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Introduction of new gravity

1.
2. f(R), f(R,G) ...

New gravity and new matter: Extended Brans-Dicke,
Galileon



Modified gravity

Consider £ = f(R) theories



Modified gravity

Consider £ = f(R) theories

Equivalent to ST theory £ = f'(¢) (R — ¢) + f(¢)



Modified gravity

Consider £ = f(R) theories

Equivalent to ST theory £ = f'(¢) (R — ¢) + f(¢)

Consistent? cbut = fr>0



Modified gravity

Consider £ = f(R) theories
Equivalent to ST theory £ = f'(¢) (R — ¢) + f(9)
Consistent? cbut = fr>0

What new degrees of freedom? 1 SF



Modified gravity

Consider £ = f(R) theories

Equivalent to ST theory £ = f'(¢) (R — ¢) + f(9)
Consistent? ,but f'= fr>0
What new degrees of freedom? 1 SF

Interesting phenomenology [Review by ADF, Tsujikawa "10]
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General MGM

Introduce the gravity action £ = f(R, G)
[ADF, Carroll, Duvvuri, Easson, Trodden, Turner '05]

No ghost tensor modes, £ = ;M3 [F R+£G -V (F,€)]

Two extra new scalar fields: F', £
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MGM and PT

Gauss-Bonnet gravity
S = %Mﬁl/d‘lx\/—g[}% + &G -V (&)].

A scalar field coupled to G

Instability ¢ < 0 on FLRW before DE
[ADF, Tsujikawa "10]
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PT and degrees of freedom [ADF, Tanaka '10]

f(R,G) equivalent to theory with 2 extra scalars
One scalar pert. field very massive in FLRW
It can be Integrated out

In other backgrounds, both propagate
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Perturbation theory on VSSB

Perturbation theory for f(R,G) on vac. spher. symm.
background

Write down the action expanded at 2nd order
Or linearize the equations of motion

Look for behavior of perturbations
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Black hole stability ADF, Suyama, Tanaka '11

Study vacuum spher. symm. (z = cos6)

r? dz?

1 — 22

ds* = —Adt* + dr’/B - - (1 — 2%)de?

Perturb and choose gauge
Expand in spher. harmonics: even/odd modes

Expand action at second order
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Odd modes

Choose RW-gauge
0gos = (1 — 2°)ho0:Yip, dg13 = (1 — 2%)ho0. Yo

Introduce Lagr. multipl. Q) = hl — h{ + 2ho/7
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Result |
L=A Q? —A2Ql2 —wr Q7

No ghost for AF — 2BAE > 0

Radial speed

, 1 AF—2BAY
Codd = AF _opIe — ABE”
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Even modes

0goo = —AHyYy, dg9un = H1Yy, 09, = H2Y/B,
0gr, = 0,Y)y, F = F(r)+0F Y, £ =&(r) + 6 Yo
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Even modes

0goo = —AHyYy, dg9un = H1Yy, 09, = H2Y/B,
5grz = a0,Y), ' = F(T) + 0F Y, § = S(T) T 55 Yio

Expand at second order

Integrate out H;
Define 6F = v; — 4(1 — B)d¢/r?, a = a(vg, Ha, v})

Integrate out Hy and H,

12



:2\1/2
Define vy = vy/(1 + 4j2)1/2, v3 = 0§/(1 + 432)1/
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Define vy = vy /(1 + 452)Y/2, vg = 8¢ /(1 + 452)/2
Lagrangian
L = KZ]UZ’UJ — L@-jvgv} — Di]”l),gvj — Mz’jvivj

Number of prop. scal. = 3, at least 1 ghost

det K;; x —(2B — 2 — rB')*(F — 2B'¢’ — 4B¢") < 0

det K;; — 0, as B — 1+ Cr*: (a)dS.
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Mass of the ghost
In the almost GR homogeneous limit v — 0, find mass
Diagonalize K
Get Lorentz-form matrix
Use Lorentz transf. with boost param. b to diag. M;;
Require that, with G = 16r2/r°

2V GU ¢

—1 < tanh 26 = _
U,gg-FGU,FF

<1
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Ghost

In general It propagates:

Unphysical if massive enough: fine

If M..con ~ L~ viable if

exp

9@ det(f)ij)] — |m12m:2] < L4

exp

3(fre— Gfec)=Im >+ m? < L

2
exp
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Applications to DE models

For toy models R + Fr(R) + Fa(G)
Froc (RP4b1)7 1, Fg oc (G* + by) ™! then

my = O[Hg(pm/pe)' ], m% = O[Hg(Hy 'rg/r®)™ ]

m?2 = O(10°%4em) ™2 > (1AU) 2

m2 = O(10% 7 %Pcm)? > (1AU) %, if p > 4
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Almost degenerate case

For models: |G det(f:;)| < (frr — Gfca)

If | fre| > |G faal:

2 1 2 f,sz—éf,GG
T 3[frr—Gfaal 3G det(fj)

Then almost f(R) theory with m_ > m

If |fre| <|Gfgal, problem: my < m_, m_ < m,

17
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