z, z') = (zz') \int \frac{dj}{2\pi i} \frac{(1 + e^{-i\pi j})}{\sin \pi j} (\tilde{s})^j G^{(3)}_{\Delta_2}(j, x_{\perp} - y_{\perp}, z, z')$$

Reduction to AdS-3:

$$G^{(3)}_{\Delta_2}(j, x_\perp - y_\perp, z, z') = \frac{1}{(2\pi)^2} \int d^2 q_\perp e^{i(x_\perp - y_\perp) \cdot q_\perp} \tilde{G}^{(3)}_{\Delta_2}(j, -q_\perp^2, z, z')$$

D.E. for Propagator:

 $\{2\sqrt{\lambda}(j-2) - z^3\partial_z z^{-1}\partial_z - z^2\partial_{x^{\perp}}^2 + 3\}G^{(3)}_{(\Delta(j)-1)}(x_{\perp}, x'_{\perp}, z, z') = z^3\delta(z-z')\delta^{(2)}(x_{\perp} - x'_{\perp})$

Strong Coupling Pomeron Propagator --

Conformal Limit

· Use J-dependent Dimension

$$\Delta: \quad 4 \to \Delta(J) = 2 + [2\sqrt{\lambda}(J - J_0)]^{1/2} = 2 + \sqrt{\overline{j}}$$

• BFKL-cut:
$$J_0 = 2 - \frac{2}{\sqrt{\lambda}}$$

With Confinement

• discrete spectrum

Cutoff at large b:

Conformal:

$$\mathcal{K}(j, x_{\perp} - x'_{\perp}, z, z') \sim [(x_{\perp} - x'_{\perp})^2]^{-1 - \sqrt{c(j - j_0)}}$$
$$\mathcal{K}(j_0, x_{\perp} - x'_{\perp}, z, z') \sim \frac{1}{(x_{\perp} - x'_{\perp})^2}$$

Confining:

$$\mathcal{K}(j, x_{\perp} - x'_{\perp}, z, z') \simeq \frac{|d_0|^2 J_{\sqrt{j}}(m_0 z) J_{\sqrt{j}}(m_0 z')}{2\pi} K_0(m_0 |x_{\perp} - x'_{\perp}|)$$
$$\simeq \frac{|d_0|^2 J_{\sqrt{j}}(m_0 z) J_{\sqrt{j}}(m_0 z')}{2\pi} e^{-m_0 |x_{\perp} - x'_{\perp}|}$$

$$\mathcal{K}(j_0, x_\perp - x'_\perp, z, z') \simeq \frac{|d_0|^2 J_0(m_0 z) J_0(m_0 z')}{2\pi} e^{-m_0 |x_\perp - x'_\perp|}$$

III: Odderon in AdS

Massless modes of a closed string theory:

metric tensor, $G_{mn} = g_{mn}^0 + h_{mn}$ Kolb-Ramond anti-sym. tensor, $b_{mn} = -b_{nm}$ dilaton, etc. ϕ, χ, \cdots

$\mathcal{N} = 4$ SYM Scattering at High Energy

 AdS_5 boundary, $z \rightarrow 0$,

 $\langle e^{\int d^4x \phi_t(x) \mathcal{O}_t(x)} \rangle_{CFT} = \mathcal{Z}_{string} \left[\phi_t(x,z) |_{z \sim 0} \to \phi_t(x) \right],$

Bulk Degrees of Freedom from Supergravity:

- metric tensor: G_{MN}
- Kalb-Ramond 2 Forms: B_{MN} , C_{MN}
- Dilaton and zero form: ϕ and C_0

Born-Infeld Action

$$S = \int d^4x \det[G_{\mu\nu} + e^{-\phi/2}(B_{\mu\nu} + F_{\mu\nu})] + \int d^4x (C_0F \wedge F + C_2 \wedge F + C_4) \rangle$$

