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Plan

• Brief motivation for considering inhomogeneity

• Asymptotics and `late time expansion’   (expansion about dS)

• Resummation of expansion   (expansion about FLRW)

• Averaging 

• Late time observations - redshift, luminosity distance



Motivations

• Last decade has seen interesting discovery of late time acceleration probably 
due to Lambda

• Last decade has also seen interest in going beyond PT about FLRW, and 
challenging the accuracy of using an FLRW background

• second order PT and non-gaussianity

• claims that dark matter/energy are artefacts of nonlinearity

• formal interest: how to ‘average’ cosmology and develop RG

• Develop methods that allow interpretation of late time observation which only 
depend on late time physics (ie. not dependent on inflationary initial 
conditions, weakly dependent on Einstein equations themselves...)



Late time expansion

• Method introduced by Starobinsky in context of inflation [’82]

• Analogous to Graham-Fefferman expansion for hyperbolic space, and its 
generalization to AdS in ‘holographic RG’

• Take Einstein equations with perfect dust fluid (CDM on large scales) and 
Lambda. Write the metric as;

• Have taken normal coordinates to const y surfaces. Note: const       curves 
are geodesic in normal coordinates. Since dust follows geodesics we may 
choose the y surfaces to fix const      curves to comove with the dust.  

• For regular               have conformal boundary at            
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Late time expansion...

• Then the stress tensor is:

• cf. synch gauge

• Note: this choice is deviation from previous work and gives large simplication

• The Einstein equations are:

• Eqn for density

• Constraint

• Tensor eqn
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Late time expansion...

• First eqn simply determines the dust density 

• Consider first tensor equation. This may be solved as expansion in ‘y’:

• Frobenius expansion about y=0  (not Taylor expansion). Here             is the 
conformal boundary metric, and            can be thought of as ‘extrinsic 
curvature’ of conf boundary.

• All other terms in expansion,             , determined in terms of          and we 
note that:

• Indicies above raised/lowered wrt       so              `lives’ on  (as do            ) 
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Late time expansion...

• Now consider the constraint equation:

• Define: 

• Tensor equation implies this quantity evolves in y as

• Integrate to give:                                                       for some constants

• Evaluate        on solution expansion;

• By comparison we observe the constraint implies:

• Note this constraint, applied to data h, then holds for all of expansion.
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∂yΦi =
(

2
y
− 1

2
ġ

)
Φi

Φi(y, x) = Ai(x) y2e−
1
2

R y
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Late time expansion...

• Dust equation then determines:

• Note the physical requirement that the trace 

• Physically the late time expansion captures cosmologies (or patches of them) 
where Lambda comes to dominate at late times.

• Appears to be observed in our universe on large scales

• We see such solutions of Lambda-CDM are characterized by a 3-metric       
and a tensor         living on that 3-metric and obeying

• Note the scaling symmetry; 
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Higher terms

• Define operator           on tensor       obeying

• Then some higher terms are:
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Comments

• This expansion is an expansion about dS. Take                and               and the 
result is flat sliced dS.

• Deformations about flat dS are controlled by curvatures of       ,        and its 
derivatives all dimensionalized by   

• Expect good convergence where geometry on const y slice is close to flat dS

• Since we are in a regime where Lambda dominates, may expect reasonable 
convergence.

• Have ignored radiation. Would enter at            order. Due to radiation-matter 
epoch occurring far before matter-Lambda, coefficients in expansion will be 
unnaturally small - reasonable study               order and higher ignoring 
radiation.
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Comments

• Consider general FLRW. Take;                  with                      and homogeneous                                      

• Then         is sphere metric (k>0), is flat      (k=0) or hyperbolic metric (k<0)

• Then we require:                                 to give FLRW data, with

• Note that whilst terms in expansion must be small, this is not equivalent to 
cosmological PT.

• For example: take         to be a squashed sphere metric. Taking the radius of 
curvature to be large so that                           this deformation is well 
described in our expansion today. However, for strong squashing this cannot 
be described by PT.
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Resummation

• Previous late time soln is expansion about flat dS. This is not ideal since our 
solution doesn’t treat the FLRW solution exactly, even though we know this!

• Consider flat FLRW:

• Surprisingly this converges back to big bang, 

• However, for                             may expect slow convergence.

• Even if we are in Lambda dominated epoch, high redshift SN are not. 

• Encouraging as, for weak inhomog. may expect convergence far back!
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Resummation...

• Consider general FLRW. Take;                                      ,   so; 

• Then                                 gives FLRW data, with

• Usual analysis allows determination of function                 `exactly’ from odes 

• Expanding soln with                       can straightforwardly be computed. 
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Resummation...