Dimension	State J^{PC}	Operator	Supergravity
$\Delta = 4$	0++	$Tr(FF) = \vec{E}^a \cdot \vec{E}^a - \vec{B}^a \cdot \vec{B}^a$	¢
$\Delta = 4$	2++	$T_{ij} = E_i^a \cdot E_j^a + B_i^a \cdot B_j^a - \text{trace}$	G_{ij}
$\Delta = 4$	0-+	$Tr(F\hat{F}) = \hat{E}^a \cdot \hat{B}^a$	C_0
$\Delta = 6$	1+-	$Tr(F_{\mu\nu}{F_{\rho\sigma}, F_{\lambda\eta}}) \sim d^{abc}F^aF^bF^c$	B_{ij}
$\Delta = 6$	1	$Tr(\tilde{F}_{\mu\nu}\{F_{\rho\sigma},F_{\lambda\eta}\}) \sim d^{abc}\tilde{F}^{a}F^{b}F^{c}$	$C_{2,ij}$

Confinement gives a discrete spectrum of Glueballs: Lattice Data vs AdS IIA Gravity dual Gauge ($\alpha' = 0$)

Massless Modes in Flat-Space String

$$|I, J; k\rangle = a_{1,I}^{\dagger} \tilde{a}_{1,J}^{\dagger} |NS\rangle_L |NS\rangle_R |k\rangle$$

$$|h\rangle = \sum_{I,J} h^{IJ} |I,J;k\rangle \quad , \quad |B\rangle = \sum_{I,J} B^{IJ} |I,J;k\rangle \quad , \quad |\phi\rangle = \sum_{I,J} \eta^{IJ} |I,J;k\perp\rangle$$

fluctuations of the metric G_{MN}

anti-symmetric Kalb-Ramond background B_{MN}

dilaton, ϕ

Flat-Space String Theory

$$\mathcal{T}_{10}^{(+)}(s,t) \to f^{(+)}(\alpha' t) \left[\frac{(-\alpha' s)^{2+\alpha' t/2} + (\alpha' s)^{2+\alpha' t/2}}{\sin \pi (2+\alpha' t/2)} \right] \qquad \qquad \alpha_+(t) = 2 + \alpha' t/2 \; .$$

$$|I, J; k\rangle = a_{1,I}^{\dagger} \tilde{a}_{1,J}^{\dagger} |NS\rangle_L |NS\rangle_R |k\rangle$$

$$|h\rangle = \sum_{I,J} h^{IJ} |I,J;k\rangle \quad , \quad |B\rangle = \sum_{I,J} B^{IJ} |I,J;k\rangle \quad , \quad |\phi\rangle = \sum_{I,J} \eta^{IJ} |I,J;k\perp\rangle \ .$$

$$\mathcal{T}_{10}^{(-)}(s,t) \to f^{(-)}(\alpha' t) \left[\frac{(-\alpha' s)^{1+\alpha' t/2} - (\alpha' s)^{1+\alpha' t/2}}{\sin \pi (1+\alpha' t/2)} \right] = \alpha_{-}(t) = 1 + \alpha' t/2 .$$

36

Conformal Pomeron and Odderon in Target Space: Ultra-local approximation:

 $\tilde{s} = \frac{R^2}{r^2} s , \quad \tilde{t} = \frac{R^2}{r^2} t , \qquad \alpha'_{\text{eff}}(r) = \frac{R^2 \alpha'}{r^2}$ $\mathcal{T}_{10}^{(\pm)}(\tilde{s}, \tilde{t}) \sim f^{(\pm)}(\alpha' \tilde{t})(\alpha' \tilde{s})^{\alpha_{\pm}(0) + \alpha' \tilde{t}/2} \sim s^{\alpha_{\pm}(0) + \alpha'_{eff}(r)t/2}.$

Diffusion in AdS

Flat Space: $t \rightarrow \nabla_{h}^{2}$ $\tau = \log(\alpha's) \qquad \langle \vec{b} \mid (\alpha's)^{\alpha_{\pm}(0) + \alpha't/2} \mid \vec{b'} \rangle \to (\alpha's)^{\alpha_{\pm}(0)} \; \frac{e^{-(\vec{b} - \vec{b'})^2/(2\alpha'^2\tau)}}{\tau^{(D-2)/2}}$ $\alpha' \tilde{t} \to \alpha' \Delta_P \equiv \frac{\alpha' R^2}{r^2} \nabla_b^2 + \alpha' \Delta_{\perp P}$ AdS5, C=+1: $\tilde{s}^{2+\alpha'\tilde{t}/2} = \int \frac{dj}{2\pi i} \frac{\tilde{s}^j}{i-2-\alpha'\Delta_P/2}$ AdS5, C=-1: $\tilde{s}^{1+\alpha'\tilde{t}/2} = \int \frac{dj}{2\pi i} \,\tilde{s}^j \,G^{(-)}(j) = \int \frac{dj}{2\pi i} \,\frac{\tilde{s}^j}{j-1-\alpha'\Delta_O/2}$ 50

Diffusion in AdS

Flat Space: $t \to \nabla_h^2$ $\tau = \log(\alpha's) \qquad \langle \vec{b} \mid (\alpha's)^{\alpha_{\pm}(0) + \alpha't/2} \mid \vec{b'} \rangle \to (\alpha's)^{\alpha_{\pm}(0)} \; \frac{e^{-(\vec{b} - \vec{b'})^2/(2\alpha'^2\tau)}}{\tau^{(D-2)/2}}$ $\alpha' \tilde{t} \to \alpha' \Delta_P \equiv \frac{\alpha' R^2}{r^2} \nabla_b^2 + \alpha' \Delta_{\perp P}$ AdS5, C=+1: $\tilde{s}^{2+\alpha'\tilde{t}/2} = \int \frac{dj}{2\pi i} \frac{\tilde{s}^j}{i-2-\alpha'\Delta_P/2}$ AdS5, C=-1: $\tilde{s}^{1+\alpha'\tilde{t}/2} = \int \frac{dj}{2\pi i} \,\tilde{s}^j \,G^{(-)}(j) = \int \frac{dj}{2\pi i} \,\frac{\tilde{s}^j}{j-1-\alpha'\Delta_O/2}$ U7

$$G^{(+)}(j) = \frac{1}{j - 2 - \alpha' \Delta_2/2}$$

$$\Delta_2 h_{MN} = 0$$

$$G^{(-)}(j) = \frac{1}{j - 1 - (\alpha'/2R^2)(\Box_{Maxwell} - m_{AdS,i}^2)}$$
$$(\Box_{Maxwell} - (k + 4)^2)B^{(1)}_{IJ} = 0 , \quad (\Box_{Maxwell} - k^2)B^{(2)}_{IJ} = 0$$

 $m_{AdS,1}^2 = 16$, $m_{AdS,2}^2 = 0$

39

$$(1/2\sqrt{\lambda})\left\{-z\partial_z z\partial_z + z^2 t + m_{\pm}^2(j)\right\}G^{(\pm)}(z,z';j,t) = z\ \delta(z-z')$$

$$m_+^2(j) = 2\sqrt{\lambda}(j-2) + 4$$

$$m_{-}^{2}(j) = 2\sqrt{\lambda}(j-1) + m_{AdS,i}^{2}$$

Gauge/String Duality: Conformal Limit

• C=+1: Pomeron <===> Graviton

$$j_0^{(+)} = 2 - 2/\sqrt{\lambda} + O(1/\lambda)$$
.

C=-1: Odderon <===> Kalb-Ramond Field

$$j_0^{(-)} = 1 - m_{AdS}^2/2\sqrt{\lambda} + O(1/\lambda)$$
.

	Weak Coupling	Strong Coupling
C = +1	$j_0^{(+)} = 1 + (\ln 2) \ \lambda / \pi^2 + O(\lambda^2)$	$j_0^{(+)} = 2 - 2/\sqrt{\lambda} + O(1/\lambda)$
C = -1	$ \begin{aligned} j_{0,(1)}^{(-)} &\simeq 1 - 0.24717 \; \lambda/\pi + O(\lambda^2) \\ j_{0,(2)}^{(-)} &= 1 + O(\lambda^3) \end{aligned} $	$j_{0,(1)}^{(-)} = 1 - 8/\sqrt{\lambda} + O(1/\lambda)$ $j_{0,(2)}^{(-)} = 1 + O(1/\lambda)$

Table 1: Pomeron and Odderon intercepts at weak and strong coupling.