• For a tensor         denoted                                  as its anistropic component.

• Now resum as;

• Where again,                           , and the pair            characterize the solution

• Higher terms:
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Resummation...

• Seemingly trivial, but the expansion of                 in y is an expansion about 
FLRW. Taking                and                                  gives  

• Truncating                 at some order in y now exactly treats the `homogeneous’ 
dust and curvature components. All terms in the expansion parameterize 
deformations in inhomogeneity and/or anisotropy

• Speed of convergence of series is now determined by inhomog/anisotropy 
only. Presumably convergence is good where constant y slices geometrically 
are similar to FLRW slices. 
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Averaging

• We may think of the data             with                             geometrically.

• Take a geometry defined by       and a perturbation of that geometry  

• Define a quantity                                    ;   harmonic gauge if 

• (Expect) we may uniquely choose harmonic gauge for perturbation s.t.             
which is achieved by a diffeo generated by     which obeys  

• Then any pair             is equivalent to the pair            taking 

• Physical dust constraint            is            in harmonic gauge. 

• Since                                           then our perturbation must locally decrease 
volume in harm gauge. 
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4 ḡijδḡ
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Averaging...

• Canonical method for smoothing a geometry is Ricci flow:

• Consider a metric        and a nearby metric

• If we flow both, we find;                                              with 

• Hence we may canonically smooth a pair            by simultaneously flowing     
by Ricci flow, and       by its linearization (in the background of     ).

•  To smooth our pair             we think of it as a pair,           , then flow for some 
time     and then convert back to          .
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Example

• Flat FLRW                   and                     fixed point for const

• Well known that 3-flat space is stable under Ricci flow. 

• Consider perturbation:                               where      non-constant function 
and also        is traceless and chosen so that                        implying 

• Take;                         and                as,

• Then about flat space                one finds;                                                and in 
fact the condition            is preserved by the flow.

• Thus expect flat FLRW is a stable fixed point of the averaging flow 
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Late time observation - WARNING!

• Here we will consider that our universe can now, and for reasonable time in 
past, be described on large scales ( ~ 1/H ) by our solution.

• Standard cosmology where on large scales universe is very close to FLRW is 
confirmed by CMB to very high precision. Determines all large scales to high 
precision using PT about flat FLRW.

• Therefore it is unlikely we can learn anything new by considering late time 
measurements and our expansion.

• However, many assumptions go into standard calculation - metric closeness 
to FLRW, inflation initial conditions. It may prove useful to confirm aspects of 
this picture from measurements (eg. SN) using only late time assumptions.

• ie. derive closeness to FLRW from first principles.



Late time observation...

• Consider a comoving source at                and a comoving observer at

• At late time the observer meets conf. boundary at  

• Consider the observer looking in a past direction parameterized by the unit 
norm vector      

• We may solve null geodesic equations, and compute redshift along the curve, 
and also the luminosity distance of the source.

• Find expansion in           , and answer depends on expansion of       about 
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Late time observation...

• For luminosity distance,      , we find similar type of expression. Inverting 
previous redshift formula to get      in terms of     , we find the relation; 

• Note we may choose ‘local inertial coords’;

• And recall in 3d;

• We see terms in expansion related to how    varies away from 
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Late time observation with resummation

• Resummed expression:

• Where FLRW function                      determined by; 
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Late time observation...

• Luminosity distance can determine some, but not all of data

• The data,                            at observer can (in principle) be determined by 
measuring, eg. standard candle SN in all directions,

• However, at this order we cannot determine asymmetric parts of             such 
as 

• Whether these can be determined by higher orders is interesting question.
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Summary

• New way to characterize inhomogenous Lambda-CDM universe such as our 
own, in terms of final data           , with       locally volume decreasing.

• Assumes only matter content, Lambda and perfect dust fluid (CDM), and final 
dominance of Lambda.

• Uses method of Starobinsky/Holo RG together with resummation to express 
solutions as deformations about FLRW. Method is non-perturbative in metric 
deformation.

• Natural way to average these cosmologies, with Ricci flow giving flow in this 
space of solutions. Shown flat FLRW stable fixed pt of this flow.

•  Natural way to observe characterizing data; eg. by SN and luminosity 
distance. No assumption about initial data - eg. form of inflation, PT etc...

(ḡ, δḡ) δḡ



Outlook

• Expect this method works generally for any late time acceleration. Hence can 
possibly generalize the method to use dark energy. Also may include radiation 
fluid.

• What characterizing data can be extracted from observation in principle?

• What can be determined in practice? Have studied SN data...

• Most important question:  how do we connect CMB initial conditions to this 
late time data. Obvious in linear theory - but what about non-linear theory?