J-Plane Structure

$$(1/2\sqrt{\lambda}) \left\{ -z\partial_z z\partial_z + z^2 t + m_{\pm}^2(j) \right\} G^{(\pm)}(z, z'; j, t) = z \, \delta(z - z')$$

$$G^{(\pm)}(z,z';j,t) = \frac{2}{\sqrt{\lambda}\pi^2} \int_{-\infty}^{\infty} d\nu \ \nu \sinh 2\pi\nu \frac{K_{2t\nu}(|t|^{1/2}e^{-u})K_{-2t\nu}(|t|^{1/2}e^{-u'})}{j-j_0^{\pm} + D\nu^2}$$

$$G^{(\pm)}(z, x^{\perp}, z', x'^{\perp}; j) = \frac{1}{4\pi z z'} \frac{e^{(2-\Delta^{(\pm)}(j))\xi}}{\sinh \xi} \ . \qquad \qquad v = \frac{(x^{\perp} - x'^{\perp})^2 + (z - z')^2}{2z z'}$$

$$\Delta^{(\pm)}(j) = 2 + \sqrt{2} \lambda^{1/4} \sqrt{(j - j_0^{(\pm)})}$$

42

Formal Treatment via OPE

• Flat Space Pomeron Vertex Operator

 $V_P^{\pm} = (2\partial X^{\pm} \overline{\partial} X^{\pm} / \alpha')^{1+\alpha' t/4} e^{\mp i k \cdot X}$.

• Flat Space Odderon Vertex Operator

 $\mathcal{V}_{O}^{\pm} = (2\epsilon_{\pm,\perp}\partial X^{\pm}\bar{\partial}X^{\perp}/\alpha')(2\partial X^{\pm}\bar{\partial}X^{\pm}/\alpha')^{\alpha't/4}e^{\mp ik\cdot X}$

Pomeron Vertex Operator in AdS

 $\mathcal{V}_P(j,\nu,k,\pm) \sim (\partial X^{\pm} \overline{\partial} X^{\pm})^{\frac{1}{2}} e^{\mp ik \cdot X} e^{(j-2)u} K_{\pm 2i\nu}(|t|^{1/2} e^{-u})$

Odderon Vertex Operator in AdS

 $\mathcal{V}_{\mathcal{O}}(j,\nu,k,\pm) \sim (\partial X^{\pm} \overline{\partial} X^{\perp} - \partial X^{\perp} \overline{\partial} X^{\pm}) (\partial X^{\pm} \overline{\partial} X^{\pm})^{\frac{j-1}{2}} e^{\mp i k \cdot X} e^{(j-1)u} K_{\pm 2i\nu}(|t|^{1/2} e^{-u})$

IV. Beyond Pomeron

Sum over all Pomeron graph (string perturbative, 1/N²)

Eikonal summation in AdS3

Constraints from Conformal Invariance, Unitarity, Analyticity, Confinement, Universality, etc.

Froissart Bound?

*non-perturbative" (e.g., blackhole production)

Eikonal Expansion

$$A_1(s,t = -q_\perp^2) \simeq 2s \int d^2 b e^{-iqb} \chi(s,b) = 2s \chi(s,q_\perp)$$

• Eikonal Sum: derived both via Cheng-Wu or by Shock-wave method

$$A_{2\to 2}(s,t) \simeq -2is \int d^2b \ e^{-ib^{\perp}q_{\perp}} \int dz dz' P_{13}(z) P_{24}(z') \left[e^{i\chi(s,b^{\perp},z,z')} - 1 \right]$$

transverse AdS₃ space !!

 $P_{13}(z) = (z/R)^2 \sqrt{g(z)} \Phi_1(z) \Phi_3(z)$

$$P_{24}(z) = (z'/R)^2 \sqrt{g(z')} \Phi_2(z') \Phi_4(z')$$

$$\chi(s, x^{\perp} - x'^{\perp}, z, z') = \frac{g_0^2 R^4}{2(zz')^2 s} \mathcal{K}(s, x^{\perp} - x'^{\perp}, z, z')$$

• <u>Saturation:</u>

$$\chi(s, x^{\perp} - {x'}^{\perp}, z, z') = O(1)$$

• Universality:

 <u>Universality:</u> <u>By choosing wave functions, Φ, can treat</u> <u>DIS, Higgs Production, Proton-Proton, etc., on equal</u> <u>footing</u>.

Saturation:
$$\chi(s, x^{\perp} - x'^{\perp}, z, z') = O(1)$$

Phase space:

$$s \leftrightarrow 1/x$$

 $x_{\perp} \leftrightarrow impact \ space$
 $z \leftrightarrow 1/Q^2 \leftrightarrow virtuality$

<u>Conformal Invariance:</u>

$$\chi(s, x^{\perp} - {x'}^{\perp}, z.z') \to G(s, v)$$

$$v = rac{(x^{\perp} - {x'}^{\perp})^2 + (z - z')^2}{2zz'}$$

Use the condition:
$$\chi(s, x^{\perp} - x'^{\perp}, z, z') = O(1)$$

Elastic Ring: $b_{\rm diff} \sim \sqrt{zz'} \ (zz's/N^2)^{1/6}$ $\sigma_{total} \sim s^{1/3}$ No Froissart Inner Absorptive Disc: $b_{\text{black}} \sim \sqrt{zz'} \ \frac{(zz's)^{(j_0-1)/2}}{\lambda^{1/4}N} \qquad b_{\text{black}} \sim \sqrt{zz'} \ \left(\frac{(zz's)^{j_0-1}}{\lambda^{1/4}N}\right)^{1/\sqrt{2\sqrt{\lambda}(j_0-1)}}$ Inner Core: "black hole" production ?
Unitarity, Confinement and Froissart Bound

Mass of the lightest tensor Glueball provides scale

$$e^{-m_0 b}/\sqrt{m_0 b}$$

Elastic Ring:

$$b_{\text{diff}} \simeq \frac{1}{m_0} \log(s/N^2 \Lambda^2) + \dots$$

Absorptive Disc:

Inner Core:

Saturation of Froissart Bound

- The Confinement deformation gives an exponential cutoff for b
 b_{max} ~c log (s/s₀),
- Coefficient c ~ I/m₀, m₀ being the <u>mass of</u> <u>lightest tensor glueball.</u>
- There is a shell of "conformal region" of width $\Delta b \sim \log(s/s_0)$ Froissart is respected and saturated.

Disk picture

b_{max} determined by confinement.

V. Deep Inelastic Scattering (DIS)

Provide meaning for Pomeron non-perturbatively from first principles.

Realization of conformal invariance beyond perturbative QCD

New starting point for unitarization, saturation, etc.

Phenomenological consequences, Diffractive Higgs production at LHC (in progress).

DIS

General Setup Let us look in a little more detail at DIS.

The basic kinematical variables we need for describing this process are

► the center of mass energy

$$s = -(P+q)^2 > 0$$

the virtual photon mass squared:

$$-Q^2 = q^2 = q^{\mu}q_{\mu} = (k - k')^2 < 0$$

the scaling variable

$$0 < x \approx \frac{Q^2}{s} < 1$$

General Setup The cross section

We can write the cross section for this process in the form

$$\frac{d\sigma^2}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4}(Y_+F_2 - x^2F_L)$$
$$Y_+ = 1 + (1-x)^2,$$

In parton model, it is customary to introduce quark and gluon distribution functions:

•
$$F_2(x,Q^2) = x \sum_q e_q^2 [q(x,Q^2) + \bar{q}(x,Q^2)]$$

- $\blacktriangleright F_L(x,Q^2) \sim F_2 xg(x,Q^2)$
- F_2 is what we get from most experiments, since F_L vanishes at LO in pQCD.
- ▶ It is also customary to express F_2 as, $\sigma = \sigma_T + \sigma_L$,

$$F_2(x,Q^2) = \frac{Q^2}{4\pi^2\alpha}\sigma(x,Q^2)$$

î

Deep Inelastic Scattering (DIS)

$$F_{2}(x,Q2) = \frac{Q^{2}}{4\pi^{2}\alpha_{em}} \left[\sigma_{T}(\gamma^{*}p) + L(\gamma^{*}p)\right]$$

$$F_{2}(x,Q2) = \frac{Q^{2}}{4\pi^{2}\alpha_{em}} \left[\sigma_{T}(\gamma^{*}p) + L(\gamma^{*}p)\right]$$

$$x \equiv \frac{Q^{2}}{s}$$

Small
$$x: \frac{Q^2}{s} \to 0$$

Optical Theorem

$$\sigma_{total}(s, Q^2) = (1/s) \operatorname{Im} A(s, t = 0; Q^2)$$

HE scattering after AdS/CFT

 $F_2(x,Q^2) \sim (1/x)^{\epsilon_{effective}}$

Questions on HERA DIS small-x data:

• Why
$$\alpha_{eff} = 1 + \epsilon_{eff}(Q^2)$$
?

Confinement? (Perturbative vs. Non-perturbative?)

Saturation? (evolution vs. non-linear evolution?)

Review of High Energy Scattering in String Theory DIS in AdS

Recall that, for two-to-two scattering involving on-shell hadrons, the amplitude in an eikonal sum can be expressed as

$$A(s,t) = 2is \int d^2 b e^{i\vec{q}\cdot\vec{b}} \int dz dz' P_{13}(z) P_{24}(z') \{1 - e^{i\chi(s,b,z,z')}\},\$$

where, for scalar glueball states,

$$P_{ij}(z) = \sqrt{-g(z)}(z/R)^2 \phi_i(z)\phi_j(z)$$

involves a product of two external normalizable wave functions. To first order in the eikonal,

$$A_4(s,t) \simeq \int d^2 b e^{-i\mathbf{b}\mathbf{q}_\perp} \int dz dz' P_{13}(z) P_{24}(z') (2s\chi) ,$$

where

$$\chi(s, b, z, z') = \frac{g_0^2 R^4}{2(zz')^2 s} \mathcal{K}(s, b, z, z')$$

 ${\cal K}$ is the BPST Pomeron kernel.

High Energy Scattering and DIS in String Theory AdS space continued

We are interested in calculating the structure function F₂(x, Q²), which is simply the cross section for an off-shell photon. Using the optical theorem we obtain

$$\sigma_{tot} \simeq 2 \int d^2b \int dz dz' P_{13}(z) P_{24}(z') \ Im \ \chi$$

- For DIS, P₁₃ should present a photon on the boundary that couples to a spin 1 current in the bulk. This current then propagates through the bulk, and scatters off the target.
- The wave function, in the conformal limit, is

$$P_{13}(z) = \frac{1}{z}(Qz)^4(K_0^2(Qz) + K_1^2(Qz))$$

For the proton, one for now treats it as a glueball of mass $\sim \Lambda = 1 / Q'$, which in string theory appears as a Kaluza-Klein mode of the massless dilaton, after the compactification of S^5 .

Moments and Anomalous Dimension

$$M_n(Q^2) = \int_0 dx \; x^{n-2} F_2(x, Q^2) \quad \to \quad Q^{4-\Delta^{(+)}(n)}$$

$$\Delta^{(\pm)}(j) = 2 + \sqrt{2} \lambda^{1/4} \sqrt{(j - j_0^{(\pm)})}$$

 $F_2(x,Q^2) \sim (1/x)^{\epsilon_{effective}}$

Standard expectation AdS/CFT expectation (from Itakura's RIKEN lectures) (from BDST: hep-ph/1007.2259) 10 "Phase diagram" as a summary Saturation Confinement Non-linear / ___ Linear 10 Color Glass Condensate BFKL LHeC Energy (low high) Nonperturbative Extended BFKL, Scaling Scaling BK 10 $\tau = \ln 1/x$ 1/x No Scaling 10 DGLAP Parton gas 10 10 $\ln Q_s^2(x) - \ln Q_s^4/\Lambda^2$ $\ln Q$ **Transverse resolution** 10 10⁻¹ 10[°] 10³ Q² 10⁵ 10² 10⁴ 10⁶ 10¹ 10 (low \rightarrow high)

VI. Summary and Outlook

Provide meaning for Pomeron non-perturbatively from first principles.

Realization of conformal invariance beyond perturbative QCD

New starting point for unitarization, saturation, etc.

Phenomenological consequences, DIS at small-x, Diffractive Higgs production at LHC (in progress), etc.

The QCD Pomeron

Have shown that in gauge theories with string-theoretical dual descriptions, the **Pomeron** emerges unambiguously.

Pomeron can be identified as Reggeized Massive Graviton.

Both the IR Pomeron and the UV Pomeron are dealt in a unified single step.

Both conceptual and practical advantages.

Diffractive Production of Higgs at LHC

References:

- R. Brower, J. Polchinski, M. Strassler, and C-I Tan, "The Pomeron and Gauge/String Duality", hep-th/0603115.
- R. Brower, M. Strassler, and C-I Tan, hep-th/0707.2408.
- R. Brower, M. Strassler, and C-I Tan, hep-th/0710.4378.
- R. Brower, M. Djuric, and C-I Tan, arXiv:0812.0354.
- Other related work, e.g., L. Cornalba, et al., (hep-th/0710.5480),
- Y. Hatta, E. Iancu, and A. H. Mueller, (hep-th/0710.2148),
- E. Levin, et al. (arXiv:0811.3586) and (arXiv:0902.3122).
- Many others.